PID options for SCTF	FARICH R&D	FDIRC R&D	Front-End electronics	Summary
000	000	0	0	0

R&D for SCT detector PID

Alexander Barnyakov¹ Victor Bobrovnikov¹ Sergey Kononov¹ Alexander Daniluyk² Anton Shalygin² Michael Düren³ Avetik Hayrapetyan³ Mustafa Schmidt³ Michael Traxler⁴ Hasim Kayan⁴ ...

¹BINP & NSU, Novosibirsk, Russia

²BIC, Novosibirsk, Russia

³JLU, Giessen, Germany

⁴GSI, Darmstadt, Germany

17th November 2020

PID options for SCTF	FARICH R&D	FDIRC R&D	Front-End electronics	Summary
●○○		o	O	O

PID options for SCTF

Several PID techniques were considered for SCTF detector:

- FARICH (Focusing Aerogel RICH)
- ASHIPH (Aerogel SHifter PHotomultiplier) aerogel threshold Cherenkov counters
- ToF+ToP
- FDIRC (Focusing DIRC)

Comparison of these options based on prototype tests and simulation results of 2018 were performed^a.

R&D on **FARICH** and **FDIRC** options are carried out at BINP and Giessen Univ.

^aJINST 15 (2020) C 04032 EPJ WoC 212 (2019) 01012

cluster counting — up to 220 MeV/c.

For P \geq 220 MeV/c a dedicated PID system is need

FARICH R&D 000	FDIRC R&D o	Front-End electronics O	Summary O
	FARICH R&D 000	FARICH R&D FDIRC R&D 000 0	FARICH R&D FDIRC R&D Front-End electronics

FARICH option FARICH method

- Increase N_{pe} without σ_{Θ_c} degradation;
- μ/π -separation $\sim 5\sigma$ (1 GeV/c) demonstrated in beam tests;

FPGA or ASIC based FEE

R&D for SCT detector PID

PID options for SCTF	FARICH R&D	FDIRC R&D o	Front-End electronics O	Summary O

FDIRC option

- Inspired by design from BaBar, SuperB, Belle II, and PANDA
- For PANDA $\sigma_{\Theta_c}\approx 2.1~{\rm mrad/track}$ is achieved for $\pi/{\rm K}$ with 3σ @4 GeV/c
- For SCTF $\sigma_{\Theta_c} \approx 0.7 \text{ mrad/track}$ is required for μ/π with 3σ @1.5 GeV/c

Main parameters:

- Synthetic fused silica:
 Barrel: 2×16 plates 110×32×1.5 cm
 Endcap: 2×4 sectors 1÷2 cm thick
- Focusing optics: innovative rad-hard 3-layer spherical lens
- MCP-PMT or SiPM with $\sigma_t \leq 100$ ps **Barrel**:
 - D2÷3 mm pixel
 - ▶ 2.56÷1.14·10⁵ readout channels

Endcap:

- 16×0.5 mm pixel
- 2.88·10⁴ readout channels

 $\begin{array}{c} 2{\times}16 \text{ plates } 110{\times}32{\times}1.5 \text{ cm}^3\\ \text{and } 2{\times}16 \text{ expansion volumes}\\ 32{\times}20{\times}10 \text{ cm}^3 \end{array}$

PID options for SCTF	FARICH R&D	FDIRC R&D	Front-End electronics	Summary
000	•00	0	0	0

PID options for SCTF	FARICH R&D	FDIRC R&D	Front-End electronics	Summary
000	•00	0	0	0

	Aerogel	PD	^O R	^O R
	Ū		mm	mm
		H12700		
2018ª	op430f61	6×6mm	3.2	3.4±0.15
2010	$5 \times 5 \times 3.5$ cm	ø1 mm	1.96	2.01 ± 0.13
		SIPIVI		
2019 ^b		3×3mm	2.18	2.25±0.0
		SiPM		
2020	op451	3×3mm	1.55	???
	$10 \times 10 \times 3.5 \text{cm}$			

^a NIMA 952 (2020) 162247 ^b JINST 15 (2020) 10, C10014

MC simulation results for SiPM (SensL,3×3 mm)

R&D for SCT detector PID

A.Barnyakov, BINP

_MC

-TB

PID options for SCTF	FARICH R&D	FDIRC R&D	Front-End electronics	Summary
000	•00	0	0	0

MC simulation results for SiPM (SensL,3×3 mm)

 $\sigma_R^{\rm MC}$ σ_R^{TB} Aerogel PD mm mm H12700 $6 \times 6 \, \text{mm}$ 3.2 3.4 ± 0.15 op430f61 2018^a 1 96 2.01 ± 0.18 $5 \times 5 \times 35$ cm ø1 mm SiPM 2019^b $3 \times 3 \, \text{mm}$ 2.18 2.25 ± 0.09 SiPM op451 2020 $3 \times 3 \, \text{mm}$ 1.55 ??? $10 \times 10 \times 3.5$ cm SiPM $n_{max} = 1.05$ Goal $3 \times 3 \, \text{mm}$ 1 45 $20 \times 20 \times 3.5$ cm

^a NIMA 952 (2020) 162247

^b JINST 15 (2020) 10, C10014

R&D for SCT detector PID

000 00 0 0	PID options for SCTF	FARICH R&D	FDIRC R&D	Front-End electronics	Summary
	000	•00	0	0	0

	Aerogel	PD	σ_R^{MC}	σ_R^{TB}
	Ū		mm	mm
-		H12700		
2018ª	op430f61	6×6mm	3.2	3.4±0.15
2010	5×5×3.5 cm	ø1 mm	1.96	2.01 ± 0.18
		SiPM		
2019 ^b		3×3mm	2.18	2.25 ± 0.09
		SiPM		
2020	op451	3×3mm	1.55	777
	$10 \times 10 \times 3.5 \text{cm}$	0,10	2.00	
		SiPM		
Goal	$n_{max} = 1.05$ 20×20×3.5 cm	3×3mm	1.45	

^a NIMA 952 (2020) 162247

^b JINST 15 (2020) 10, C10014

It seems today we are very close to desirable σ_R !

R&D for SCT detector PID

PID options for SCTF	FARICH R&D	FDIRC R&D	Front-End electronics	Summary
	○●○	o	O	O

Aerogel with increased n

- Proposed FARICH system has rather high threshold ($P_{\pi} \sim 450 \text{MeV}/c$)
- The higher *n*, the lower transparency of aerogel samples.
- Two approaches to increase *n* are developed in Novosibirsk.

PID options for SCTF	FARICH R&D	FDIRC R&D	Front-End electronics	Summary
	○●○	o	0	O

Aerogel with increased n

- Proposed FARICH system has rather high threshold ($P_{\pi} \sim 450 \text{MeV}/c$)
- The higher *n*, the lower transparency of aerogel samples.
- Two approaches to increase *n* are developed in Novosibirsk.

Dimethylformamide $(CH_3)_2NC(O)H$

PID options for SCTF	FARICH R&D	FDIRC R&D	Front-End electronics	Summary
	○●○	o	O	O

Aerogel with increased *n*

- Proposed FARICH system has rather high threshold ($P_{\pi} \sim 450 \text{MeV}/c$)
- The higher *n*, the lower transparency of aerogel samples.
- Two approaches to increase n are developed in Novosibirsk.

R&D for SCT detector PID

PID options for SCTF	FARICH R&D	FDIRC R&D	Front-End electronics	Summary
000	000	0	0	0

Full-scale prototype

Prototype for TBs & CRT:

- photon detector $\sim 21 \times 21$ cm²
- 64×(8×8)=4096 pixels 3×3 mm²
- aerogels up to 20×20 cm²
- aerogel isolated from environment
- squeezed shield for focal distance adjustment (around 20 cm)
- Iiquid cooling system to operate at -30°C (≤5%X₀)

Conceptual design

R&D of FDIRC option

- Main activity today is aimed on optimization of FDIRC design with help of MC simulation (details are in next talk)
- Cosmic Ray Telescope was constructed in Giessen
 - To investigate Cherenkov angle resolution of FDIRC prototypes.
 - To compare different photodetectors (MCP-PMTs, SiPMs) with different radiators (scintillator, plexiglas, aerogel, etc.).
 - Data taking is ongoing.

Run with EDD module is ongoing now

Accumulated plot of ΔT between trigger and SiPM signals with and without radiator (aerogel)

PID options for SCTF	FARICH R&D	FDIRC R&D o	Front-End electronics	Summary O

Front-End electronics

- For both options compact and fast readout electronics is needed
- Two approaches are considered for the moment:
 - ASIC

PID options for SCTF FA	ARICH R&D	FDIRC R&D ○	Front-End electronics	Summary O

Front-End electronics

- For both options compact and fast readout electronics is needed
- Two approaches are considered for the moment:
 - ASIC

• FPGA

TOFPET-II (ASIC)

Pros:

- Ready to use
- $\bullet \sim \!\! 15 \text{ mW/ch}$
- DAQ rate ~480 kHz/channel

Cons:

- No external TRG
- Large cost of upgrade
- R&D of backplane

ROM with 2×TOFPET-II (PetSys) based on FPGA is + 2×PA33xx-WB-08 arrays (KETEK) needed

TOFHiR2 should fit better for the project!

PID options for SCTF	FARICH R&D 000	FDIRC R&D o	Front-End electronics	Summary O

Front-End electronics

- For both options compact and fast readout electronics is needed
- Two approaches are considered for the moment:
 - ASIC

• FPGA FPGA-based TDC

TOFPET-II (ASIC)

Pros:

- Ready to use
- $\bullet \sim \!\! 15 \text{ mW/ch}$
- DAQ rate ~480 kHz/channel

Cons:

- No external TRG
- Large cost of upgrade
- R&D of backplane

ROM with 2×TOFPET-II (PetSys) based on FPGA is + 2×PA33xx-WB-08 arrays (KETEK) needed

TOFHiR2 should fit better for the project!

Four layer stack (GSI design):

+ DAQ + Thresholds

Analog layer: 14-layer PCB Preamplifier circuitry

Power distr. & backplane PCB

R&D for SCT detector PID

PID options for SCTF	FARICH R&D	FDIRC R&D o	Front-End electronics O	Summary •

Summary

- The development of aerogel radiator production is going in Novosibirsk. In 2020 very promising 4-layer focusing aerogel samples were produced, which will be tested with electron beams in 2021.
- Cosmic Ray Telescope was constructed in Giessen to test FDIRC prototypes and investigate photon detectors. Data taking have just started and first results are coming soon.
- Design of a full-scale FARICH prototype has been started at BINP and is to be completed in 2021.
- A compact FPGA-based TDC is being designed at GSI. First version is expected in 2021.