Mixing of charmed mesons: theoretical overview

Table of Contents:

- Introduction: it's all about CKM and flavor SU(3)!
- Charmed mixing: short and long distance
- exclusive approach: no experiment
- exclusive approach: how to use experimental data
- Conclusions: things to take home

Introduction

* Experimental fact: charm mixing parameters are non-zero

\star... and rather large
- if CP-violation is neglected...

$$
\begin{aligned}
& x=\left(0.46_{-0.15}^{+0.14}\right) \% \\
& y=(0.62 \pm 0.08) \%
\end{aligned}
$$

- if CP-violation is allowed

$$
\begin{aligned}
& x=(0.32 \pm 0.14) \% \\
& y=\left(0.69_{-0.07}^{+0.06}\right) \quad \%
\end{aligned}
$$

Introduction

* Main goal of the exercise: understand physics at the most fundamental scale
\star It is important to understand relevant energy scales for the problem at hand

Quark-hadron duality: lifetimes

* New Physics couples to quark degrees of freedom, we observe hadrons!
\Rightarrow need to know how to compute non-perturbative matrix elements
\Rightarrow need to understand how quark-hadron duality works
\star Observables computed in terms of hadronic degrees of freedom...

$$
\Gamma_{\text {hadron }}\left(H_{b}\right)=\sum_{\substack{\text { all final state } \\ \text { hadrons }}} \Gamma\left(H_{b} \rightarrow h_{i}\right)
$$

* ... must match observables computed in terms of quark degrees of freedom

$$
\begin{array}{r}
\Gamma\left(H_{b}\right)=\frac{1}{2 M_{b}}\left\langle H_{b}\right| T\left|H_{b}\right\rangle=\frac{1}{2 M_{b}}\left\langle H_{b}\right| \operatorname{Im} i \int d^{4} x T\left\{H_{e f f}^{\Delta B=1}(x) H_{e f f}^{\Delta B=1}(0)\right\}\left|H_{b}\right\rangle \\
\Gamma\left(H_{b}\right)=\frac{G_{F}^{2} m_{Q}^{5}}{192 \pi^{3}}\left[A_{0}+\frac{A_{2}}{m_{Q}^{2}}+\frac{A_{2}}{m_{Q}^{3}}+\ldots\right]
\end{array}
$$

HQ expansion converges reasonably well...

Quark-hadron duality: lifetimes

* How to define quark-hadron duality and quantify its violations?
- Compute quark correlator in Eucledian space and analytically continue to Minkowski space [exact calculation in ES = exact result in MS]
\Rightarrow Expand it in as and " $1 / Q \sim 1 / \mathrm{m}_{Q}$ ": series truncation
\Rightarrow Any deviation beyond "natural uncertainty" is treated as violation of quarkhadron duality [resonances, instantons,...]

This definition is due to M. Shifman

Rob Gonzalves

Quark-hadron duality: lifetimes

* In case of b-flavored hadrons can compare directly to experiment

Lifetime ratio	Experimental average	HQE prediction
$\tau\left(B^{+}\right) / \tau\left(B^{0}\right)$	1.076 ± 0.004	$1.04_{-0.01}^{+0.05} \pm 0.02 \pm 0.01$
$\tau\left(B_{s}^{0}\right) / \tau\left(B^{0}\right)$	0.990 ± 0.004	1.001 ± 0.002
$\tau\left(\Lambda_{b}^{0}\right) / \tau\left(B^{0}\right)$	0.967 ± 0.007	0.935 ± 0.054
$\tau\left(\Xi_{b}^{0}\right) / \tau\left(\Xi_{b}^{-}\right)$	0.929 ± 0.028	0.95 ± 0.06

Jubb, Kirk, Lenz, Tetlalmatzi-Xolocotzi, 2017
\star How does it work for charmed hadrons?
For the lifetimes, see Prof. H.Y. Cheng's talk from yesterday

Quark-hadron duality: mixing

\star How can one tell that a process is dominated by long-distance or short-distance?

* To start thing off, mass and lifetime differences of mass eigenstates...

$$
x_{D}=\frac{M_{2}-M_{1}}{\Gamma_{D}}, y_{D}=\frac{\Gamma_{2}-\Gamma_{1}}{2 \Gamma_{D}}
$$

\star...can be calculated as real and imaginary parts of a correlation function

$$
\begin{aligned}
& y_{\mathrm{D}}=\frac{1}{2 M_{\mathrm{D}} \Gamma_{\mathrm{D}}} \operatorname{Im}\left\langle\overline{D^{0}}\right| i \int \mathrm{~d}^{4} x T\left\{\mathcal{H}_{w}^{|\Delta C|=1}(x) \mathcal{H}_{w}^{|\Delta C|=1}(0)\right\}\left|D^{0}\right\rangle \\
& x_{\mathrm{D}}=\frac{1}{2 M_{\mathrm{D}} \Gamma_{\mathrm{D}}} \operatorname{Re}\left[2\left\langle\overline{D^{0}}\right| H^{|\Delta C|=2}\left|D^{0}\right\rangle+\left\langle\overline{D^{0}}\right| i \int \mathrm{~d}^{4} x T\left\{\mathcal{H}_{w}^{|\Delta C|=1}(x) \mathcal{H}_{w}^{|\Delta C|=1}(0)\right\}\left|D^{0}\right\rangle\right]
\end{aligned}
$$

* ... or can be written in terms of hadronic degrees of freedom...

$$
y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left[\left\langle D^{0}\right| H_{W}^{\Delta C=1}|n\rangle\langle n| H_{W}^{\Delta C=1}\left|\bar{D}^{0}\right\rangle+\left\langle\bar{D}^{0}\right| H_{W}^{\Delta C=1}|n\rangle\langle n| H_{W}^{\Delta C=1}\left|D^{0}\right\rangle\right]
$$

Mixing: short vs long distance

\star How can one tell that a process is dominated by long-distance or short-distance?

$$
y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left[\left\langle D^{0}\right| H_{W}^{\Delta C=1}|n\rangle\langle n| H_{W}^{\Delta C=1}\left|\bar{D}^{0}\right\rangle+\left\langle\bar{D}^{0}\right| H_{W}^{\Delta C=1}|n\rangle\langle n| H_{W}^{\Delta C=1}\left|D^{0}\right\rangle\right]
$$

\star It is important to remember that the expansion parameter is $1 / E_{\text {released }}$

$$
y_{\mathrm{D}}=\frac{1}{2 M_{\mathrm{D}} \Gamma_{\mathrm{D}}} \operatorname{Im}\left\langle\overline{D^{0}}\right| i \int \mathrm{~d}^{4} x T\left\{\mathcal{H}_{w}^{|\Delta C|=1}(x) \mathcal{H}_{w}^{|\Delta C|=1}(0)\right\}\left|D^{0}\right\rangle
$$

\star In the heavy-quark limit $m_{c} \rightarrow \infty$ we have $m_{c} \gg \sum m_{\text {intermediate quarks, so }}$ Ereleased $\sim m_{c}$

- the situation is similar to B-physics, where it is "short-distance" dominated
- one can consistently compute PQCD and $1 / \mathrm{m}$ corrections
\star But wait, m_{c} is NOT infinitely large! What happens for finite m_{c} ???
- how is large momentum routed in the diagrams?
- are there important hadronization (threshold) effects?

Threshold (and related) effects in OPE

\star How can one tell that a process is dominated by long-distance or short-distance?

* Let's look at how the momentum is routed in a leading-order diagram
- injected momentum is $p_{c} \sim m_{c}$
- thus, $\mathrm{p}_{1} \sim \mathrm{p}_{2} \sim \mathrm{~m}_{c} / 2 \sim O\left(\Lambda_{\mathrm{QCD}}\right)$?

Still OK with OPE, signals large nonperturbative contributions
\mathbf{p}_{2}

* For a particular example of the lifetime difference, have hadronic intermediate states
-let's use an example of KKK intermediate state
- in this example, $E_{\text {released }} \sim m_{D}-3 m_{K} \sim O\left(\Lambda_{Q C D}\right)$

* Similar threshold effects exist in B-mixing calculations
- but $m_{b} \gg \sum m_{\text {intermediate quarks, }}$ so $E_{\text {released }} \sim m_{b}$ (almost) always
- quark-hadron duality takes care of the rest!

$$
\begin{array}{ll}
\text { Thus, two approaches: } & \text { 1. insist on } 1 / m_{c} \text { expansion, hope for quark-hadron duality } \\
& \text { 2. saturate correlators by hadronic states }
\end{array}
$$

Mixing: Standard Model predictions

* Not an actual representation of theoretical uncertainties. Objects might be bigger then what they appear to be...
\star Predictions of x and y in the SM are complicated -second order in flavor SU(3) breaking $-m_{c}$ is not quite large enough for OPE $-x, y \ll 10^{-3}$ ("short-distance") $-x, y$ ~ 10-2 ("long-distance")
\star Short distance:
-assume m_{c} is large
-combined $m_{s}, 1 / m_{c}, a_{s}$ expansions
-leading order: $m_{s}{ }^{2}, 1 / m_{c}{ }^{6}$!
-threshold effects?
H. Georgi; T. Ohl, ...
I. Bigi, N. Uraltsev;
M. Bobrowski et al
\star Long distance:
-assume m_{c} is NOT large
-sum of large numbers with alternating signs, $S U(3)$ forces zero!
-multiparticle intermediate states
dominate
J. Donoghue et. al.
P. Colangelo et. al.

Falk, Grossman, Ligeti, Nir. A.A.P.

Aside: classification of charm decays

\star Can be classified by SM CKM suppression
\star Cabibbo-favored (CF) decay

- originates from $c \rightarrow s$ ud
- examples: $D^{0} \rightarrow K^{-} \pi^{+}$

$$
\begin{gathered}
V_{c s} V_{u d}^{*} \\
V_{c s(d)} V_{u s(d)}^{*}
\end{gathered}
$$

D

* Singly Cabibbo-suppressed (SCS) decay

- originates from $c \rightarrow q u \bar{q}$
- examples: $D^{0} \rightarrow \pi \pi$ and $D^{0} \rightarrow K K$
D

$$
V_{c d} V_{u s}^{*}
$$

* Doubly Cabibbo-suppressed (DCS) decay

- originates from $c \rightarrow d u \bar{s}$
- examples: $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$

D

* "Common final states" for D and \bar{D} generate mixing in exclusive approach

Exclusive approach to mixing: use data?

* LD calculation: saturate the correlator by hadronic states, e.g.

$$
y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left[\left\langle D^{0}\right| H_{W}^{\Delta C=1}|n\rangle\langle n| H_{W}^{\Delta C=1}\left|\bar{D}^{0}\right\rangle+\left\langle\bar{D}^{0}\right| H_{W}^{\Delta C=1}|n\rangle\langle n| H_{W}^{\Delta C=1}\left|D^{0}\right\rangle\right]
$$

... with n being all states to which D^{0} and $\overline{D^{0}}$ can decay. Consider $\pi \pi, \pi K$, KK intermediate states as an example...
J. Donoghue et. al.
L. Wolfenstein

$$
y_{2}=\operatorname{Br}\left(D^{0} \rightarrow K^{+} K^{-}\right)+\operatorname{Br}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)
$$

$\bigcirc 2 \cos \delta \sqrt{B r\left(D^{0} \rightarrow K^{+} \pi^{-}\right) \operatorname{Br}\left(D^{0} \rightarrow \pi^{+} K^{-}\right)}$
P. Colangelo et. al.
H.Y. Cheng and C. Chiang
cancellation
exbected

If every Br is known up to $\mathrm{O}(1 \%) \Rightarrow$ the result is expected to be $\mathrm{O}(1 \%)$!

The result here is a series of large numbers with alternating signs, $\underline{S U(3) \text { forces } 0}$ If experimental data on Br is used, are we only sensitive to exit. uncertainties?

* Need to "repackage" the analysis: look at complete multiplet contribution

$$
y=\sum_{F_{R}} y_{F, R} B r\left(D^{0} \rightarrow F_{R}\right)=\sum_{F_{R}} y_{F, R} \frac{1}{\Gamma} \sum_{n \in F_{R}} \Gamma\left(D^{0} \rightarrow n\right)
$$

Exclusive approach to mixing: no data

* LD calculation: consider the correlation

Falk, Grossman, Ligeti, Nir. A.A.P. Phys.Rev. D69, 114021, 2004 Falk, Grossman, Ligeti, and A.A.P. Phys.Rev. D65, 054034, 2002

$$
\left.\Sigma_{p_{D}}(q)=i \int d^{4} z\left\langle\bar{D}\left(p_{D}\right)\right| T\left[H_{w}(z) H_{w}(0)\right] \mid D\left(p_{D}\right)\right) e^{i\left(q-p_{D}\right)}
$$

$\star \Sigma_{p_{D}}(q)$ is an analytic function of q. To write a disp. relation, go to to HQET:

$$
\begin{gathered}
H_{w}=\frac{4 G_{F}}{\sqrt{2}} V_{c q_{1}} V_{u q_{2}}^{*} \sum_{i} C_{i} O_{i}=\hat{H}_{w}\left[e^{-i m_{c} v \cdot z} h_{v}^{(c)}+e^{i m_{c} v z z} \tilde{h}_{v}^{(c)}\right]+\ldots \\
|D(p=m v)\rangle=\sqrt{m}|H(v)\rangle+\ldots
\end{gathered}
$$

Dispersion relations for mixing

* ...this implies for the correlator

Rapidly oscillates for large m_{c}

$$
\begin{aligned}
\Sigma_{p_{D}}(q)= & i \int d^{4} z\langle\bar{H}(v)| T e^{i\left(q-p_{D}-m_{c} v\right) z}\left[\hat{H}_{w} h_{v}^{(c)}(z), \hat{H}_{w} \tilde{h}_{v}^{(c)}(0)\right]|H(v)\rangle+ \\
& i \int d^{4} z\langle\bar{H}(v)| T e^{i\left(q-p_{D}+m_{c} v\right) z}\left[\hat{H}_{w} \tilde{h}_{v}^{(c)}(z), \hat{H}_{w} h_{v}^{(c)}(0)\right]|H(v)\rangle+\ldots
\end{aligned}
$$

\star HQ mass dependence drops out for the second term, so for $\bar{\Sigma}_{v}(q)=\Sigma_{p_{D}}(q) / m_{D}$

$$
\bar{\Sigma}_{v}(q)=-2 \Delta m(E)+i \Delta \Gamma(E)
$$

* Thus a dispersion relation

$$
\Delta m=-\frac{1}{2 \pi} P \int_{2 m_{\pi}}^{\infty} d E\left[\frac{\Delta \Gamma(E)}{E-m_{D}}+O\left(\frac{\Lambda_{Q C D}}{E}\right)\right]
$$

Compute $\Delta \Gamma$, then find $\Delta \mathrm{m}$!

No data: $\operatorname{SU}(3)_{F}$ and phase space

* "Repackage" the analysis: look at the complete multiplet contribution

* Does it help? If only phase space is taken into account: mild model dependence

$$
y_{F, R}=\frac{\sum_{n \in F_{R}}\left\langle\bar{D}^{0}\right| H_{W}|n\rangle \rho_{n}\langle n| H_{W}\left|D^{0}\right\rangle}{\sum_{n \in F_{R}} \Gamma\left(D^{0} \rightarrow n\right)}=\frac{\sum_{n \in F_{R}}\left\langle\bar{D}^{0}\right| H_{W}|n\rangle \rho_{n}\langle n| H_{W}\left|D^{0}\right\rangle}{\sum_{n \in F_{R}}\left\langle D^{0}\right| H_{W}|n\rangle \rho_{n}\langle n| H_{W}\left|D^{0}\right\rangle}
$$

Example: PP intermediate states

\star Consider PP intermediate state. Note that $(8 \times 8)_{s}=27+8+1$. Look at 8 as an example
Numerator:

$$
\begin{aligned}
A_{N, 8} & =\left|A_{0}\right|^{2} s_{1}^{2}\left[\frac{1}{2} \Phi(\eta, \eta)+\frac{1}{2} \Phi\left(\tau^{0}, \pi^{0}\right)+\frac{1}{3} \Phi\left(\eta, \pi^{0}\right)+\Phi\left(\pi^{+}, \pi^{-}\right)-\Phi\left(\bar{K}^{0}, \pi^{0}\right)\right. \\
& \left.+\Phi\left(K^{+}, K^{-}\right)-\frac{1}{6} \Phi\left(\eta, K^{0}\right)-\frac{1}{6} \Phi\left(\eta, \bar{K}^{0}\right)-\Phi\left(K^{+}, \pi^{-}\right)-\Phi\left(K^{-}, \pi^{+}\right)\right]
\end{aligned}
$$

Denominator:

$$
A_{D, 8}=\left|A_{0}\right|^{2}\left[\frac{1}{6} \Phi\left(\eta, K^{0}\right)+\Phi\left(K^{+}, \pi^{-}\right)+\frac{1}{2} \Phi\left(\overparen{K^{0}, \pi^{0}}\right)+O\left(s_{1}^{2}\right)\right]
$$

\star This contribution is calculable....

$$
y_{2,8}=\frac{A_{N, 8}}{A_{D, 8}}=-0.038 s_{1}^{2}=-1.8 \times 10^{-4}
$$

1. Repeat for other states 2. Multiply by $\mathrm{Br}_{\mathrm{Fr}}$ to get y
but completely negligible!

Old results

Repeat for other intermediate states:

Final state representation		$y_{F, R} / s_{1}^{2}$	$y_{F, R}(\%)$
$P P$	8	-0.0038	-0.018
	27	-0.00071	-0.0034
$P V$	$8 s$	0.031	0.15
	8 A	0.032	0.15
	10	0.020	0.10
	$\overline{10}$	0.016	0.08
	27	0.040	0.19
$(V V)_{\text {S-wave }}$	8	-0.081	-0.39
	27	-0.061	-0.30
$(V V)_{p-w a v e}$	8	-0.10	-0.48
	27	-0.14	-0.70
$(V V)_{d \text {-wave }}$	8	0.51	2.5
	27	0.57	2.8

Final state representation		$y P, R / s_{1}^{2}$	$y_{P, A}$ (\%)
$(3 P)_{\text {s-wave }}$	8	-0.48	-2.3
	27	-0.11	-0.54
$(3 P) p$-wave	8	-1.13	-5.5
	27	-0.07	-0.36
${ }^{(3 P)}$ form-factor	8	-0.44	-2.1
	27	-0.13	-0.64
$4 P$	8	3.3	16
	27	2.2	9.2
	27^{\prime}	1.9	11

- Product is naturally $\mathrm{O}(1 \%)$
- No (symmetry-enforced) cancellakions
- Disp relation: compute \times (model-dependence)

Final state	fraction
$P P$	5%
$P V$	10%
$(V V)_{s}$-wave	5%
$(V V)_{d \text {-wave }}$	5%
$3 P$	5%
$4 P$	10%

A.F., Y.G., Z.L., Y.N. and A.A.P. Phys.Rev. D69, 114021, 2004
E.Golowich and A.A.P.

Phys.Lett. B427, 172, 1998
naturally implies that $x, y \sim 1 \%$ is expected in the Standard Model

Note dominance of near-threshold states!

Exclusive approach to mixing: use data!

* What if we insist on using experimental data anyway?
¿ Ex., one can employ Factorizaton-Assisted Topological Amplitudes
in units of 10^{-3}

Modes	$\mathcal{B}(\exp)$	$\mathcal{B}(\mathrm{FAT})$	Modes	$\mathcal{B}(\exp)$	$\mathcal{B}(\mathrm{FAT})$	Modes	$\mathcal{B}(\exp)$	$\mathcal{B}(\mathrm{FAT})$
$\pi^{0} \bar{K}^{0}$	24.0 ± 0.8	24.2 ± 0.8	$\pi^{0} \bar{K}^{* 0}$	37.5 ± 2.9	35.9 ± 2.2	$\bar{K}^{0} \rho^{0}$	$12.8_{-1.6}^{+1.4}$	13.5 ± 1.4
$\pi^{+} K^{-}$	39.3 ± 0.4	39.2 ± 0.4	$\pi^{+} K^{*-}$	54.3 ± 4.4	62.5 ± 2.7	$K^{-} \rho^{+}$	111.0 ± 9.0	105.0 ± 5.2
$\eta_{K^{0}}$	9.70 ± 0.6	9.6 ± 0.6	$\eta \bar{K}^{* 0}$	9.6 ± 3.0	6.1 ± 1.0	$\bar{K}^{0} \omega$	22.2 ± 1.2	22.3 ± 1.1
$\eta^{\prime} \bar{K}^{0}$	19.0 ± 1.0	19.5 ± 1.0	$\eta^{\prime} \bar{K}^{* 0}$	<1.10	0.19 ± 0.01	$\bar{K}^{0} \phi$	$8.47_{-0.34}^{+0.66}$	8.2 ± 0.6
$\pi^{+} \pi^{-}$	1.421 ± 0.025	1.44 ± 0.02	$\pi^{+} \rho^{-}$	5.09 ± 0.34	4.5 ± 0.2	$\pi^{-} \rho^{+}$	10.0 ± 0.6	9.2 ± 0.3
$K^{+} K^{-}$	4.01 ± 0.07	4.05 ± 0.07	$K^{+} K^{*-}$	1.62 ± 0.15	1.8 ± 0.1	$K^{-} K^{*+}$	4.50 ± 0.30	4.3 ± 0.2
$K^{0} \bar{K}^{0}$	0.36 ± 0.08	0.29 ± 0.07	$K^{0} \bar{K}^{* 0}$	0.18 ± 0.04	0.19 ± 0.03	$\bar{K}^{0} K^{* 0}$	0.21 ± 0.04	0.19 ± 0.03
$\pi^{0} \eta$	0.69 ± 0.07	0.74 ± 0.03	$\eta \rho^{0}$		1.4 ± 0.2	$\pi^{0} \omega$	0.117 ± 0.035	0.10 ± 0.03
$\pi^{0} \eta^{\prime}$	0.91 ± 0.14	1.08 ± 0.05	$\eta^{\prime} \rho^{0}$		0.25 ± 0.01	$\pi^{0} \phi$	1.35 ± 0.10	1.4 ± 0.1
$\eta \eta$	1.70 ± 0.20	1.86 ± 0.06	$\eta \omega$	2.21 ± 0.23	2.0 ± 0.1	$\eta \phi$	0.14 ± 0.05	0.18 ± 0.04
$\eta \eta^{\prime}$	1.07 ± 0.26	1.05 ± 0.08	$\eta^{\prime} \omega$		0.044 ± 0.004			
$\pi^{0} \pi^{0}$	0.826 ± 0.035	0.78 ± 0.03	$\pi^{0} \rho^{0}$	3.82 ± 0.29	4.1 ± 0.2			
$\pi^{0} K^{0}$		0.069 ± 0.002	$\pi^{0} K^{* 0}$		0.103 ± 0.006	$K^{0} \rho^{0}$		0.039 ± 0.004
$\pi^{-} K^{+}$	0.133 ± 0.009	0.133 ± 0.001	$\pi^{-} K^{*+}$	$0.345_{-0.102}^{+0.180}$	0.40 ± 0.02	$K^{+} \rho^{-}$		0.144 ± 0.009
ηK^{0}		0.027 ± 0.002	$\eta K^{* 0}$		0.017 ± 0.003	$K^{0} \omega$		0.064 ± 0.003
$\eta^{\prime} K^{0}$				0.056 ± 0.003	$\eta^{\prime} K^{* 0}$			$K^{0} \phi$

Jiang, Yu, Qin, Li, and Lu, 2017

* ... but it appears to yield a smaller result, $y_{P P+P V}=(0.21 \pm 0.07) \%$,

Exclusive approach to mixing: use data!

* What if we insist on using experimental data anyway?
A.A.P. and R. Briere arXiv:1804.xxxx
\star Possible additional contributions?
- each intermediate state has a finite width, i.e. is not a proper asymptotic state
- within each multiplet widths experience (incomplete) $S U(3)$ cancelations
- this effect already happens for the simplest intermediate states!
\star Consider, for illustration, a set of single-particle intermediate states:

$$
\left.\Sigma_{p_{D}}\left(p_{D}\right)\right|_{\text {tot }} ^{\text {res }}=\frac{1}{2 m_{D}} \sum_{R} R e \frac{\left\langle D_{L}\right| \mathcal{H}_{W}|R\rangle\langle R| \mathcal{H}_{W}^{\dagger}\left|D_{L}\right\rangle}{m_{D}^{2}-m_{R}^{2}+i \Gamma_{R} m_{D}}-\left(D_{L} \rightarrow D_{S}\right)
$$

\star Each resonance contributes to $\Delta \Gamma$ only because of its finite width!

Finite width effects and exclusive approach

Multiplet effects for (single-particle) intermediate states

- in this simple example: heavy pion, kaon and eta/eta'
- each single-particle intermediate state has a rather large width

$$
\left.\Delta \Gamma_{D}\right|_{\text {octet }} ^{\mathrm{res}}=\Delta \Gamma_{D}^{\left(K_{H}\right)}-\frac{1}{4} \Delta \Gamma_{D}^{\left(\pi_{H}\right)}-\frac{3 \cos ^{2} \theta_{\mathrm{H}}}{4} \Delta \Gamma_{D}^{\left(\eta_{H}\right)}-\frac{1 \sin ^{2} \theta_{\mathrm{H}}}{4} \Delta \Gamma_{D}^{\left(\eta_{H}^{\prime}\right)}
$$

- where for each state $\Delta \Gamma_{D}^{\mathrm{res}}=-C f_{R}^{2} \frac{\mu_{R} \gamma_{R}}{\left(1-\mu_{R}\right)^{2}+\gamma_{R}^{2}}$
$-\ldots$ and a model calculation gives $C \equiv 2 m_{D}\left(G_{F} a_{2} f_{D} \xi_{d} / \sqrt{2}\right)^{2}$;
- SU(3) forces cancellations between members: a new $\operatorname{SU}(3)$ breaking effect!

Table: Magnitudes of Pseudoscalar Resonance Contributions.

Resonance	$\left\|\Delta m_{D}\right\| \times 10^{-16}(\mathrm{GeV})$	$\left\|\Delta \Gamma_{D}\right\| \times 10^{-16}(\mathrm{GeV})$
$\overline{K(1460)}$	$\sim 1.24\left(f_{K(1460)} / 0.025\right)^{2}$	$\sim 0.88\left(f_{K(1460)} / 0.025\right)^{2}$
$\eta(1760)$	$(0.77 \pm 0.27)\left(f_{\eta(1760)} / 0.01\right)^{2}$	$(0.43 \pm 0.53)\left(f_{\eta(1760)} / 0.01\right)^{2}$
$\pi(1800)$	$(0.13 \pm 0.06)\left(f_{\pi(1800)} / 0.01\right)^{2}$	$(0.41 \pm 0.11)\left(f_{\pi(1800)} / 0.01\right)^{2}$
$K(1830)$	$\sim 0.29\left(f_{K(1830)} / 0.01\right)^{2}$	$\sim 1.86\left(f_{K(1830)} / 0.01\right)^{2}$

* Similar effect for PP', PV, PA, ... intermediate states!

Finite width effects: (near) future

To counteract the effects of finite widths and avoid double counting, work directly with Dalitz plot decays of D-mesons
A.A.P. and R. Briere arXiv:1804.xxxx

New Physics in charm mixing

\star Multitude of various models of New Physics can affect x

(a)
(c)

(b)

(d)
(e)

(g)

$\mu: 1 \mathrm{GeV}$

How would New Physics affect charm mixing?

Local $\Delta C=2$ piece of the mass matrix affects x :

$$
\left(M-\frac{i}{2} \Gamma\right)_{i j}=m_{D}^{(0)} \delta_{i j}+\frac{1}{2 m_{D}}\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=2}\left|D_{j}^{0}\right\rangle+\frac{1}{2 m_{D}} \sum_{I} \frac{\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=1}|I\rangle\langle I| H_{W}^{\Delta C=1}\left|D_{j}^{0}\right\rangle}{m_{D}^{2}-m_{I}^{2}+i \varepsilon}
$$

\rightarrow Double insertion of $\Delta C=1$ affects x and y :
Amplitude

$$
A_{n}=\left\langle D^{0}\right|\left(H_{S M}^{\Delta C=1}+H_{N P}^{\Delta C=1}\right)|n\rangle \equiv A_{n}^{S M}+A_{n}^{N P}
$$

Example: $y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M}+\bar{A}_{n}^{N P}\right)\left(A_{n}^{S M}+A_{n}^{N P}\right) \approx \underbrace{\frac{1}{2 \Gamma} \sum_{n} \rho_{n} \bar{A}_{n}^{S M} A_{n}^{S M}}+\underbrace{\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M} A_{n}^{N P}+\bar{A}_{n}^{N P} A_{n}^{S M}\right.})$

Zero in the SU(3) limit
Falk, Grossman, Ligeti, and A.A.P. Phys.Rev. D65, 054034, 2002

Can be significant!!!
Golowich, Pakvasa, A.A.P. Phys. Rev. Lett.98:181801, 2007

Generic restrictions on NP from $D \overline{\mathrm{D}}$-mixing

ڤ Comparing to experimental value of x, obtain constraints on NP models

- assume x is dominated by the New Physics model
- assume no accidental strong cancellations b/w SM and NP

$$
\mathcal{H}_{N P}^{\Delta C=2}=\frac{1}{\Lambda_{N P}^{2}} \sum_{i=1}^{8} z_{i}(\mu) Q_{i}^{\prime} \quad \begin{aligned}
& Q_{1}^{c u}=\bar{u}_{L}^{\alpha} \gamma_{\mu} c_{L}^{\alpha} \bar{u}_{L}^{\beta} \gamma^{\mu} c_{L}^{\beta}, \\
& Q_{2}^{c u}=\bar{u}_{R}^{\alpha} c_{L}^{\alpha} \bar{u}_{R}^{\beta} c_{L}^{\beta}, \\
& Q_{3}^{c u}=\bar{u}_{R}^{\alpha} c_{L}^{\beta} \bar{u}_{R}^{\beta} c_{L}^{\alpha},
\end{aligned}+\left\{\begin{array}{c}
L \\
\uparrow \\
R
\end{array}\right\}+\begin{aligned}
& Q_{4}^{c u}=\bar{u}_{R}^{\alpha} c_{L}^{\alpha} \bar{u}_{L}^{\beta} c_{R}^{\beta}, \\
& Q_{5}^{c u}=\bar{u}_{R}^{\alpha} c_{L}^{\beta} \bar{u}_{L}^{\beta} c_{R}^{\alpha},
\end{aligned}
$$

\star... which are

$$
\begin{aligned}
& \left|z_{1}\right| \lesssim 5.7 \times 10^{-7}\left(\frac{\Lambda_{\mathrm{NP}}}{1 \mathrm{TeV}}\right)^{2}, \\
& \left|z_{2}\right| \lesssim 1.6 \times 10^{-7}\left(\frac{\Lambda_{\mathrm{NP}}}{1 \mathrm{TeV}}\right)^{2}, \\
& \left|z_{3}\right| \lesssim 5.8 \times 10^{-7}\left(\frac{\Lambda_{\mathrm{NP}}}{1 \mathrm{TeV}}\right)^{2}, \\
& \left|z_{4}\right| \lesssim 5.6 \times 10^{-8}\left(\frac{\Lambda_{\mathrm{NP}}}{1 \mathrm{TeV}}\right)^{2}, \\
& \left|z_{5}\right| \lesssim 1.6 \times 10^{-7}\left(\frac{\Lambda_{\mathrm{NP}}}{1 \mathrm{TeV}}\right)^{2} .
\end{aligned}
$$

New Physics is either at a very high scales
tree level: $\quad \Lambda_{N P} \geq(4-10) \times 10^{3} \mathrm{TeV}$
loop level: $\quad \Lambda_{N P} \geq(1-3) \times 10^{2} \mathrm{TeV}$
or have highly suppressed couplings to charm!

Constraints on particular NP models available

New Physics in mixing: particular models

5	Model	Approximet Constraint
5	Fuarth Genaration (Fi, 2)	
$\stackrel{\sim}{*}$	$Q=-1 / 3$ Singla Quark (Fir 4)	\ll 227 (Go)
\bigcirc	$Q=+2 / 3$ Single Quark (Fisi e)	$\mid M_{\text {ckel }}<2.4 .10^{-4}$
	litte Hies	entry for $Q=-1 / 3$ Singet Q
	mic $z^{\prime}(\mathrm{FliL}$, 7)	$W_{z} / C>22.10^{\text {a }}$ Tov
	mily Symmeries (Fil, 8)	$m_{1} / f>12.100^{\text {a }}$ Tev (with $m_{2} / m_{2}=0$
		No constraint
		$M_{R}>1.2 \mathrm{TvV}\left(m_{m_{i}}=0.5 \mathrm{~T}\right.$
	Baoms (figy 11	WrLQ >5 S(App/(0.1) ToV
	Double (fisi 13	No constraint
	Voutral Higs (Chens Sher anata) (Fixic 16	
Extra dimensions	calar Leprocuark Bosone	Soe orty for RPV SUSY
	bes (Fix. 17	$M>100 \mathrm{TeV}$
	Snivesal Estra Dimanisim	No constrair
	Famion (fis,	$M /\|\Delta\| s \mid>(6.10 \mathrm{GGV})$
	Waped Gomereries (Fis, 21$)$	$M_{1}>3.5 \mathrm{TeV}$
	and (Fix, 23$)$	
$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$		
	Supersymmetry with RPV (Fig. 27)	
	Supersymmetry with RPV (Fig. 27) Split Supersymmetry	$\lambda_{12 k}^{\prime} \lambda_{11 k}^{\prime} / m_{\bar{d}_{K, k}}<1.8 \cdot 10^{-3} / 100 \mathrm{GeV}$ No constraint

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

Gedalia, Grossman, Nir, Perez arXiv:0906.1879 [hep-ph]

Bigi, Blanke, Buras, Recksiegel, JHEP 0907:097, 2009

Measuring charm mixing with HIEPA

\star If CP violation is neglected: mass eigenstates $=C P$ eigenstates
\star CP eigenstates do NOT evolve with time, so can be used for "tagging"

* t-charm factories have good CP-tagging capabilities

$$
\begin{equation*}
\text { CP anti-correlated } \psi(3770): \mathrm{CP}(\operatorname{tag})(-1)^{\mathrm{L}}=\left[\mathrm{CP}\left(\mathrm{~K}_{\mathrm{S}}\right) \mathrm{CP}\left(\pi^{0}\right)\right](-1)=+1 \tag{-}
\end{equation*}
$$

CP correlated $\psi(4140)$
Can measure $(\mathrm{y} \cos \phi): \quad B_{ \pm}^{l}=\frac{\Gamma\left(D_{C P \pm} \rightarrow X l \nu\right)}{\Gamma_{t o t}} \quad y \cos \phi=\frac{1}{4}\left(\frac{B_{+}^{l}}{B_{-}^{l}}-\frac{B_{-}^{l}}{B_{+}^{l}}\right)$

[^0]D. Asner, W. Sun, hep-ph/0507238

No need for time dependence!

4. Things to take home

> Computation of charm mixing amplitudes is a difficult task

- no dominant heavy dof, as in beauty decays
- light dofs give no contribution in the flavor SU(3) limit
> Charm quark is neither heavy nor light enough for a clean application of well-established techniques
- "heavy-quark-expansion" techniques miss threshold effects
- "heavy-quark" techniques give numerically leading contribution that is parametrically suppressed by $1 / \mathrm{m}^{6}$
- "hadronic" techniques need to sum over large number of intermediate states, AND cannot use current experimental data on D-decays
- "hadronic" techniques currently neglect some sources of SU(3) breaking
\Rightarrow Finite width effects complicate use of experimental data in exclusive analyses to obtain mass and lifetime differences
- instead, direct use of Dalitz decays of D-mesons is desirable
> Quantum-coherent initial states allow for unique measurements
- lifetime differences, hadronic and CP-violating observables

Rob Gonzalves

Mixing: short-distance estimates

* SD calculation: expand the operator product in $1 / m_{c}$, e.g.

Note that $1 / m_{c}$ is not small, while factors of m_{s} make the result small

- keep $V_{\mathrm{ub}} \neq 0$, so the leading $S U(3)$-breaking contribution is suppressed by $\lambda_{\mathrm{b}}{ }^{2} \sim \lambda^{10}$ - ... but it is tiny, so look for SU(3)-breaking effects that come from mass insertions and quark condensates
H. Georgi, ...

$$
\Gamma_{12}=-\lambda_{s}^{2}\left(\Gamma_{12}^{s s}-2 \Gamma_{12}^{s d}+\Gamma_{12}^{d d}\right)+2 \lambda_{s} \lambda_{b}\left(\Gamma_{12}^{s d}-\Gamma_{12}^{d d}\right)-\lambda_{b}^{2} \Gamma_{12}^{d d}
$$

- ... main contribution comes from dim-12 operators!!!

$O\left(m_{s}{ }^{2}\right)$
O(1)

$$
O\left(m_{s}{ }^{1}\right)
$$

LO:	$O\left(m_{s}{ }^{4}\right)$	$O\left(m_{s}{ }^{2}\right)$	$O(1)$
NLO:	$O\left(m_{s}{ }^{3}\right)$	$O\left(m_{s}{ }^{1}\right)$	$O(1)$

$$
O(1)
$$

Guestimate: $\quad x \sim y \sim 10^{-3}$?

Correlate rare decays with D-mixing?

* Let's write the most general $\Delta C=2$ Hamiltonian

$$
\mathcal{H}_{N P}^{\Delta C=2}=\frac{1}{\Lambda_{N P}^{2}} \sum_{i=1}^{8} C_{i}(\mu) Q_{i}
$$

... with the following set of 8 independent operators...

$$
\begin{array}{ll}
Q_{1}=\left(\bar{u}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{u}_{L} \gamma^{\mu} c_{L}\right), & Q_{5}=\left(\bar{u}_{R} \sigma_{\mu \nu} c_{L}\right)\left(\bar{u}_{R} \sigma^{\mu \nu} c_{L}\right), \\
Q_{2}=\left(\bar{u}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{u}_{R} \gamma^{\mu} c_{R}\right), & Q_{6}=\left(\bar{u}_{R} \gamma_{\mu} c_{R}\right)\left(\bar{u}_{R} \gamma^{\mu} c_{R}\right), \\
Q_{3}=\left(\bar{u}_{L} c_{R}\right)\left(\bar{u}_{R} c_{L}\right), & Q_{7}=\left(\bar{u}_{L} c_{R}\right)\left(\bar{u}_{L} c_{R}\right), \\
Q_{4}=\left(\bar{u}_{R} c_{L}\right)\left(\bar{u}_{R} c_{L}\right), & Q_{8}=\left(\bar{u}_{L} \sigma_{\mu \nu} c_{R}\right)\left(\bar{u}_{L} \sigma^{\mu \nu} c_{R}\right) .
\end{array}
$$

RG-running relate $C_{i}(m)$ at NP scale to the scale of $m \sim$ 1 GeV , where ME are computed (on the lattice)

$$
\frac{d}{d \log \mu} \vec{C}(\mu)=\hat{\gamma}^{T}(\mu) \vec{C}(\mu)
$$

* Comparing to experimental value of x, obtain constraints on NP models
- assume x is dominated by the New Physics model
- assume no accidental strong cancellations b/w SM and NP

[^0]: D. Atwood, A.A.P., hep-ph/0207165

