

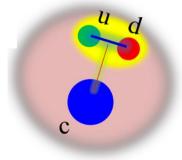
BESIII粲强子物理研讨会

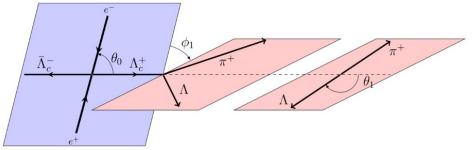
A Data-driven Approach to Charmed Baryon Weak Decays

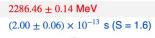
Fanrong Xu

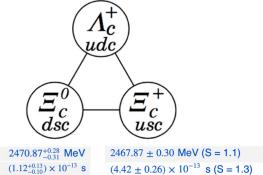
Jinan University

April 8, 2023 @ UCST, Hefei


Outline


- Introduction
- Global fits based on SU(3)
- Global fits based on topological diagrams
- Summary


Huiling Zhong, FX, Qiaoyi Wen, Yu Gu, JHEP 02 (2023) 235, & work to appear


Introduction

Branching **Fractions**

Decay **Asymmetries** (longitudinal, transvere)

	Channel	Channel
	$\Lambda_c^+\to\Lambda^0\pi^+$	$\Xi_c^0 \to \Xi^0 \pi^0$
	$\Lambda_c^+\to \Sigma^0\pi^+$	$\Xi_c^0\to \Xi^0\eta$
CF	$\Lambda_c^+ \to p \overline{K}^0$	$\Xi_c^0\to \Xi^0\eta'$
	$\Lambda_c^+\to \Sigma^+\pi^0$	$\Xi_c^0\to \Xi^-\pi^+$
	$\Lambda_c^+\to \Sigma^+\eta$	$\Omega_c^0\to \Xi^0 \overline{K}{}^0$
	$\Lambda_c^+\to \Sigma^+\eta'$	
	$\Lambda_c^+ \rightarrow \Lambda^0 K^+$	$\Xi_c^0 \to \Xi^0 K^0$
	$\Lambda_c^+ \to p \pi^0$	$\Xi_c^0\to \Sigma^+\pi^-$
	$\Lambda_c^+ \to p\eta$	$\Xi_c^0\to \Sigma^-\pi^+$
	$\Lambda_c^+ o p\eta'$	$\Xi_c^0\to \Xi^- K^+$
	$\Lambda_c^+ \to n\pi^+$	$\Omega_c^0\to \Sigma^0 \overline{K}^0$
SCS	$\Lambda_c^+\to \Sigma^0 K^+$	$\Omega_c^0\to \Sigma^+ K^-$
363	$\Lambda_c^+\to \Sigma^+ K^0$	$\Omega_c^0\to\Lambda^0\overline{K}^0$
	$\Xi_c^+ \to \Lambda^0 \pi^+$	$\Omega_c^0\to \Xi^0\pi^0$
	$\Xi_c^+ \to p \overline{K}^0$	$\Omega_c^0\to \Xi^-\pi^+$
	$\Xi_c^+\to \Sigma^0\pi^+$	
	$\Xi_c^+\to \Sigma^+\pi^0$	
	$\Lambda_c^+ \to p K^0$	$\Omega_c^0\to \Xi^0 K^0$
	$\Lambda_c^+ \to n K^+$	$\Omega_c^0\to\Lambda^0\eta$
	$\Xi_c^+ \to \Lambda^0 K^+$	$\Omega_c^0\to\Sigma^0\eta'$
DCS	$\Xi_c^+ \to p \pi^0$	$\Omega_c^0\to\Lambda^0\pi^0$
	$\Xi_c^+ \to p\eta$	$\Omega_c^0\to \Sigma^0\pi^0$
	$\Xi_c^+ \to p \eta'$	$\Omega_c^0\to \Sigma^+\pi^-$
	$\Xi_c^+ \to n\pi^+$	$\Omega_c^0\to \Sigma^-\pi^+$
	$\Xi_c^+\to \Sigma^0 K^+$	$\Omega_c^0\to \Xi^- K^+$

Experiental progress since 2022

• BESIII

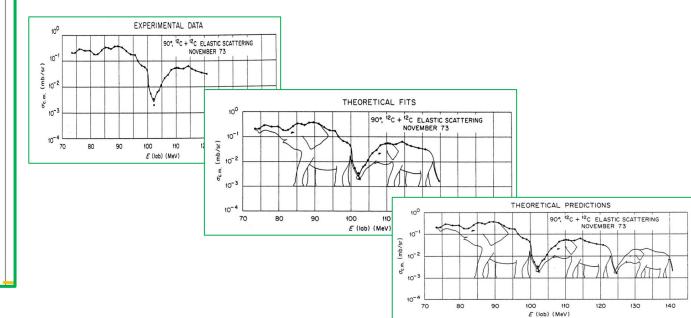
$$\begin{split} \mathcal{B}(\Lambda_c^+ \to n\pi^+) &= (6.6 \pm 1.2 \pm 0.4) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to p\eta') &= (5.62^{+2.46}_{-2.04} \pm 0.26) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+) &= (6.21 \pm 0.44 \pm 0.26 \pm 0.34) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S^0) &= (4.8 \pm 1.4 \pm 0.2 \pm 0.3) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+) &= (4.7 \pm 0.9 \pm 0.1 \pm 0.3) \times 10^{-4}. \end{split}$$

• Belle

$$\begin{split} \mathcal{B}(\Lambda_c^+ \to p\eta') &= (4.73 \pm 0.82 \pm 0.47 \pm 0.24) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+) &= (6.57 \pm 0.17 \pm 0.11 \pm 0.35) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+) &= (3.58 \pm 0.19 \pm 0.06 \pm 0.19) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta) &= (3.14 \pm 0.35 \pm 0.11 \pm 0.25) \times 10^{-3}, \\ \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta') &= (4.16 \pm 0.75 \pm 0.21 \pm 0.33) \times 10^{-3}, \end{split}$$

$$\begin{aligned} &\alpha(\Lambda_c^+ \to \Lambda^0 K^+) = -0.585 \pm 0.049 \pm 0.018 \\ &\alpha(\Lambda_c^+ \to \Sigma^0 K^+) = -0.55 \pm 0.18 \pm 0.09, \\ &\alpha(\Lambda_c^+ \to \Sigma^+ \eta) = -0.99 \pm 0.03 \pm 0.05, \\ &\alpha(\Lambda_c^+ \to \Sigma^+ \eta') = -0.46 \pm 0.06 \pm 0.03. \end{aligned}$$

<u> </u>	Channel	Channel
_	$\Lambda_c^+\to\Lambda^0\pi^+$	$\Xi_c^0\to \Xi^0\pi^0$
	$\Lambda_c^+\to \Sigma^0\pi^+$	$\Xi_c^0\to \Xi^0\eta$
CF	$\Lambda_c^+ \to p \overline{K}^0$	$\Xi_c^0\to \Xi^0\eta^\prime$
	$\Lambda_c^+\to \Sigma^+\pi^0$	$\Xi_c^0\to \Xi^-\pi^+$
	$\Lambda_c^+\to \Sigma^+\eta$	$\Omega_c^0\to \Xi^0 \overline{K}^0$
	$\Lambda_c^+\to \Sigma^+\eta'$	
	$\Lambda_c^+ \to \Lambda^0 K^+$	$\Xi_c^0 \to \Xi^0 K^0$
	$\Lambda_c^+ \to p \pi^0$	$\Xi_c^0\to \Sigma^+\pi^-$
	$\Lambda_c^+ \to p\eta$	$\Xi_c^0\to \Sigma^-\pi^+$
	$\Lambda_c^+ o p\eta'$	$\Xi_c^0\to \Xi^- K^+$
SCS	$\Lambda_c^+ \to n\pi^+$	$\Omega_c^0\to \Sigma^0 \overline{K}^0$
363	$\Lambda_c^+ o \Sigma^0 K^+$	$\Omega_c^0\to \Sigma^+ K^-$
	$\Lambda_c^+\to \Sigma^+ K^0$	$\Omega_c^0 o \Lambda^0 \overline{K}^0$
	$\Xi_c^+ \to \Lambda^0 \pi^+$	$\Omega_c^0\to \Xi^0\pi^0$
	$\Xi_c^+ \to p \overline{K}^0$	$\Omega_c^0\to \Xi^-\pi^+$
	$\Xi_c^+\to \Sigma^0\pi^+$	
	$\Xi_c^+ \to \Sigma^+ \pi^0$	
	$\Lambda_c^+ \to p K^0$	$\Omega_c^0\to \Xi^0 K^0$
	$\Lambda_c^+ \to n K^+$	$\Omega_c^0 o \Lambda^0 \eta$
DCC	$\Xi_c^+ \to \Lambda^0 K^+$	$\Omega_c^0\to \Sigma^0\eta'$
DCS	$\Xi_c^+ \to p \pi^0$	$\Omega_c^0\to\Lambda^0\pi^0$
	$\Xi_c^+ \to p\eta$	$\Omega_c^0\to\Sigma^0\pi^0$
	$\Xi_c^+ \to p \eta'$	$\Omega_c^0\to \Sigma^+\pi^-$
	$\Xi_c^+ \to n\pi^+$	$\Omega_c^0\to \Sigma^-\pi^+$
	$\Xi_c^+\to \Sigma^0 K^+$	$\Omega_c^0 \to \Xi^- K^+$


Experimental results as inputs

20 Branching ratios

Obs.	PDG	BESIII	Belle	Ave.
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^+)$	1.30 ± 0.07	$1.24 \pm 0.08^{*}$ [3]		1.30 ± 0.07
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+)$	1.29 ± 0.07	$1.27 \pm 0.09^{*}$ [3]		1.29 ± 0.07
$10^2 \mathcal{B}(\Lambda_c^+ \to pK_S)$	1.59 ± 0.08	$1.52 \pm 0.09^{*}$ [3]		1.59 ± 0.08
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)$	1.25 ± 0.10	$1.18 \pm 0.10^{*}$ [3]		1.25 ± 0.10
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)$	0.44 ± 0.20 [2, 4]	$0.41 \pm 0.20^{*}$ [4]	0.314 ± 0.044 [5]	0.32 ± 0.04
$rac{\mathcal{B}(\Lambda_c^+ o \Sigma^+ \eta)}{\mathcal{B}(\Lambda_c^+ o \Sigma^+ \pi^0)}$		$0.35 \pm 0.16 \ [4]$		
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')$	1.5 ± 0.6 [2, 4]	$1.34 \pm 0.56^{*}$ [4]	0.416 ± 0.085 [5]	0.44 ± 0.15 ¹
$\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')}{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \omega)}$		0.86 ± 0.34 [4]		
$10^2 \mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)$	0.55 ± 0.07 [2, 6]	$0.590 \pm 0.094^{*}$ [6]		0.55 ± 0.07
$10^3 \mathcal{B}(\Lambda_c^+ o p\eta)$	(Belle's data)	1.24 ± 0.30 [7]	1.42 ± 0.12 [8]	1.40 ± 0.11
$10^4 \mathcal{B}(\Lambda_c^+ \to p\eta')$		$5.62^{+2.46}_{-2.04} \pm 0.26$ [9]	4.73 ± 0.97 [10]	4.85 ± 0.90
$10^4 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+)$	6.1 ± 1.2 [11, 12]	6.21 ± 0.61 [13]	6.57 ± 0.40 [14]	6.44 ± 0.32
$rac{\mathcal{B}(\Lambda_c^+ o \Lambda^0 K^+)}{\mathcal{B}(\Lambda_c^+ o \Lambda^0 \pi^+)}$			$0.074 \pm 0.016 [\textbf{12}]$	
$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)$	5.2 ± 0.8 [11, 12]	4.7 ± 0.95 [15]	3.58 ± 0.28 [14]	$3.82\pm0.38\ ^2$
$rac{\mathcal{B}(\Lambda_c^+ o \Sigma^0 K^+)}{\mathcal{B}(\Lambda_c^+ o \Sigma^0 \pi^+)}$			0.056 ± 0.016 [12]	
$10^{4} \mathcal{B}(\Lambda_{c}^{+} \to n\pi^{+})$		6.6 ± 1.3 [16]		6.6 ± 1.3
$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S)$		4.8 ± 1.4 [15]		4.8 ± 1.4
$10^4 \mathcal{B}(\Lambda_c^+ \to p \pi^0)$	(Belle's data)	< 2.7 [7]	< 0.80 [8]	< 0.77
$10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	1.43 ± 0.32 [2, 17]		$1.80 \pm 0.52^{*}$ [17]	1.43 ± 0.32
$10^3 \mathcal{B}(\Xi_c^0 \to \Xi^- K^+)$	0.39 ± 0.12 [2, 18]			0.39 ± 0.12
$10^2 \frac{\mathcal{B}(\Xi_c^0 \to \Xi^- K^+)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$			2.75 ± 0.57 [18]	
$10^3 \mathcal{B}(\Xi_c^0 \to \Lambda^0 K_S)$	$3.2\pm0.7~[2,~19,~20]$			3.2 ± 0.7
$\frac{\mathcal{B}(\Xi_c^0 \to \Lambda^0 K_S^0)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$			0.21 ± 0.03 [20]	
			0.229 ± 0.014 [19]	
$10^3 \mathcal{B}(\Xi_c^0 \to \Sigma^0 K_S)$	(Belle's data)		0.54 ± 0.16 [19]	0.54 ± 0.16
$10^3 \mathcal{B}(\Xi_c^0 \to \Sigma^+ K^-)$	(Belle's data)		1.8 ± 0.4 [19]	1.8 ± 0.4
$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+)$	1.6 ± 0.8 [17, 21]			1.6 ± 0.8
$\frac{\mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+)}{\mathcal{B}(\Xi_c^+ \to \Xi^- 2\pi^+)}$	0.55 ± 0.16 [21]			

9 decay asymmetries

$\alpha(\Lambda_c^+ \to \Lambda^0 \pi^+)$	-0.84 ± 0.09 [22–26]	$-0.80 \pm 0.11^{*}$ [22]	-0.755 ± 0.006 [14]	-0.76 ± 0.01
$lpha(\Lambda_c^+ o \Sigma^0 \pi^+)$	(BESIII's data)	-0.73 ± 0.18 [22]	$-0.463 \pm 0.018 \; [\textbf{14}]$	-0.47 ± 0.03 ³
$\alpha(\Lambda_c^+ \to pK_S)$	(BESIII's data)	0.18 ± 0.45 [22]		0.18 ± 0.45
$\alpha(\Lambda_c^+ \to \Sigma^+ \pi^0)$	-0.55 ± 0.11 [22, 23]	$-0.57 \pm 0.12^{*}$ [22]	-0.48 ± 0.03 [5]	-0.49 ± 0.03
$\alpha(\Xi_c^0 \to \Xi^- \pi^+)$	(Belle's data)		-0.64 ± 0.05 [27]	-0.64 ± 0.05
$\alpha(\Lambda_c^+ \to \Sigma^+ \eta)$			-0.99 ± 0.06 [5]	-0.99 ± 0.06
$\alpha(\Lambda_c^+\to \Sigma^+\eta')$			-0.46 ± 0.07 [5]	-0.46 ± 0.07
$lpha(\Lambda_c^+ o \Lambda^0 K^+)$			-0.585 ± 0.052 [14]	-0.585 ± 0.052
$\alpha(\Lambda_c^+ \to \Sigma^0 K^+)$			-0.55 ± 0.20 [14]	-0.55 ± 0.20

time to interpret data

Fits within SU(3) frame

- w/ or w/o Flavor symmetry
- w/ or w/o mixing effect

Flavor symmetry keeping

$$\mathcal{M}=\langle M oldsymbol{B}_n | \mathcal{H}_{ ext{eff}} | oldsymbol{B}_c
angle = i ar{u}_f (A-B \gamma_5) u_i
onumber \ \mathcal{H}_{ ext{eff}} = rac{G_F}{\sqrt{2}} V_{q_1c}^* V_{uq_2} (c_+ \mathcal{O}_+ + c_- \mathcal{O}_-) + h.c.$$
 $(oldsymbol{6}, \overline{f 15})$

$$\begin{split} \Gamma &= \frac{p_c}{8\pi} \left(\frac{(m_i + m_f)^2 - m_P^2}{m_i^2} |A|^2 + \frac{(m_i - m_f)^2 - m_P^2}{m_i^2} |B|^2 \right) \\ \alpha &= \frac{2\kappa \operatorname{Re}(A^*B)}{|A|^2 + \kappa^2 |B|^2} \end{split}$$

$$\begin{split} A_{0} &= a_{0}H(6)_{ij}(B_{c}')^{ik}(B_{n})_{k}^{j}(M)_{\ell}^{\ell} + a_{1}H(6)_{ij}(B_{c}')^{ik}(B_{n})_{k}^{\ell}(M)_{\ell}^{j} + a_{2}H(6)_{ij}(B_{c}')^{ik}(M)_{k}^{\ell}(B_{n})_{\ell}^{j} \\ &+ a_{3}H(6)_{ij}(B_{n})_{k}^{i}(M)_{\ell}^{j}(B_{c}')^{k\ell} + a_{0}'(B_{n})_{j}^{i}(M)_{\ell}^{\ell}H(\overline{15})_{i}^{jk}(B_{c})_{k} \\ &+ a_{4}H(\overline{15})_{k}^{\ell i}(B_{c})_{j}(M)_{i}^{j}(B_{n})_{\ell}^{k} + a_{5}(B_{n})_{j}^{i}(M)_{i}^{\ell}H(\overline{15})_{\ell}^{jk}(B_{c})_{k} \\ &+ a_{6}(B_{n})_{i}^{j}(M)_{\ell}^{m}H(\overline{15})_{m}^{\ell i}(B_{c})_{j} + a_{7}(B_{n})_{i}^{\ell}(M)_{j}^{i}H(\overline{15})_{\ell}^{jk}(B_{c})_{k} \\ B_{0} &= A_{0}\Big|_{a_{i} \rightarrow b_{i}}, \end{split}$$
 $M.J. Savage and R.P. Springer, SU(3) Predictions for Charmed Baryon Decays, Phys. Rev. D 42 (1990) 1527 [INSPIRE]. \\ C.Q. Geng, C.-W. Liu and T.-H. Tsai, Asymmetries of anti-triplet charmed baryon decays, Phys. Lett. B 794 (2019) 19 [arXiv: 1902.06189] [INSPIRE]. \end{split}$

$$\begin{split} \mathcal{M} &= a_{15} (T_{c\bar{3}})_i (H_{\overline{15}})_j^{\{ik\}} (\overline{T_8})_k^j P_l^l + b_{15} (T_{c\bar{3}})_i (H_{\overline{15}})_j^{\{ik\}} (\overline{T_8})_k^l P_l^j \\ &+ c_{15} (T_{c\bar{3}})_i (H_{\overline{15}})_j^{\{ik\}} (\overline{T_8})_l^j P_k^l + d_{15} (T_{c\bar{3}})_i (H_{\overline{15}})_l^{\{jk\}} (\overline{T_8})_j^l P_k^i \\ &+ e_{15} (T_{c\bar{3}})_i (H_{\overline{15}})_l^{\{jk\}} (\overline{T_8})_j^i P_k^l + a_6 (T_{c\bar{3}})^{[ik]} (H_{\overline{6}})_{\{ij\}} (\overline{T_8})_k^j P_l^l \\ &+ b_6 (T_{c\bar{3}})^{[ik]} (H_{\overline{6}})_{\{ij\}} (\overline{T_8})_k^l P_l^j + c_6 (T_{c\bar{3}})^{[ik]} (H_{\overline{6}})_{\{ij\}} (\overline{T_8})_l^j P_k^l \\ &+ d_6 (T_{c\bar{3}})^{[kl]} (H_{\overline{6}})_{\{ij\}} (\overline{T_8})_k^i P_l^j. \end{split}$$

$$\begin{split} \boldsymbol{B}_{c} &= \left(\Xi_{c}^{0}, -\Xi_{c}^{+}, \Lambda_{c}^{+}\right), \\ \boldsymbol{B}_{n} &= \begin{pmatrix} \frac{1}{\sqrt{6}}\Lambda^{0} + \frac{1}{\sqrt{2}}\Sigma^{0} & \Sigma^{+} & p \\ \Sigma^{-} & \frac{1}{\sqrt{6}}\Lambda^{0} - \frac{1}{\sqrt{2}}\Sigma^{0} & n \\ \Xi^{-} & \Xi^{0} & -\sqrt{\frac{2}{3}}\Lambda^{0} \end{pmatrix}, \\ \boldsymbol{M} &= \begin{pmatrix} \frac{1}{\sqrt{2}}(\pi^{0} + c_{\phi}\eta + s_{\phi}\eta') & \pi^{+} & K^{+} \\ \pi^{-} & \frac{1}{\sqrt{2}}(-\pi^{0} + c_{\phi}\eta + s_{\phi}\eta') & K^{0} \\ K^{-} & \overline{K}^{0} & -s_{\phi}\eta + c_{\phi}\eta' \end{pmatrix} \end{split}$$

$$H(\overline{15})_{k}^{ij} = \left(\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & s_{c} & 1 \\ s_{c} & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -s_{c}^{2} & -s_{c} \\ -s_{c}^{2} & 0 & 0 \\ -s_{c} & 0 & 0 \end{pmatrix} \right)$$
$$H(6)_{ij} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & -2s_{c} \\ 0 & -2s_{c} & 2s_{c}^{2} \end{pmatrix}$$

F. Huang, Z.-P. Xing and X.-G. He, A global analysis of charmless two body hadronic decays for anti-triplet charmed baryons, JHEP 03 (2022) 143 [arXiv:2112.10556] [INSPIRE].

Flavor symmetry breaking

$$\gamma = \frac{m_{\rm s}}{3\Lambda} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} + \frac{m_{\rm s}}{3\Lambda} \begin{pmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 2 \end{pmatrix}$$

 $(\mathbf{6}, \overline{\mathbf{15}})$

 $8 \otimes \overline{15} = \overline{42} \oplus 24^{(1)} \oplus \overline{15}^{(1)} \oplus \overline{15}^{(2)} \oplus \overline{15}^{(3)} \oplus 6^{(1)} \oplus \overline{3}^{(1)}$ $8 \otimes 6 = 24^{(2)} \oplus \overline{15}^{(4)} \oplus 6^{(2)} \oplus \overline{3}^{(2)}$

$$\Delta \mathcal{L}_{QCD} = -m_s \bar{\psi} \lambda^8 \psi$$

$$\begin{aligned} \mathcal{H} &= (\bar{3} + 6 + \overline{15}) \times \left(1 + \epsilon 8 + \mathcal{O}(\epsilon^2)\right) \supset \bar{3} + 6 + \overline{15} \\ &+ \epsilon \left(\bar{3}_i + 6_i + \overline{15}_1 + \overline{15}_2 + \overline{15}_3^1 + \overline{15}_3^2 \\ &+ \overline{24}_3 + \overline{42}_3 + \cdots\right), \end{aligned}$$

M.J. Savage, SU(3) violations in the nonleptonic decay of charmed hadrons, Phys. Lett. B **257** (1991) 414 [INSPIRE].

D. Pirtskhalava and P. Uttayarat, CP Violation and Flavor SU(3) Breaking in D-meson Decays, Phys. Lett. B 712 (2012) 81 [arXiv:1112.5451] [INSPIRE].

Assume symmetry breaking originates from $\overline{3}$

$$A' = u_1(\mathbf{B}_c)_i H(\overline{3})^i (\mathbf{B}_n)_k^j (M)_j^k + u_2(\mathbf{B}_c)_i H(\overline{3})^j (\mathbf{B}_n)_k^i (M)_j^k + u_3(\mathbf{B}_c)_i H(\overline{3})^j (\mathbf{B}_n)_j^k (M)_k^i$$

 $B' = A' \Big|_{u_i o v_i}$

C.Q. Geng, Y.K. Hsiao, C.-W. Liu and T.-H. Tsai, SU(3) symmetry breaking in charmed baryon decays, Eur. Phys. J. C 78 (2018) 593 [arXiv:1804.01666] [INSPIRE].

 $H(\overline{3}) = (s_c, 0, 0)$

$\Xi_c - \Xi_c'$ mixing

$$R = 2\Gamma(\Xi_c^0 \to \Xi^- e^+ \nu_e) / 3\Gamma(\Lambda_c^+ \to \Lambda e^+ \nu_e)$$

$$\mathcal{B}_{\text{Belle}}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (1.31 \pm 0.04 \pm 0.07 \pm 0.38)\%,$$

$$\mathcal{B}_{\text{ALICE}}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (2.43 \pm 0.25 \pm 0.35 \pm 0.72)\%,$$

$$\mathcal{B}_{\text{LQCD}}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (2.38 \pm 0.44)\%$$

$$\mathcal{B}_{\text{LQCD}}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (2.38 \pm 0.44)\%$$

 $R(Belle) = 0.33 \pm 0.10$, $R(ALICE) = 0.60 \pm 0.21$, $R(LQCD) = 0.59 \pm 0.11$

$$R'_{av} = 0.46 \pm 0.07$$
, $R_{av} = 0.59 \pm 0.10$

$$R(SU(3)_F) = 1$$

$$|\theta_c| = 0.137(5)\pi$$
 0.430398

C.Q. Geng, X.-N. Jin, C.-W. Liu, PLB 833 (2023) 137736

$$|\Xi_c\rangle = \cos\theta_c |\Xi_c^{\overline{\mathbf{3}}}\rangle + \sin\theta_c |\Xi_c^{\mathbf{6}}\rangle$$
$$|\Xi_c'\rangle = \cos\theta_c |\Xi_c^{\mathbf{6}}\rangle - \sin\theta_c |\Xi_c^{\overline{\mathbf{3}}}\rangle$$
$$\theta = (1.200 \pm 0.090 \pm 0.020)^{\circ}$$
$$\theta = (1.220 \pm 0.130 \pm 0.010)^{\circ}$$

H. Liu, L. Liu, P. Sun, J. Tan, W. Wang, Y. Yang, Q. Zhang, 2303.17863[hep-lat]

Amplitude relations

Channel	A	Channel	Α
$\Lambda_c^+\to\Lambda^0\pi^+$	$rac{\sqrt{6}}{6}(-2a_1-2a_2-2a_3+a_5-2a_6+a_7)$	$\Xi_c^+\to \Xi^0\pi^+$	$-2a_3 - a_4 - a_6$
$\Lambda_c^+ \to p \overline{K}^0$	$-2a_1+a_5+a_6$	$\Xi_c^0\to \Lambda^0 \overline{K}^0$	$\frac{\sqrt{6}}{6}(-4a_1+2a_2+2a_3-2a_5+a_6+a_7)$
$\Lambda_c^+\to \Sigma^0\pi^+$	$rac{\sqrt{2}}{2}(-2a_1+2a_2+2a_3+a_5-a_7)$	$\Xi_c^0\to \Sigma^0 \overline{K}^0$	$rac{\sqrt{2}}{2}(-2a_2-2a_3+a_6-a_7)$
$\Lambda_c^+\to \Sigma^+\pi^0$	$rac{\sqrt{2}}{2}(2a_1-2a_2-2a_3-a_5+a_7)$	$\Xi_c^0\to \Sigma^+ K^-$	$2a_2 + a_4 + a_7$
$\Lambda_c^+\to \Sigma^+\eta$	$rac{\sqrt{2}}{6}c_{\phi}(-12a_0-6a_1-6a_2+6a_3+6a_0'+3a_5+3a_7) \ +s_{\phi}(2a_0-a_0'-a_4)$	$\Xi_c^0\to \Xi^0\pi^0$	$rac{\sqrt{2}}{2}(-2a_1+2a_3+a_4-a_5)$
$\Lambda_c^+\to \Sigma^+\eta'$	$rac{\sqrt{2}}{6}s_{\phi}(-12a_0-6a_1-6a_2+6a_3+6a_0'+3a_5+3a_7)\ -c_{\phi}(2a_0-a_0'-a_4)$	$\Xi_c^0\to \Xi^0\eta$	$rac{\sqrt{2}}{6}c_{\phi}(12a_{0}+6a_{1}-6a_{3}+6a_{0}'+3a_{4}+3a_{5})\ +rac{1}{3}s_{\phi}(-6a_{0}-6a_{2}-3a_{0}'-3a_{7})$
$\Lambda_c^+\to \Xi^0 K^+$	$-2a_2 + a_4 + a_7$	$\Xi_c^0\to \Xi^0\eta'$	$ \frac{\sqrt{2}}{6} s_{\phi} (12a_0 + 6a_1 - 6a_3 + 6a_0' + 3a_4 + 3a_5) \\ -\frac{1}{3} c_{\phi} (-6a_0 - 6a_2 - 3a_0' - 3a_7) $
$\Xi_c^+\to \Sigma^+ \overline{K}^0$	$2a_3 - a_4 - a_6$	$\Xi_c^0\to \Xi^-\pi^+$	$2a_1 + a_5 + a_6$

$$\begin{split} A(\Lambda_c^+ \to \Sigma^0 \pi^+) &= -A(\Lambda_c^+ \to \Sigma^+ \pi^0) \\ A(\Lambda_c^+ \to nK^+) &= \sin^2 \theta_c A(\Xi_c^+ \to \Xi^0 \pi^+) \\ A(\Xi_c^+ \to n\pi^+) &= \sin^2 \theta_c A(\Lambda_c^+ \to \Xi^0 K^+) \\ A(\Xi_c^+ \to \Sigma^+ K^0) &= \sin^2 \theta_c A(\Lambda_c^+ \to p\overline{K}^0) \\ A(\Lambda_c^+ \to pK^0) &= \sin^2 \theta_c A(\Xi_c^+ \to \Sigma^+ \overline{K}^0) \\ A(\Xi_c^0 \to \Sigma^- K^+) &= -\sin^2 \theta_c A(\Xi_c^0 \to \Xi^- \pi^+) \\ A(\Xi_c^0 \to p\pi^-) &= -\sin^2 \theta_c A(\Xi_c^0 \to \Sigma^+ K^-). \end{split}$$

 $A(\Lambda_c^+ \to \Sigma^+ K^0) = A(\Xi_c^+ \to p\overline{K}^0)$

 $A(\Lambda_c^+ \to n\pi^+) = A(\Xi_c^+ \to \Xi^0 K^+)$

 $A(\Xi_c^0
ightarrow n \overline{K}^0) = -A(\Xi_c^0
ightarrow \Xi^0 K^0)$

 $\begin{aligned} A(\Xi_c^0 \to p\pi^-) &= \sin \theta_c A(\Xi_c^0 \to pK^-) = -\sin \theta_c A(\Xi_c^0 \to \Sigma^+\pi^-) = -\sin^2 \theta_c A(\Xi_c^0 \to \Sigma^+K^-) \\ A(\Xi_c^0 \to \Sigma^-K^+) &= \sin \theta_c A(\Xi_c^0 \to \Xi^-K^+) = -\sin \theta_c A(\Xi_c^0 \to \Sigma^-\pi^+) = -\sin^2 \theta_c A(\Xi_c^0 \to \Xi^-\pi^+) \end{aligned}$

broken by SU(3) breaking

Channel	$s_c^{-1}A$	Channel	$s_c^{-1}A$
$\Lambda_c^+ o \Lambda^0 K^+$	$rac{\sqrt{6}}{6}(2a_1-4a_2+2a_3+3a_4-a_5+2a_6+2a_7\ -2u_2+u_3)$	$\Xi_c^+\to \Xi^0 K^+$	$2a_2 + 2a_3 + a_6 - a_7 - u_2$
$\Lambda_c^+ \to p \pi^0$	$rac{\sqrt{2}}{2}(2a_2+2a_3-a_6-a_7+u_2)$	$\Xi_c^0\to\Lambda^0\pi^0$	$rac{\sqrt{3}}{6}(-2a_1-2a_2+4a_3+3a_4-a_5-a_6-a_7\ +u_2+u_3)$
$\Lambda_c^+ \to p \eta$	$rac{\sqrt{2}}{2}c_{\phi}(4a_{0}+2a_{2}-2a_{3}-2a_{0}'+a_{6}-a_{7}+u_{2})\ +s_{\phi}(-2a_{0}-2a_{1}+a_{0}'+a_{4}+a_{5}+a_{6}-u_{3})$	$\Xi_c^0\to\Lambda^0\eta$	$\begin{array}{l} \frac{\sqrt{3}}{6}c_{\phi}(12a_{0}+2a_{1}+2a_{2}-4a_{3}+6a_{0}'+3a_{4}+a_{6}+a_{7}+2u_{1}+u_{2}+u_{3})\\ +\frac{\sqrt{6}}{6}s_{\phi}(-6a_{0}-4a_{1}-4a_{2}+2a_{3}-3a_{0}'-2a_{5}\\ +a_{6}-2a_{7}+2u_{1})\end{array}$
$\Lambda_c^+ \to p \eta'$	$rac{\sqrt{2}}{2} s_{\phi} (4a_0 + 2a_2 - 2a_3 - 2a_0' + a_6 - a_7 + u_2) \ - c_{\phi} (-2a_0 - 2a_1 + a_0' + a_4 + a_5 + a_6 - u_3)$	$\Xi_c^0\to\Lambda^0\eta^\prime$	$\begin{array}{c} \frac{\sqrt{3}}{6}s_{\phi}(12a_{0}+2a_{1}+2a_{2}-4a_{3}+6a_{0}'+3a_{4}+a_{6}+a_{7}+2u_{1}+u_{2}+u_{3})\\ -\frac{\sqrt{6}}{6}c_{\phi}(-6a_{0}-4a_{1}-4a_{2}+2a_{3}-3a_{0}'-2a_{5}+a_{6}-2a_{7}+2u_{1})\end{array}$
$\Lambda_c^+ \to n\pi^+$	$2a_2 + 2a_3 + a_6 - a_7 + u_2$	$\Xi_c^0 \to p K^-$	$-2a_2 - a_4 - a_7 + u_1 + u_3$
$\Lambda_c^+\to \Sigma^0 K^+$	$rac{\sqrt{2}}{2}(2a_1-2a_3-a_4-a_5+u_3)$	$\Xi_c^0 \to n \overline{K}^0$	$2a_1 - 2a_2 - 2a_3 + a_5 - a_7 + u_1$
$\Lambda_c^+\to \Sigma^+ K^0$	$2a_1 - 2a_3 + a_4 - a_5 + u_3$	$\Xi_c^0\to \Sigma^0\pi^0$	$rac{1}{2}(2a_1+2a_2-a_4+a_5-a_6+a_7\ +2u_1+u_2+u_3)$
$\Xi_c^+ \to \Lambda^0 \pi^+$	$rac{\sqrt{6}}{6}(2a_1+2a_2-4a_3-3a_4-a_5-a_6-a_7) \ -u_2-u_3)$	$\Xi_c^0\to \Sigma^0\eta$	$egin{array}{l} rac{1}{2}c_{\phi}(-4a_0-2a_1-2a_2-2a_0'-a_4-a_5)\ +a_6-a_7+u_2+u_3)\ +rac{\sqrt{2}}{2}s_{\phi}(2a_0-2a_3+a_0'+a_6) \end{array}$
$\Xi_c^+ \to p \overline{K}^0$	$2a_1 - 2a_3 + a_4 - a_5 - u_3$	$\Xi_c^0\to \Sigma^0\eta'$	$rac{1}{2}s_{\phi}(-4a_{0}-2a_{1}-2a_{2}-2a_{0}'-a_{4}-a_{5}) \ +a_{6}-a_{7}+u_{2}+u_{3}) \ -rac{\sqrt{2}}{2}c_{\phi}(2a_{0}-2a_{3}+a_{0}'+a_{6})$
$\Xi_c^+\to \Sigma^0\pi^+$	$rac{\sqrt{2}}{2}(2a_1-2a_2+a_4-a_5+a_6+a_7+u_2-u_3)$	$\Xi_c^0\to \Xi^0 K^0$	$-2a_1 + 2a_2 + 2a_3 - a_5 + a_7 + u_1$
$\Xi_c^+\to \Sigma^+\pi^0$	$\frac{\sqrt{2}}{2}(-2a_1+2a_2+a_4+a_5+a_6-a_7-u_2+u_3)$	$\Xi_c^0\to \Sigma^+\pi^-$	$2a_2 + a_4 + a_7 + u_1 + u_3$
$\Xi_c^+\to \Sigma^+\eta$	$rac{\sqrt{2}}{2}c_{\phi}(4a_{0}+2a_{1}+2a_{2}-2a_{0}'-a_{4}-a_{5})\ -a_{6}-a_{7}-u_{2}-u_{3})\ +s_{\phi}(-2a_{0}+2a_{3}+a_{0}'-a_{6})$	$\Xi_c^0\to \Sigma^-\pi^+$	$2a_1 + a_5 + a_6 + u_1 + u_2$
$\Xi_c^+\to \Sigma^+\eta'$	$rac{\sqrt{2}}{2} s_{\phi}(4a_0+2a_1+2a_2-2a_0'-a_4-a_5) \ -a_6-a_7-u_2-u_3) \ -c_{\phi}(-2a_0+2a_3+a_0'-a_6)$	$\Xi_c^0\to \Xi^- K^+$	$-2a_1 - a_5 - a_6 + u_1 + u_2$ 10

Coefficients from fit

								(Fit 2)				(Fit 2')			
		alina		-		$\langle \mathbf{a} \rangle$		Coefficient	Value	Coefficient	Value	Coefficient	Value	Coefficient	Value
SU(3) breaking Exact SU(3)				a_0	-0.47 ± 1.23	b_0	-0.04 ± 3.18	a_0	1.09 ± 1.09	b_0	2.45 ± 2.25				
	(Fi	t 1)			(Fit	t 1')		a_1	$-4.58\substack{+0.73\\-1.34}$	b_1	$8.08\substack{+1.74 \\ -1.02}$	a_1	$-5.05\substack{+0.73\\-1.31}$	b_1	$3.40\substack{+1.63 \\ -0.98}$
Coefficient	Value	Coefficient	Value	Coefficient	Value	Coefficient	Value	a_2	$0.34\substack{+0.47\\-0.63}$	b_2	$0.45^{+1.24}_{-1.35}$	a_2	$0.47\substack{+0.42\\-0.53}$	b_2	$5.39\substack{+1.44 \\ -0.76}$
a_0	-0.46 ± 1.26	b_0	-0.78 ± 3.10	a_0	-0.20 ± 1.08	b_0	-0.75 ± 2.41	a_3	$-2.14\substack{+0.40\\-0.33}$	b_3	$0.03\substack{+0.85\\-0.68}$	a_3	$-1.55^{+0.14}_{-0.16}$	b_3	$-0.53\substack{+0.98\\-0.82}$
a_1	$-3.10\substack{+0.40\\-0.48}$	b_1	$8.03^{+0.34}_{-0.48}$	a_1	$-3.95\substack{+0.15\\-0.13}$	b_1	$3.40^{+0.85}_{-0.75}$	a_0'	1.71 ± 2.47	b'_0	3.64 ± 6.36	a'_0	1.17 ± 2.19	b'_0	1.68 ± 2.45
a_2	$1.28^{+0.15}_{-0.23}$	<i>b</i> ₂	$2.14^{+1.42}_{-1.10}$	a_2	$0.98\substack{+0.19 \\ -0.17}$	<i>b</i> ₂	$4.17^{+0.30}_{-0.39}$	a_4	$0.15\substack{+0.39\\-0.45}$	b_4	$-3.88\substack{+1.59\\-1.36}$	a_4	$-0.41\substack{+0.38\\-0.30}$	b_4	$-1.68^{+1.69}_{-1.31}$
	$1.44_{-0.37}^{+0.30}$	<i>b</i> ₃	$0.67^{+0.66}_{-0.67}$	<i>a</i> ₃	-1.61 ± 0.12	<i>b</i> ₃	$1.75^{+1.12}_{-0.88}$	a_5	$0.35^{+1.16}_{-2.65}$	b_5	$0.09^{+3.23}_{-1.46}$	a_5	$-1.01^{+1.38}_{-2.61}$	b_5	$-6.28^{+3.11}_{-1.69}$
$egin{array}{c} a_0' \\ a_4 \end{array}$	$\frac{1.69 \pm 2.51}{-0.03^{+0.38}_{-0.39}}$	b_0' b_4	$\frac{1.83 \pm 6.21}{-2.26^{+1.21}_{-1.42}}$	$egin{array}{c} a_0' & \ a_4 & \ \end{array}$	1.16 ± 2.16 -0.13 ± 0.25	b_0' b_4	$\frac{1.75 \pm 4.82}{-0.55^{+1.01}_{-1.12}}$	a_6	$-1.94^{+0.52}_{-0.75}$	b_6	$-3.09^{+1.42}_{-1.53}$	a_6	$1.48^{+0.14}_{-0.17}$	b_6	$1.23^{+1.49}_{-2.12}$
a_4	$2.11^{+0.39}_{-0.36}$	b_5	$-2.20_{-1.42}$ $-2.09_{-0.58}^{+0.60}$	a_4	$1.03^{+0.30}_{-0.27}$	b ₅	$-8.62^{+0.57}_{-0.55}$		$-2.79^{+0.89}_{-1.26}$	b ₇	$-8.09^{+2.09}_{-2.49}$	a_7	$-1.87^{+0.64}_{-1.01}$	b ₇	$3.75_{-2.65}^{+3.38}$
a_6	$-3.13^{+0.77}_{-0.59}$	b_6	$-5.19^{+1.12}_{-0.66}$	a_6	$1.32^{+0.14}_{-0.17}$	<i>b</i> ₆	$8.79^{+1.38}_{-1.59}$	u_1	$0.07^{+4.27}_{-26.14}$	v_1	$\frac{-2.49}{26.62 \pm 218.96}$	θ	$0.89^{+0.24}_{-0.29}$	52.03	-2.05
a_7	$-0.35\substack{+0.36\\-0.44}$	b_7	$-5.47^{+2.87}_{-2.11}$	a_7	$-1.12\substack{+0.33\\-0.29}$	b_7	$0.23^{+1.07}_{-1.10}$	u_2	$-2.52^{+0.90}_{-0.87}$	v_2	$-15.45^{+3.92}_{-2.75}$			Ident	tical
u_1	$-9.83^{+12.55}_{-1.94}$	v_1	30.48 ± 77.93					<u>u</u> 3	-0.87 3.37 ^{+0.65}	v_3	$\frac{-2.75}{4.80^{+2.20}_{-1.86}}$			IUCIII	lical
u_2	$-2.74^{+0.93}_{-0.77}$	v_2	$-14.11^{+3.77}_{-3.44}$					A A	$0.12\substack{+0.29\\-0.28}$		-1.86			mixir	าต
u_3	$2.92\substack{+0.69\\-0.74}$	v_3	$4.78_{-2.26}^{+2.31}$						$0.12_{-0.28}$						'y
									/1	`it 3)			(F;	t 3')	
						(6.88^{+})	$(16.62)^{\circ}$	Coefficient	Value	Coefficient	Value	Coefficient	Value	Coefficient	Value
						(0.00_	-16.047								
									-4.09 ± 1.15	b_0	-1.46 ± 3.24		-0.20 ± 1.09	b_0	-0.71 ± 2.45
								a_1	$-7.86^{+2.42}_{-0.27}$	b_1	$6.60^{+0.78}_{-3.12}$	a_1	$-5.39^{+0.82}_{-2.11}$	b_1	$3.72^{+2.62}_{-1.14}$
					127(5) -	って。		a_2	$0.09^{+2.42}_{-0.26}$	b_2	$8.74_{-2.28}^{+0.78}$	a_2	$0.35\substack{+0.44\\-0.75}$	b_2	$5.70^{+2.36}_{-0.88}$

 $|\theta_c| = 0.137(5)\pi$ 25° 0.430398

C.Q. Geng, X.-N. Jin, C.-W. Liu, PLB 833 (2023) 137736

 $\theta = (1.200 \pm 0.090 \pm 0.020)^{\circ}$

 $\theta = (1.220 \pm 0.130 \pm 0.010)^{\circ}$

H. Liu, L. Liu, P. Sun, J. Tan, W. Wang, Y. Yang, Q. Zhang, 2303.17863[hep-lat]

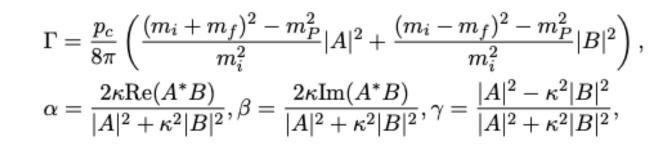
	(Fi	it 3)		(Fit 3')				
Coefficient	Value	Coefficient	Value	Coefficient	Value	Coefficient	Value	
a_0	-4.09 ± 1.15	b_0	-1.46 ± 3.24	a_0	-0.20 ± 1.09	b_0	-0.71 ± 2.45	
a_1	$-7.86\substack{+2.42\\-0.27}$	b_1	$6.60\substack{+0.78\\-3.12}$	a_1	$-5.39\substack{+0.82\\-2.11}$	b_1	$3.72\substack{+2.62 \\ -1.14}$	
a_2	$0.09\substack{+2.42 \\ -0.26}$	b_2	$8.74\substack{+0.78 \\ -2.28}$	a_2	$0.35\substack{+0.44 \\ -0.75}$	b_2	$5.70_{-0.88}^{+2.36}$	
a_3	$-2.09\substack{+0.17\\-0.19}$	b_3	$-1.04\substack{+1.67 \\ -1.21}$	a_3	$-1.55\substack{+0.14\\-0.16}$	b_3	$-0.50\substack{+0.99\\-0.82}$	
a_0'	-5.50 ± 2.30	b_0'	0.25 ± 6.48	a_0'	1.17 ± 2.17	b_0'	1.67 ± 4.89	
a_4	$0.22\substack{+0.43 \\ -0.40}$	b_4	$-3.69\substack{+1.76\\-2.17}$	a_4	$-0.43\substack{+0.37\\-0.28}$	b_4	$-1.84^{+1.70}_{-1.21}$	
a_5	$-6.53\substack{+4.83\\-0.54}$	b_5	$0.24^{+1.22}_{-5.80}$	a_5	$-1.67\substack{+1.59 \\ -4.21}$	b_5	$-5.52\substack{+5.03\\-1.93}$	
a_6	$1.59\substack{+0.13\\-0.16}$	b_6	$11.40^{+1.61}_{-2.22}$	a_6	$1.49\substack{+0.14\\-0.16}$	b_6	$11.27^{+1.41}_{-1.98}$	
a_7	$-3.52\substack{+1.76\\-0.50}$	b_7	$9.43\substack{+1.77 \\ -5.10}$	a_7	$-2.08\substack{+0.70\\-1.48}$	b_7	$4.55\substack{+5.00\\-2.77}$	
u_1	-32.61 ± 34.68	v_1	-19.78 ± 108.09	$ heta_1$	$0.97\substack{+0.26 \\ -0.25}$			
u_2	$0.90\substack{+0.85 \\ -0.78}$	v_2	$-1.99\substack{+1.72\\-1.99}$	$ heta_2$	$0.01^{+3.84}_{-0.00}$			
u_3	$2.82\substack{+0.79 \\ -0.81}$	v_3	$5.43\substack{+1.42 \\ -1.54}$			diffe	rent	
$ heta_1$	1.23 ± 0.27	70°				mivi	000	
θ_2	$0.01\substack{+6.28\\-0.01}$	70				mixi	iys	

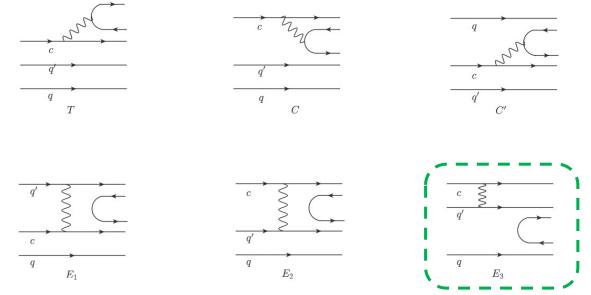
Predictions from fit

Channel	Fit 1	Fit 1'	Fit 2	Fit 2'	Fit 3	Fit 3'	Expt.
$(\chi^2_{\rm min}/{ m d.o.f.}$	2.37	2.34	2.16	2.24	2.12	2.29)	
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+)$	$1.28\substack{+0.13 \\ -0.12}$	1.28 ± 0.08	$1.29\substack{+0.13 \\ -0.18}$	$1.28\substack{+0.18 \\ -0.14}$	$1.30\substack{+0.14 \\ -0.24}$	$1.28\substack{+0.31 \\ -0.16}$	1.30 ± 0.07
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+)$	$1.29\substack{+0.09\\-0.12}$	$1.31\substack{+0.06 \\ -0.05}$	$1.28\substack{+0.11 \\ -0.25}$	$1.30\substack{+0.12 \\ -0.19}$	$1.28\substack{+0.38 \\ -0.10}$	$1.30\substack{+0.16 \\ -0.30}$	1.29 ± 0.07
$10^2 \mathcal{B}(\Lambda_c^+ \to pK_S)$	1.57 ± 0.14	1.58 ± 0.09	$1.61\substack{+0.18 \\ -0.25}$	$1.58\substack{+0.15 \\ -0.25}$	$1.65\substack{+0.78 \\ -0.18}$	$1.59\substack{+0.16 \\ -0.36}$	1.59 ± 0.08
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)$	$1.29\substack{+0.09\\-0.12}$	$1.31\substack{+0.06 \\ -0.05}$	$1.28\substack{+0.11 \\ -0.25}$	$1.31\substack{+0.12 \\ -0.19}$	$1.28\substack{+0.38 \\ -0.11}$	$1.30\substack{+0.16 \\ -0.30}$	1.25 ± 0.10
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)$	0.43 ± 0.11	0.38 ± 0.11	$0.30\substack{+0.14 \\ -0.12}$	$0.37\substack{+0.15 \\ -0.14}$	0.25 ± 0.18	$0.36\substack{+0.19 \\ -0.18}$	$0.320\pm 0.120[4,10]$
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')$	$0.41\substack{+0.12 \\ -0.13}$	0.20 ± 0.06	$0.42\substack{+0.13 \\ -0.14}$	0.20 ± 0.06	$0.40\substack{+0.14 \\ -0.12}$	$0.20\substack{+0.06 \\ -0.08}$	$0.437 \pm 0.151 [4, 10]$
$10^2 \mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)$	0.51 ± 0.08	$0.38\substack{+0.31 \\ -0.32}$	$0.53\substack{+0.09 \\ -0.11}$	$0.38\substack{+0.07 \\ -0.09}$	$0.52\substack{+0.17 \\ -0.09}$	$0.38\substack{+0.09 \\ -0.13}$	0.55 ± 0.07
$10^3 \mathcal{B}(\Lambda_c^+ \to p\eta)$	$1.50\substack{+0.18 \\ -0.16}$	$1.37\substack{+1.20 \\ -1.13}$	$1.42\substack{+0.22\\-0.18}$	$1.42\substack{+0.17\\-0.19}$	$1.30\substack{+0.26 \\ -0.12}$	$1.42\substack{+0.19 \\ -0.24}$	1.42 ± 0.12
$10^4 {\cal B}(\Lambda_c^+ o p\eta')$	4.99 ± 0.87	$5.33\substack{+0.84 \\ -0.85}$	$5.01\substack{+0.85 \\ -1.15}$	$5.34\substack{+0.90\\-1.10}$	$4.95\substack{+1.33 \\ -1.08}$	$5.35\substack{+0.97 \\ -1.47}$	$4.849 \pm 0.903 \ [\textbf{14, 15}]$
$10^4 {\cal B}(\Lambda_c^+\to\Lambda K^+)$	$6.47\substack{+0.58 \\ -0.61}$	$6.68\substack{+0.36\\-0.35}$	$6.52\substack{+0.68\\-0.98}$	$6.67\substack{+0.59 \\ -0.82}$	$6.58\substack{+1.35 \\ -0.49}$	$6.68\substack{+0.72\\-1.20}$	$6.462 \pm 0.334 \; [\textbf{11}, \textbf{12}]$
$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)$	$3.63\substack{+0.37 \\ -0.40}$	$3.59\substack{+0.24 \\ -0.22}$	$3.70\substack{+0.54 \\ -0.39}$	$3.58\substack{+0.51 \\ -0.58}$	$3.69\substack{+0.63 \\ -1.10}$	$3.58\substack{+0.79 \\ -0.87}$	$3.670 \pm 0.297 \; [\textbf{12, 13}]$
$10^4 \mathcal{B}(\Lambda_c^+ \to n\pi^+)$	$6.51\substack{+1.42 \\ -1.22}$	$8.16\substack{+0.78 \\ -0.66}$	$6.82^{+1.43}_{-1.28}$	$8.19\substack{+1.55 \\ -0.98}$	$7.04\substack{+1.89 \\ -2.01}$	$8.20\substack{+2.64 \\ -1.00}$	6.6 ± 1.3 [16]
$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S)$	$2.57\substack{+0.72 \\ -0.75}$	$3.61\substack{+0.65 \\ -0.61}$	$1.82^{+0.85}_{-0.64}$	$3.74\substack{+0.79 \\ -0.89}$	$1.86\substack{+1.05 \\ -1.01}$	$3.72\substack{+0.93 \\ -1.20}$	4.8 ± 1.4 [13]
$10^4 \mathcal{B}(\Lambda_c^+ \to p \pi^0)$	$0.12\substack{+0.30 \\ -0.26}$	0.17 ± 0.10	0.30 ± 0.53	$0.62\substack{+0.60\\-0.62}$	$0.87\substack{+0.85 \\ -0.81}$	$0.66\substack{+0.71\\-0.63}$	< 0.80 [17]
$10^2 \mathcal{B}(\Xi_c^0\to\Xi^-\pi^+)$	$1.53\substack{+0.37 \\ -0.40}$	$0.92\substack{+0.20 \\ -0.18}$	$1.62\substack{+0.56\\-0.84}$	$1.07\substack{+0.45 \\ -0.69}$	$1.43\substack{+1.74 \\ -2.09}$	$1.11\substack{+0.59\\-1.09}$	1.43 ± 0.32
$10^3 \mathcal{B}(\Xi_c^0\to\Xi^-K^+)$	$0.38\substack{+0.54 \\ -0.81}$	$0.40\substack{+0.09\\-0.08}$	$0.38\substack{+0.15\\-2.03}$	$0.47\substack{+0.20 \\ -0.31}$	$0.38\substack{+0.66\\-0.52}$	$0.49\substack{+0.26 \\ -0.49}$	0.38 ± 0.12
$10^3 \mathcal{B}(\Xi_c^0 \to \Lambda K_S)$	$3.14\substack{+0.86\\-0.78}$	$4.28\substack{+0.58\\-0.55}$	$2.96\substack{+1.22 \\ -1.35}$	$3.53\substack{+1.39 \\ -1.98}$	$3.37\substack{+4.20 \\ -4.96}$	$3.36\substack{+0.18 \\ -0.30}$	3.34 ± 0.67
$10^3 \mathcal{B}(\Xi_c^0 \to \Sigma^0 K_S)$	$0.69\substack{+0.40 \\ -0.37}$	$0.79\substack{+0.26 \\ -0.24}$	$0.60\substack{+0.38\\-0.46}$	$0.72\substack{+0.43 \\ -0.58}$	$0.69\substack{+1.00 \\ -0.98}$	$0.69\substack{+0.48\\-0.66}$	0.69 ± 0.24
$10^3 \mathcal{B}(\Xi_c^0 \to \Sigma^+ K^-)$	$1.85\substack{+0.67 \\ -0.63}$	$1.73\substack{+0.41 \\ -0.48}$	$1.89\substack{+0.76 \\ -0.85}$	$1.80\substack{+0.96 \\ -0.95}$	$1.81\substack{+2.38 \\ -2.37}$	$1.81\substack{+1.43 \\ -1.02}$	1.8 ± 0.4
$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+)$	$3.08\substack{+0.50\\-0.49}$	$0.82\substack{+0.12 \\ -0.10}$	$1.52\substack{+0.93 \\ -0.94}$	$0.32\substack{+0.19\\-0.24}$	$0.66\substack{+0.23\\-0.25}$	$0.82\substack{+0.11 \\ -0.13}$	1.6 ± 0.8

Predictions from fit

Channel	Fit 1	Fit 1'	Fit 2	Fit 2'	Fit 3	Fit 3'	Expt.
$(\chi^2_{\rm min}/{\rm d.o.f.}$	2.37	2.34	2.16	2.24	2.12	2.29)	
$\alpha(\Lambda_c^+\to\Lambda\pi^+)$	$-0.76\substack{+0.04\\-0.02}$	-0.76 ± 0.01	$-0.76\substack{+0.04\\-0.03}$	-0.75 ± 0.06	$-0.75\substack{+0.10\\-0.05}$	$-0.75\substack{+0.08\\-0.10}$	$-0.755 \pm 0.006 [4, 12]$
$\alpha(\Lambda_c^+\to\Sigma^0\pi^+)$	$-0.47\substack{+0.06\\-0.04}$	$-0.47\substack{+0.04\\-0.02}$	$-0.47\substack{+0.09\\-0.08}$	$-0.48\substack{+0.12\\-0.06}$	$-0.47\substack{+0.13\\-0.23}$	$-0.48\substack{+0.23\\-0.07}$	$-0.466 \pm 0.026 [4, 12]$
$\alpha(\Lambda_c^+ \to pK_S)$	$-0.86\substack{+0.17\\-0.13}$	-0.48 ± 0.19	-1.00 ± 0.002	$-0.14^{+0.35}_{-0.29}$	$-0.11\substack{+0.20\\-0.53}$	$-0.13\substack{+0.47 \\ -0.29}$	0.18 ± 0.45
$\alpha(\Lambda_c^+\to \Sigma^+\pi^0)$	$-0.48\substack{+0.07\\-0.04}$	$-0.48\substack{+0.04\\-0.02}$	$-0.47\substack{+0.09\\-0.08}$	$-0.48\substack{+0.12\\-0.06}$	$-0.47\substack{+0.13\\-0.23}$	$-0.48\substack{+0.23\\-0.07}$	$-0.485 \pm 0.029 [4, 10]$
$\alpha(\Xi_c^0\to\Xi^-\pi^+)$	$-0.65\substack{+0.08\\-0.07}$	-0.66 ± 0.06	$-0.65\substack{+0.16\\-0.17}$	$-0.64\substack{+0.16\\-0.20}$	$-0.64\substack{+0.21\\-0.20}$	$-0.64\substack{+0.25\\-0.31}$	-0.64 ± 0.05
$\alpha(\Lambda_c^+\to \Sigma^+\eta)$	$-0.96\substack{+0.07\\-0.08}$	-0.96 ± 0.05	$-0.97\substack{+0.09\\-0.10}$	$-1.00\substack{+0.05\\-0.04}$	$-0.96\substack{+0.14\\-0.11}$	$-0.99\substack{+0.08\\-0.07}$	$-0.99\pm 0.06~[10]$
$\alpha(\Lambda_c^+\to \Sigma^+\eta')$	-0.46 ± 0.08	-0.45 ± 0.07	$-0.45\substack{+0.09\\-0.08}$	$-0.46\substack{+0.12\\-0.10}$	$-0.46\substack{+0.08\\-0.12}$	$-0.46\substack{+0.18\\-0.11}$	$-0.46 \pm 0.07 \ [\textbf{10}]$
$\alpha(\Lambda_c^+\to\Lambda K^+)$	$-0.58\substack{+0.11\\-0.08}$	-0.55 ± 0.06	$-0.58\substack{+0.09\\-0.10}$	$-0.55\substack{+0.13\\-0.11}$	$-0.57\substack{+0.08\\-0.14}$	$-0.55\substack{+0.19\\-0.10}$	-0.585 ± 0.052 [12]
$\alpha(\Lambda_c^+ \to \Sigma^0 K^+)$	$-0.65\substack{+0.19\\-0.21}$	$-0.98\substack{+0.02\\-0.01}$	$-0.53\substack{+0.21\\-0.27}$	-0.98 ± 0.03	$-0.63\substack{+0.26\\-0.19}$	$-0.98\substack{+0.05 \\ -0.04}$	$-0.55\pm0.20[12]$
$\alpha(\Lambda_c^+\to \Xi^0 K^+)$	0.99 ± 0.05	0.90 ± 0.04	$1.00\substack{+0.03 \\ -0.04}$	$0.91\substack{+0.09 \\ -0.07}$	$0.97\substack{+0.07 \\ -0.06}$	$0.91\substack{+0.13 \\ -0.10}$	


- better with symmetry breaking terms in all schemes
- decay asymmetry for $\Lambda_c^+ \rightarrow pK_s$ in all schemes prefers to be negative


Comparison

channel	Fit-III	Fit-III'	GLT [18]	HXH [19]	ZWHY [20]	ZXMC [13, 37]	Expt.
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^+)$	$1.30\substack{+0.12 \\ -0.14}$	$1.27\substack{+0.08\\-0.09}$	1.30 ± 0.07	1.307 ± 0.069	1.32 ± 0.34	1.30	1.30 ± 0.07
$10^2 \mathcal{B}(\Lambda_c^+ \to pK_S)$	1.65 ± 0.11	1.59 ± 0.10	1.57 ± 0.08	1.587 ± 0.077	1.57 ± 0.05	1.06	1.59 ± 0.08
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+)$	1.27 ± 0.09	1.30 ± 0.06	1.27 ± 0.06	1.272 ± 0.056	1.3 ± 0.32	2.24	1.29 ± 0.07
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)$	1.27 ± 0.09	1.30 ± 0.06	1.27 ± 0.06	1.283 ± 0.057	1.23 ± 0.17	2.24	1.25 ± 0.10
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)$	$0.30\substack{+0.06\\-0.07}$	0.31 ± 0.05	0.32 ± 0.13	0.45 ± 0.19	0.47 ± 0.22	0.74	0.44 ± 0.20
							0.314 ± 0.044 [7]
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')$	0.39 ± 0.08	0.24 ± 0.05	1.44 ± 0.56	1.5 ± 0.60	0.93 ± 0.28	-	1.50 ± 0.60
							0.416 ± 0.085 [7]
$10^2 \mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)$	$0.50\substack{+0.06 \\ -0.09}$	0.38 ± 0.03	0.56 ± 0.09	0.548 ± 0.068	0.59 ± 0.17	0.73	0.55 ± 0.07
$10^3 \mathcal{B}(\Lambda_c^+ \to p\eta)$	1.27 ± 0.11	$1.36\substack{+0.11 \\ -0.12}$	1.15 ± 0.27	1.27 ± 0.24	1.14 ± 0.35	1.28	1.42 ± 0.12
$10^4 \mathcal{B}(\Lambda_c^+ \to p\eta')$	$4.65\substack{+0.79 \\ -0.77}$	$5.93\substack{+0.73 \\ -0.71}$	24.5 ± 14.6	27 ± 38	7.1 ± 1.4	-	4.73 ± 0.97 [5]
							$5.62^{+2.46}_{-2.04}\pm 0.26$ [2]
$10^4 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+)$	$6.54\substack{+0.42 \\ -0.49}$	$6.62\substack{+0.23\\-0.22}$	6.5 ± 1.0	6.4 ± 1.0	5.9 ± 1.7	10.7	6.21 ± 0.61 [3]
							6.57 ± 0.40 [6]
$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)$	$3.71\substack{+0.39 \\ -0.36}$	$3.56\substack{+0.68\\-0.69}$	5.4 ± 0.7	5.04 ± 0.56	5.5 ± 1.6	7.2	4.7 ± 0.95 [4]
							3.58 ± 0.28 [6]
$10^4 \mathcal{B}(\Lambda_c^+ \to n\pi^+)$	$6.47^{+1.33}_{-1.55}$	$8.15\substack{+0.69 \\ -0.67}$	8.5 ± 2.0	3.5 ± 1.1	7.7 ± 2.0	-	6.6 ± 1.3 [1]
$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S)$	$1.99\substack{+0.49 \\ -0.46}$	$3.11\substack{+0.35 \\ -0.34}$	5.45 ± 0.75	1.03 ± 0.42	9.55 ± 2.4	7.2	4.8 ± 1.4 [4]
$10^4 \mathcal{B}(\Lambda_c^+ \to p\pi^0)$	$0.51\substack{+0.59 \\ -0.61}$	0.16 ± 0.09	1.2 ± 1.2	44.5 ± 8.5	$0.8\substack{+0.9 \\ -0.8}$	1.26	< 0.80 [35]
$10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	$2.43\substack{+0.60 \\ -0.64}$	$0.70\substack{+0.25 \\ -0.22}$	2.21 ± 0.14	1.21 ± 0.21	1.93 ± 0.28	6.47	1.43 ± 0.32
$10^3 \mathcal{B}(\Xi_c^0 \to \Xi^- K^+)$	$0.60\substack{+1.03 \\ -0.67}$	$0.31\substack{+0.11 \\ -0.09}$	0.98 ± 0.06	0.47 ± 0.083	0.56 ± 0.08	3.90	0.38 ± 0.12
$10^3 \mathcal{B}(\Xi^0_c \to \Lambda^0 K_S)$	$3.34\substack{+0.97\\-0.98}$	$3.79\substack{+0.66\\-0.61}$	5.25 ± 0.3	3.34 ± 0.65	4.16 ± 2.51	6.65	3.34 ± 0.67
$10^3 \mathcal{B}(\Xi_c^0 \to \Sigma^0 K_S)$	$0.74\substack{+0.25 \\ -0.30}$	$0.73\substack{+0.25\\-0.25}$	0.4 ± 0.4	0.69 ± 0.24	3.96 ± 0.25	0.2	0.69 ± 0.24
$10^3 \mathcal{B}(\Xi_c^0 \to \Sigma^+ K^-)$	$1.86\substack{+0.45\\-0.71}$	$1.74_{-0.51}^{+0.41}$	5.9 ± 1.1	2.21 ± 0.68	22.0 ± 5.7	4.6	1.8 ± 0.4
$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+)$	$0.55\substack{+0.19 \\ -0.20}$	0.81 ± 0.11	0.38 ± 0.20	0.54 ± 0.18	0.93 ± 0.36	1.72	1.6 ± 0.8

Fit within topological diagrams

Working frame

22 parameters

$$\begin{array}{l} A_{T}, A_{C}e^{i\delta_{A_{C}}}, A_{C'}e^{i\delta_{A_{C'}}}, A_{E_{1}}e^{i\delta_{A_{E_{1}}}}, A_{E_{2}}e^{i\delta_{A_{E_{2}}}}, A_{E_{3}}e^{i\delta_{A_{E_{3}}}}, \\ B_{T}, B_{C}e^{i\delta_{B_{C}}}, B_{C'}e^{i\delta_{B_{C'}}}, B_{E_{1}}e^{i\delta_{B_{E_{1}}}}, B_{E_{2}}e^{i\delta_{B_{E_{2}}}}, B_{E_{3}}e^{i\delta_{B_{E_{3}}}}. \\ \text{w/ or w/o} \quad \Lambda^{0} - \Sigma^{0} \text{ mixing} \end{array}$$

Channel	Contributions	Channel	Contributions	Channel	Contributions
$\Lambda_c^+\to\Lambda^0\pi^+$	T, C', E_1, E_3	$\Lambda_c^+\to \Xi^0 K^+$	E_1, E_3	$\Xi_c^0\to \Xi^0\pi^0$	C', E_1
$\Lambda_c^+\to \Sigma^0\pi^+$	T, C', E_1, E_3	$\Xi_c^+\to \Sigma^+ \overline{K}^0$	C,C'	$\Xi_c^0\to \Xi^0\eta$	$C^{\prime}, E_1, E_2, E_3$
$\Lambda_c^+ o p \overline{K}^0$	C, E_2	$\Xi_c^+\to \Xi^0\pi^+$	T, C'	$\Xi_c^0\to \Xi^0\eta^\prime$	$C^{\prime}, E_1, E_2, E_3$
$\Lambda_c^+\to \Sigma^+\pi^0$	C', E_1, E_3	$\Xi_c^0\to \Lambda^0 \overline{K}^0$	C, C', E_2, E_3	$\Xi_c^0\to \Xi^-\pi^+$	T, E_1
$\Lambda_c^+\to \Sigma^+\eta$	$C^{\prime}, E_1, E_2, E_3$	$\Xi_c^0\to \Sigma^0 \overline{K}^0$	C, C', E_2, E_3	$\Omega_c^0\to \Xi^0\overline{K}^0$	C,C'
$\Lambda_c^+\to \Sigma^+\eta'$	$C^{\prime}, E_1, E_2, E_3$	$\Xi_c^0\to \Sigma^+ K^-$	E_2, E_3		
$\Lambda_c^+\to\Lambda^0 K^+$	T, C', E_1, E_3	$\Xi_c^+\to \Sigma^+\eta$	C, C', E_1, E_2, E_3	$\Xi_c^0\to \Xi^0 K^0$	C', E_2, E_3
$\Lambda_c^+ \to p \pi^0$	C, C', E_1, E_2, E_3	$\Xi_c^+\to \Sigma^+\eta'$	$C, C^\prime, E_1, E_2, E_3$	$\Xi_c^0\to \Sigma^+\pi^-$	E_2, E_3
$\Lambda_c^+ o p\eta$	C, C', E_1, E_2, E_3	$\Xi_c^+\to \Xi^0 K^+$	T, C', E_1, E_3	$\Xi_c^0\to \Sigma^-\pi^+$	T, E_1
$\Lambda_c^+ o p\eta'$	C, C', E_1, E_2, E_3	$\Xi_c^0\to\Lambda^0\pi^0$	$C, C^{\prime}, E_1, E_2, E_3$	$\Xi_c^0\to \Xi^- K^+$	T, E_1
$\Lambda_c^+ \to n\pi^+$	T, C', E_1, E_3	$\Xi_c^0\to\Lambda^0\eta$	$C, C^{\prime}, E_1, E_2, E_3$	$\Omega_c^0\to \Sigma^0 \overline{K}^0$	C^{\prime}, E_2, E_3
$\Lambda_c^+\to \Sigma^0 K^+$	T, C', E_1, E_3	$\Xi_c^0\to\Lambda^0\eta^\prime$	$C, C^{\prime}, E_1, E_2, E_3$	$\Omega_c^0\to \Sigma^+ K^-$	E_2, E_3
$\Lambda_c^+\to \Sigma^+ K^0$	C', E_2	$\Xi_c^0 \to p K^-$	E_2, E_3	$\Omega_c^0\to \Lambda^0 \overline{K}^0$	C^{\prime}, E_2, E_3
$\Xi_c^+\to\Lambda^0\pi^+$	T, C', E_1, E_3	$\Xi_c^0 \to n \overline{K}^0$	C^{\prime}, E_2, E_3	$\Omega_c^0\to \Xi^0\pi^0$	C, E_1
$\Xi_c^+ \to p \overline{K}^0$	C', E_2	$\Xi_c^0\to \Sigma^0\pi^0$	$C,C^{\prime},E_{1},E_{2},E_{3}$	$\Omega_c^0\to \Xi^-\pi^+$	T, E_1
$\Xi_c^+\to \Sigma^0\pi^+$	T, C', E_1, E_3	$\Xi_c^0\to \Sigma^0\eta$	$C, C^{\prime}, E_1, E_2, E_3$		
$\Xi_c^+\to \Sigma^+\pi^0$	C,E_1,E_3	$\Xi_c^0\to \Sigma^0\eta'$	$C,C^{\prime},E_{1},E_{2},E_{3}$		

Fitted parameters

w/ mixing

w/o mixing

		_	_						
	FitI				FitI'				
	Coefficient	Value	Coefficient	Value	Coefficient	Value	Coefficient	Value	
	A_T	-0.46 ± 1.57	B_T	23.32 ± 5.20	A_T	-0.27 ± 1.71	B_T	24.19 ± 5.07	
	A_C	5.84 ± 1.99	B_C	37.02 ± 3.94	A_C	5.70 ± 2.01	B_C	37.20 ± 3.85	
	$A_{C'}$	-4.42 ± 0.68	$B_{C'}$	-31.08 ± 2.52	$A_{C'}$	-4.31 ± 0.71	$B_{C'}$	-31.32 ± 2.58	
	A_{E_1}	-6.77 ± 1.72	B_{E_1}	-26.82 ± 4.52	A_{E_1}	-6.71 ± 1.74	B_{E_1}	-26.76 ± 4.90	
	A_{E_2}	-5.32 ± 0.96	B_{E_2}	-7.51 ± 4.15	A_{E_2}	-5.34 ± 0.95	B_{E_2}	-8.02 ± 4.34	
w/ E_3	A_{E_3}	1.64 ± 1.70	B_{E_3}	-9.87 ± 5.59	A_{E_3}	1.62 ± 1.69	B_{E_3}	-10.07 ± 6.12	
	δ_{A_C}	1.81 ± 0.44	δ_{B_C}	-0.53 ± 0.17	δ_{A_C}	1.76 ± 0.43	δ_{B_C}	-0.53 ± 0.17	
	$\delta_{A_{C'}}$	2.53 ± 0.16	$\delta_{B_{C'}}$	-0.28 ± 0.04	$\delta_{A_{C'}}$	2.51 ± 0.15	$\delta_{B_{C'}}$	-0.27 ± 0.04	
	$\delta_{A_{E_1}}$	1.84 ± 0.30	$\delta_{B_{E_1}}$	1.40 ± 0.30	$\delta_{A_{E_1}}$	1.80 ± 0.31	$\delta_{B_{E_1}}$	1.37 ± 0.30	
	$\delta_{A_{E_2}}$	1.38 ± 0.35	$\delta_{B_{E_2}}$	-4.99 ± 0.57	$\delta_{A_{E_2}}$	1.33 ± 0.32	$\delta_{B_{E_2}}$	-5.03 ± 0.51	
	$\delta_{A_{E_3}}$	1.90 ± 0.89	$\delta_{B_{E_3}}$	-2.19 ± 0.41	$\delta_{A_{E_3}}$	1.83 ± 0.97	$\delta_{B_{E_3}}$	-2.24 ± 0.39	
	θ	-			heta	-0.03 ± 0.02			
	FitII				FitII'				
	Coefficient	Value	Coefficient	Value	Coefficient	Value	Coefficient	Value	
	A_T	-1.94 ± 0.68	B_T	$\begin{array}{c} \text{Value} \\ \hline 22.58 \pm 3.58 \end{array}$	A_T	-2.08 ± 0.72	B_T	$\frac{\text{Value}}{23.07 \pm 3.61}$	
	-	-1.94 ± 0.08 6.09 ± 1.35	-	$\frac{22.38 \pm 3.38}{39.75 \pm 2.98}$	_	$\frac{-2.08 \pm 0.72}{5.95 \pm 1.40}$	$\frac{B_T}{B_C}$	$\frac{23.07 \pm 3.01}{39.69 \pm 2.95}$	
	A_C $A_{C'}$	-4.58 ± 0.41	$\frac{B_C}{B_{C'}}$	$\frac{39.15 \pm 2.98}{-30.62 \pm 1.68}$	$A_C = A_{C'}$	-4.52 ± 0.42	B_C $B_{C'}$	$\frac{39.09 \pm 2.93}{-30.61 \pm 1.69}$	
	$A_{C'}$	$-4.38 \pm 0.41 \\ -5.54 \pm 0.33$	$\frac{B_{C'}}{B_{E_1}}$	-30.02 ± 1.08 -18.68 ± 1.10	$A_{C'}$	$\frac{-4.52 \pm 0.42}{-5.56 \pm 0.34}$	$\frac{B_{C'}}{B_{E_1}}$	$\frac{-30.01 \pm 1.09}{-18.60 \pm 1.08}$	
w/o <i>E</i> 3	A_{E_1}	-3.97 ± 0.44	$\frac{B_{E_1}}{B_{E_2}}$	-4.33 ± 2.34	$\frac{A_{E_1}}{A_{E_2}}$	-3.99 ± 0.44	$egin{array}{c} B_{E_1} \ \hline B_{E_2} \end{array}$	-4.33 ± 2.32	
	A_{E_2}		B_{E_2} B_{E_3}	-4.00 ± 2.04	A_{E_2} A_{E_3}	-5.55 ± 0.44	B_{E_2} B_{E_3}	-4.00 ± 2.02	
	δ_{A_C}	$-$ 1.98 \pm 0.27	$rac{D_{E_3}}{\delta_{B_C}}$	-0.38 ± 0.10	δ_{A_C}	$-$ 1.97 \pm 0.28	$rac{D_{E_3}}{\delta_{B_C}}$	-0.39 ± 0.10	
	$\delta_{A_C'}$	1.38 ± 0.21 2.48 ± 0.10	$\delta B_{C'}$	-0.27 ± 0.04	$\delta_{A_C'}$	1.37 ± 0.20 2.48 ± 0.10	$\delta B_{C'}$	-0.27 ± 0.04	
	$\frac{\delta_{A_{C'}}}{\delta_{A_{E_1}}}$	2.43 ± 0.10 1.78 ± 0.11	$\delta B_{C'}$	1.71 ± 0.15	$\delta_{A_{E_1}}$	2.40 ± 0.10 1.79 ± 0.11	$\delta B_{C'} = \delta B_{E_1}$	$\frac{0.27 \pm 0.04}{1.71 \pm 0.15}$	
	· · · · ·	1.39 ± 0.26	· ·	-5.32 ± 0.62		1.79 ± 0.11 1.39 ± 0.26	$\delta_{B_{E_2}}$	-5.29 ± 0.62	
	$\delta_{A_{E_2}}$	-	$\frac{\delta_{B_{E_2}}}{\delta_{P}}$	-	$\delta_{A_{E_2}}$	-			
	$\delta_{A_{E_3}}$		$\delta_{B_{E_3}}$	-	$\delta_{A_{E_3}}$	-	$\delta_{B_{E_3}}$	_	

 θ

 1.61 ± 0.02

P-wave amplitudes have large sizes compared with corresponding s-wave one

The uncertainty of E_3 is large

w/o E_3

 θ

-

TDA predictions in various schemes

	01	Fit I			Fit I'		Fit II	Fit II'		
	Obs.	χ_i^2	Pred.	χ_i^2	Pred.	χ_i^2	Pred.	χ_i^2	Pred.	Expt.
Better: w/o E ₃	$(\chi^2_{\rm min}/{\rm d.o.f.}$		12.50		14.05		8.60		8.78)	
Detter 11/0 23	$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^+)$	0.00	$1.30\substack{+0.85 \\ -0.67}$	0.84	$1.36\substack{+0.92\\-0.73}$	0.02	$1.29\substack{+0.19 \\ -0.16}$	0.41	$1.35\substack{+0.20\\-0.18}$	1.30 ± 0.07
	$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+)$	0.12	$1.26\substack{+0.82 \\ -0.65}$	2.51	$1.16\substack{+0.76 \\ -0.61}$	0.21	$1.25\substack{+0.18 \\ -0.16}$	0.03	$1.28\substack{+0.17\\-0.15}$	1.29 ± 0.07
	$10^2 \mathcal{B}(\Lambda_c^+ \to pK_S)$	0.03	${\begin{array}{c}{}}1.26\substack{+0.82\\-0.65}\\1.58\substack{+0.49\\-0.40\end{array}}$	0.03	$1.58\substack{+0.49\\-0.40}$	0.05	${\begin{array}{c}{1.25\substack{+0.18\\-0.16}\\1.57\substack{+0.32\\-0.29\end{array}}}$	0.01	${\begin{array}{c}{1.28}\substack{+0.17\\-0.15}\\{1.58}\substack{+0.33\\-0.29\end{array}}$	1.59 ± 0.08
	$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)$	0.01	$1.27\substack{+0.54 \\ -0.47}$	0.01	$1.26\substack{+0.56 \\ -0.47}$	0.44	$1.32\substack{+0.16 \\ -0.15}$	0.22	1.30 ± 0.15	1.25 ± 0.10
	$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)$	0.12	$0.33\substack{+0.26\\-0.19}$	0.13	$0.33\substack{+0.26 \\ -0.19}$	0.09	$0.33\substack{+0.09\\-0.08}$	0.10	$0.33\substack{+0.09\\-0.08}$	$0.32 \pm 0.04 \; [2, 4, 5]$
	$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')$	0.06	$0.40\substack{+0.14\\-0.12}$	0.06	$0.40\substack{+0.14\\-0.12}$	0.49	0.34 ± 0.04	0.37	$0.35\substack{+0.05\\-0.04}$	$0.44 \pm 0.15 \; [{2,\;4,\;5}]$
	$10^2 \mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)$	0.04	$0.54\substack{+0.40\\-0.30}$	0.01	$0.54\substack{+0.41\\-0.31}$	0.38	0.59 ± 0.05	0.02	0.54 ± 0.05	0.55 ± 0.07
	$10^3 \mathcal{B}(\Lambda_c^+ \to p\eta)$	0.00	$1.40\substack{+0.59\\-0.50}$	0.00	$1.41\substack{+0.59\\-0.49}$	0.08	$1.37\substack{+0.32 \\ -0.29}$	0.14	$1.36\substack{+0.33 \\ -0.29}$	1.40 ± 0.11 [7, 8]
	$10^4 \mathcal{B}(\Lambda_c^+ \to p\eta')$	0.40	$5.42^{+1.47}_{-1.32}$	0.42	$5.43^{+1.49}_{-1.35}$	0.53	$5.50\substack{+0.64\\-0.57}$	0.79	$5.65\substack{+0.61\\-0.57}$	4.85 ± 0.90 [9, 10]
	$10^4 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+)$	3.01	$5.89\substack{+3.52\\-2.78}$	1.29	$6.08\substack{+3.93\-3.25}$	3.54	$5.84\substack{+0.95\\-0.77}$	0.79	$6.16\substack{+0.98 \\ -0.84}$	$6.44 \pm 0.32 [11 - 14]$
Λ^0 / Σ^0 involved decays	$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)$	6.65	$4.80^{+2.95}_{-2.31}$	3.31	$4.51_{-2.34}^{+2.90}$	5.76	$4.73\substack{+0.77 \\ -0.63}$	0.00	$3.80\substack{+0.70\\-0.58}$	$3.82\pm0.38[11,12,14,15]$
	$10^4 \mathcal{B}(\Lambda_c^+ \to n\pi^+)$	0.29	$7.30\substack{+4.98 \\ -3.95}$	0.21	$7.19\substack{+5.12 \\ -3.98}$	0.25	$7.25\substack{+1.16 \\ -0.95}$	0.43	$7.46\substack{+1.11 \\ -0.96}$	6.6 ± 1.3 [16]
do not work well;	$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S)$	0.64	$3.68\substack{+1.06 \\ -0.91}$	0.67	$3.66\substack{+1.02\\-0.88}$	1.70	$2.98\substack{+0.57\\-0.56}$	1.65	$3.00\substack{+0.58\\-0.52}$	4.8 ± 1.4 [15]
· · · · · · · · · · · · · · · · · · ·	$10^4 \mathcal{B}(\Lambda_c^+ \to p\pi^0)$	0.17	$0.32\substack{+2.22\-1.31}$	0.18	$0.32\substack{+2.24\-1.33}$	2.32	$1.17\substack{+0.93 \\ -0.72}$	1.62	$0.98\substack{+0.96\\-0.69}$	< 0.77 [7, 8]
	$10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	0.33	$1.61\substack{+0.61 \\ -0.50}$	0.36	$1.62\substack{+0.62\\-0.51}$	0.03	$1.38\substack{+0.26\\-0.22}$	0.00	$\begin{array}{c} 1.44\substack{+0.27\\-0.21}\\ 0.26\substack{+0.08\\-0.06}\end{array}$	1.43 ± 0.32 [2, 17]
	$10^3 \mathcal{B}(\Xi_c^0 \to \Xi^- K^+)$	1.81	$0.23\substack{+0.11\\-0.09}$	1.51	$0.24\substack{+0.11\-0.10}$	1.69	0.23 ± 0.07	1.22	$0.26\substack{+0.08\\-0.06}$	0.39 ± 0.12 [2, 18]
To introduce a mixing	$10^3 \mathcal{B}(\Xi_c^0 \to \Lambda^0 K_S)$	11.30	$0.85^{+2.03}_{-1.34}$	10.05	$0.98\substack{+2.33\\-1.46}$	10.48	$0.93\substack{+0.89\\-0.62}$	10.38	$0.94\substack{+1.00 \\ -0.70}$	$3.2\pm0.7[2,19,20]$
	$10^3 \mathcal{B}(\Xi_c^0 \to \Sigma^0 K_S)$	1.16	$0.71^{+1.83}_{-1.20}$	1.32	$0.72^{+1.79}_{-1.15}$	2.46	$0.79\substack{+0.78\\-0.54}$	2.28	$0.78\substack{+0.75 \\ -0.53}$	0.54 ± 0.16 [19]
seems not a prescription	$10^3 \mathcal{B}(\Xi_c^0 \to \Sigma^+ K^-)$	0.01	$1.83^{+2.24}_{-1.61}$	0.01	$1.83^{+2.35}_{-1.68}$	0.04	$1.88^{+0.47}_{-0.40}$	0.01	$1.83_{-0.40}^{+0.47}$	1.8 ± 0.4 [19]
seems not a prescription	$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+)$	0.68	$0.94\substack{+0.55\\-0.39}$	0.85	$0.86\substack{+0.59\\-0.40}$	1.17	$0.73\substack{+0.26 \\ -0.19}$	1.22	$0.72_{-0.18}^{+0.25}$	$1.6 \pm 0.8 \; [17, 21]$
	$\alpha(\Lambda_c^+ \to \Lambda^0 \pi^+)$	6.13	$-0.74^{+0.44}_{-0.29}$	6.16	$-0.74^{+0.48}_{-0.29}$	5.87	$-0.74\substack{+0.12\\-0.09}$	7.86	$-0.73^{+0.12}_{-0.09}$	-0.76 ± 0.01 [2, 14]
	$\alpha(\Lambda_c^+ \to \Sigma^0 \pi^+)$	53.57	$-0.69^{+0.42}_{-0.29}$	53.55	$-0.69\substack{+0.46\\-0.30}$	53.86	$-0.69\substack{+0.12\\-0.09}$	52.03	$-0.69^{+0.12}_{-0.09}$	-0.47 ± 0.03 [2, 14]
and the second	$\alpha(\Lambda_c^+ \to pK_S)$	0.66	$-0.19\substack{+0.34\\-0.30}$	0.64	$-0.18\substack{+0.32\\-0.29}$	0.90	$-0.25\substack{+0.22\\-0.20}$	0.99	$-0.27\substack{+0.23\\-0.21}$	0.18 ± 0.45
negative α	$\alpha(\Lambda_c^+ \to \Sigma^+ \pi^0)$	0.00	$-0.49^{+0.35}_{-0.28}\\-0.64^{+0.34}_{-0.26}$	0.00	$-0.49^{+0.35}_{-0.28}\\-0.64^{+0.34}_{-0.27}$	0.30	$-0.51\substack{+0.10\\-0.09}$	0.01	$\substack{-0.49\substack{+0.10\\-0.09}\\-0.63\substack{+0.15\\-0.14}$	-0.49 ± 0.03 [2, 5]
Ŭ	$\alpha(\Xi_c^0\to\Xi^-\pi^+)$	0.00	$-0.64^{+0.34}_{-0.26}$	0.00	$-0.64\substack{+0.34\\-0.27}$	0.36	-0.61 ± 0.14	0.02	$-0.63\substack{+0.15\\-0.14}$	-0.64 ± 0.05
	$\alpha(\Lambda_c^+ \to \Sigma^+ \eta)$	0.12	$-0.97\substack{+0.37\\-0.17}$	0.15	$-0.97\substack{+0.37\\-0.17}$	0.54	$-0.95\substack{+0.10\\-0.05}$	0.34	$-0.95\substack{+0.10\\-0.05}$	-0.99 ± 0.06 [5]
	$\alpha(\Lambda_c^+ \to \Sigma^+ \eta')$	0.01	$-0.47\substack{+0.19\\-0.18}$	0.00	$-0.46\substack{+0.20\\-0.19}$	0.25	-0.42 ± 0.09	0.19	$-0.43\substack{+0.09\\-0.09}$	-0.46 ± 0.07 [5]
	$\alpha(\Lambda_c^+ o \Lambda^0 K^+)$	0.05	$-0.57\substack{+0.44\\-0.31\\+0.47}$	0.02	$-0.58\substack{+0.44\\-0.32\\+0.47}$	0.73	$-0.54\substack{+0.13\\-0.11}$	4.38	$-0.69\substack{+0.14\\-0.12}$	-0.585 ± 0.052 [14]
	$\alpha(\Lambda_c^+ \to \Sigma^0 K^+)$	0.13	$-0.62\substack{+0.47\\-0.31}$	0.05	$-0.59\substack{+0.47\\-0.31}$	0.04	$-0.59\substack{+0.14\\-0.11}$	0.25	$-0.45\substack{+0.15\\-0.13}$	-0.55 ± 0.20 [14]
	$\alpha(\Lambda_c^+\to \Xi^0 K^+)$		$-0.94\substack{+0.38\\-0.19}$		$-0.95\substack{+0.39\\-0.19}$		$-0.91\substack{+0.08\\-0.05}$		$-0.87\substack{+0.08\\-0.05}$	

Predictions for more observables

		Fit I		
Channel	B	α	β	γ
$\Lambda_c^+ o \Lambda^0 \pi^+$	$(1.30^{+0.85}_{-0.67}) \times 10^{-2}$	$-0.73\substack{+0.44\\-0.29}$	$-0.01\substack{+0.56\\-0.57}$	$0.68^{+0.29}_{-0.43}$
$\Lambda_c^+ \to \Sigma^0 \pi^+$	$(1.26^{+0.82}_{-0.65}) \times 10^{-2}$	$-0.69\substack{+0.42\\-0.29}$	-0.01 ± 0.54	$0.72\substack{+0.26 \\ -0.41}$
$\Lambda_c^+ \to pK_S$	$(1.58^{+0.49}_{-0.40}) \times 10^{-2}$	$-0.19\substack{+0.34\\-0.30}$	0.24 ± 0.30	$-0.95\substack{+0.17\\-0.08}$
$\Lambda_c^+ \to \Sigma^+ \pi^0$	$(1.27^{+0.54}_{-0.47}) \times 10^{-2}$	$-0.49\substack{+0.34\\-0.29}$	$-0.04\substack{+0.35\\-0.33}$	$-0.87\substack{+0.26\\-0.14}$
$\Lambda_c^+ \to \Sigma^+ \eta$	$(0.33^{+0.26}_{-0.19}) \times 10^{-2}$	$-0.97\substack{+0.37\\-0.17}$	$0.18\substack{+0.42 \\ -0.46}$	$-0.16\substack{+0.54\\-0.51}$
$\Lambda_c^+ \to \Sigma^+ \eta'$	$(0.40^{+0.14}_{-0.12}) \times 10^{-2}$	$-0.47\substack{+0.19\\-0.18}$	$0.46\substack{+0.20\\-0.22}$	$0.76^{+0.11}_{-0.17}$
$\Lambda_c^+ \to \Xi^0 K^+$	$(0.54^{+0.40}_{-0.30}) \times 10^{-2}$	$-0.94\substack{+0.37\\-0.20}$	$-0.30\substack{+0.56\\-0.47}$	$0.17\substack{+0.39 \\ -0.52}$
$\Lambda_c^+ o p\eta$	$(1.40^{+0.59}_{-0.50}) \times 10^{-3}$	$0.01\substack{+0.39 \\ -0.38}$	$-0.08\substack{+0.41 \\ -0.36}$	$-1.00\substack{+0.19\\-0.09}$
$\Lambda_c^+ \to p\eta'$	$(5.42^{+1.47}_{-1.32}) \times 10^{-4}$	$-0.34\substack{+0.25\\-0.24}$	$-0.94\substack{+0.06\\-0.12}$	$0.05\substack{+0.26\\-0.25}$
$\Lambda_c^+ \to \Lambda^0 K^+$	$(5.89^{+3.52}_{-2.78}) \times 10^{-4}$	$-0.57\substack{+0.45\\-0.32}$	$0.23\substack{+0.49 \\ -0.54}$	$-0.78\substack{+0.43\\-0.25}$
$\Lambda_c^+ \to \Sigma^0 K^+$	$(4.80^{+2.95}_{-2.31}) \times 10^{-4}$	$-0.62\substack{+0.47\\-0.31}$	$0.25\substack{+0.51 \\ -0.58}$	$-0.74\substack{+0.46\\-0.30}$
$\Lambda_c^+ \to n\pi^+$	$(7.30^{+4.98}_{-3.95}) \times 10^{-4}$	$-0.83\substack{+0.48\\-0.27}$	$-0.01\substack{+0.59\\-0.63}$	$0.56\substack{+0.38 \\ -0.48}$
$\Lambda_c^+ \to \Sigma^+ K_S$	$(3.68^{+1.06}_{-0.91}) \times 10^{-4}$	$-0.87\substack{+0.20\\-0.11}$	$-0.00\substack{+0.26\\-0.27}$	$-0.49\substack{+0.27\\-0.24}$
$\Lambda_c^+ \to p \pi^0$	$(0.32^{+2.22}_{-1.31}) \times 10^{-4}$	$-0.25\substack{+0.70\\-0.65}$	$-0.30\substack{+0.71 \\ -0.67}$	$0.92\substack{+0.70 \\ -0.65}$
$\Xi_c^0 \to \Xi^- \pi^+$	$(1.61^{+0.61}_{-0.50}) \times 10^{-2}$	$-0.64\substack{+0.34\\-0.26}$	$-0.68\substack{+0.33\\-0.23}$	$-0.36\substack{+0.32\\-0.27}$
$\Xi_c^0 ightarrow \Xi^- K^+$	$(0.23^{+0.11}_{-0.09}) \times 10^{-3}$	$-0.14\substack{+0.48\\-0.44}$	0.00 ± 0.00	$-0.99\substack{+0.19\\-0.05}$
$\Xi_c^0 \to \Lambda^0 K_S$	$(0.85^{+2.03}_{-1.34}) \times 10^{-3}$	$-0.05\substack{+0.71\\-0.62}$	$-0.44\substack{+0.75\\-0.54}$	$-0.90\substack{+0.72\\-0.55}$
$\Xi_c^0 \to \Sigma^0 K_S$	$(0.71^{+1.83}_{-1.20}) \times 10^{-3}$	$-0.05\substack{+0.72\\-0.63}$	$-0.48\substack{+0.76 \\ -0.54}$	$-0.88\substack{+0.70\\-0.60}$
$\Xi_c^0\to \Sigma^+ K^-$	$(1.83^{+2.24}_{-1.61}) \times 10^{-3}$	$-0.10\substack{+0.61\\-0.59}$	$-0.55\substack{+0.66\\-0.48}$	$0.83\substack{+0.34\\-0.60}$
$\Xi_c^+ \to \Xi^0 \pi^+$	$(0.94^{+0.55}_{-0.39}) \times 10^{-2}$	$0.03\substack{+0.51 \\ -0.42}$	$0.98^{+0.12}_{-0.24}$	$0.21^{+0.35}_{-0.44}$

- Two independent fitting methods are investigated to explore the features of charmed baryon weak decays.
- In flavor symmetry framework, the Ξ_c mixing effect with identical or different mixing angles is studied both in flavor symmetry keeping or breaking cases.
- The data prefer the symmetry breaking case.
- The identical mixing angle is fitted to be 6.88°.
- In our TDA approach, the case without E_3 is more preferred.
- More observables, including transverse decay asymmetries, can be predicted in TDA.
- Decays involving Λ^0 / Σ^0 can not be fitted well, requiring a further study.