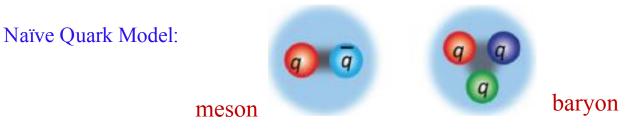
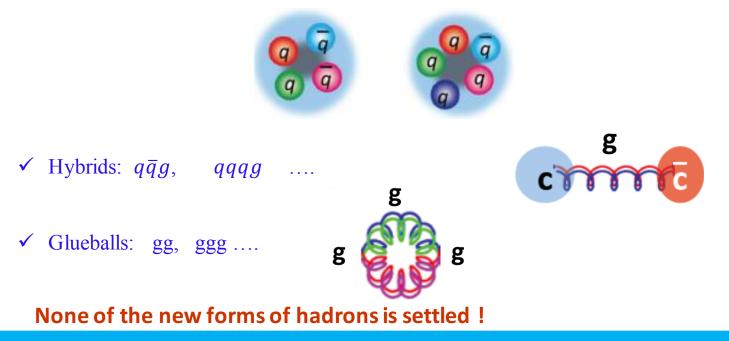
Light Hadron Spectroscopy and Decay at BESIII

Vindhyawasini Prasad (On behalf of the BESIII Collaboration)

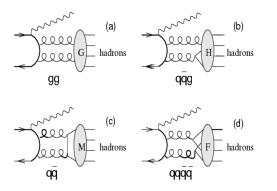

Email: vindy@ustc.edu.cn

Department of Modern Physics University of Science & Technology of China Hefei City, Anhui Province, 23006, China



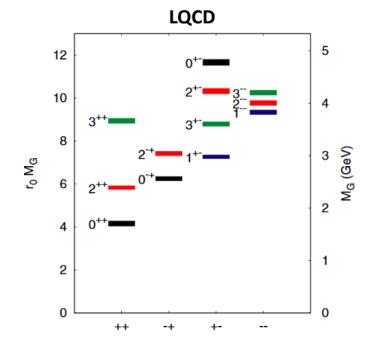
Hadron spectrum

• Conventional hadrons consist of 2 or 3 quarks.



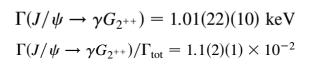
- QCD predicts the new forms of hadrons:
 - ✓ Multi-quark states: Number of quarks \geq 4

Hunting the new form of hadrons


• Charmonium decays provide ideal ground for light glueballs and hybrids

> Clean high statistics data samples from e^+e^- annihilation

> $I(J^{PC})$ filter in strong decays of charmonium


Phys. Rev. D73 (2006) 014516

• Glueballs can mix with ordinary $q\bar{q}$ states Predicted large branching fractions for glueballs in J/ ψ radiative decays $\Gamma(J/\psi \rightarrow \gamma G_{0^{++}}) = \frac{4}{27} \alpha \frac{|\vec{p}_{\gamma}|}{M_{1/\psi}^2} |E_1(0)|^2$

$$\Gamma_{\rm tot} = 92.9(2.8) \text{ keV}$$

 $\Gamma(J/\psi \rightarrow \gamma G_{0^{++}}) = 0.35(8) \text{ keV}$

 $\Gamma(J/\psi \to \gamma G_{0^{++}})/\Gamma_{\text{tot}} = 3.8(9) \times 10^{-3}$ [Phys. Rev. Lett. **110**, 021601 (2013)]

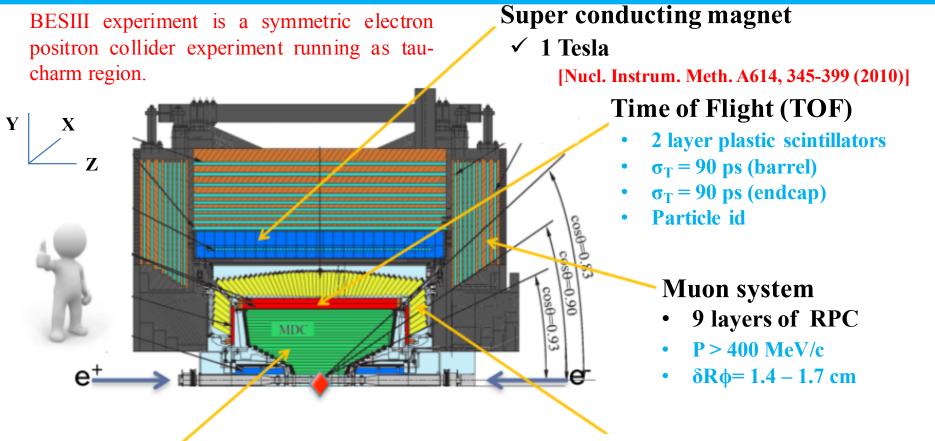
BESIII is an ideal laboratory to study the properties of these exotic states!

[Phys. Rev. Lett. 111, 091601 (2013)]

14/07/2018

BEPCII/BESIII at IHEP (Beijing)

2004: start BEPCII construction 2008: test run of BEPCII 2009-now: BEPCII/BESIII data taking

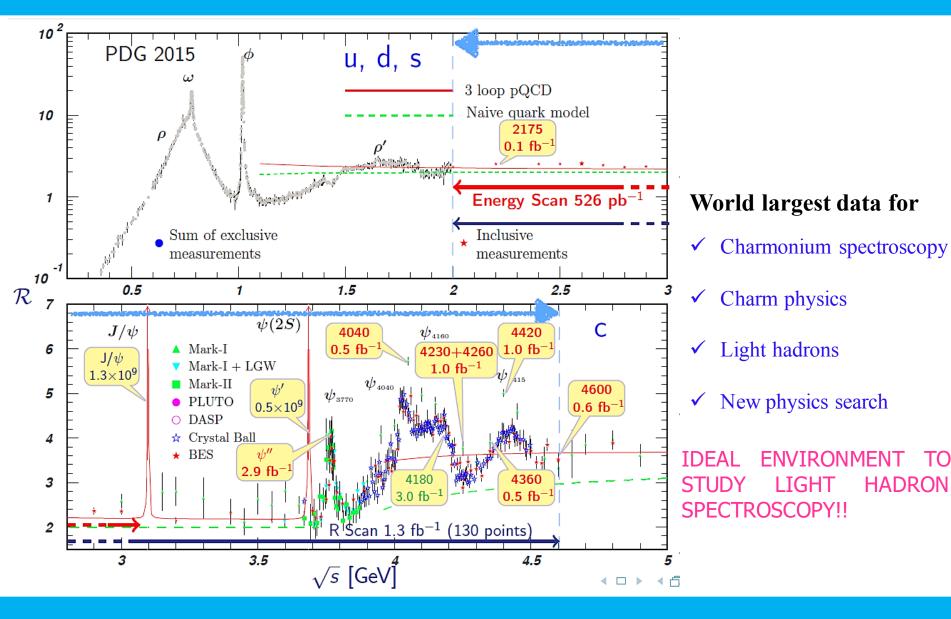

BES III detector

BEPCII:

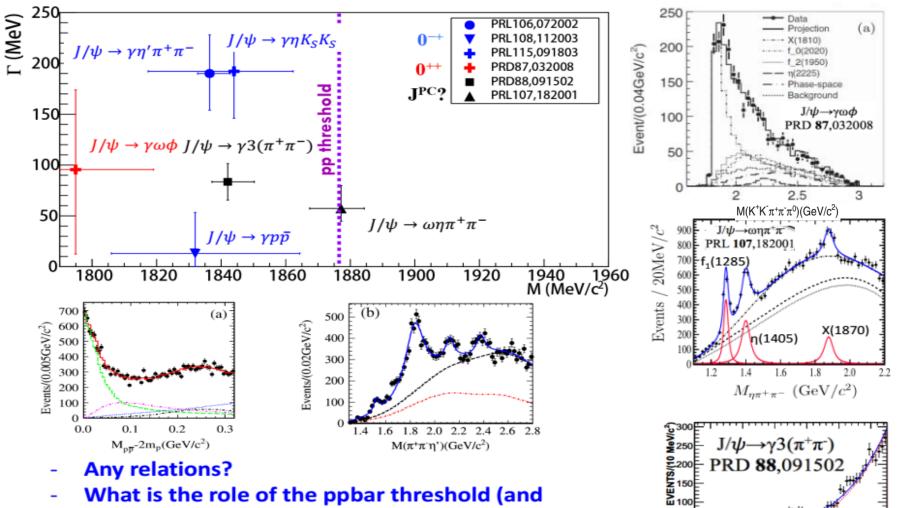
Beam energy: 1.0-2.3 GeV Energy spread: 5.16×10^{-4} Design luminosity 1 x 10^{33} /cm²/s @ ψ (3770) Achieved luminosity: 1.01 x 10^{33} /cm² (05.04.2016)

LINA

BESIII Experiment


Multilayer drift chamber (MDC)

- He/C₃H₈ (60/40)
- 43 layers
- Momentum resolution $\sigma_p/p = 0.5\%$ @ 1 GeV
- Spatial resolution $\sigma_{xy} = 130 \ \mu m$.


Electromagnetic calorimeter (EMC) (CsI(Tl))

- \rightarrow 6240 crystals overall
- $\sigma(E)/E = 2.5\%$
- $\sigma_{Z,\phi}(E) = 0.5 0.7 \text{ cm}$

BESIII Dataset

Some important BESIII results presented in Fang Liu **FPCP 2016 previous FPCP conferences** Tianjue Min FPCP 2017

- other thresholds)?
- Patterns in the production and decay modes

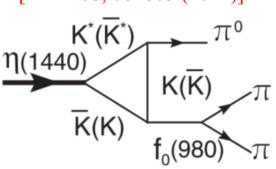
Some of the new results produced after FPCP2017 are shown in the next slides

2.1

1.8

1.9 M(3(π⁺π⁻)) (GeV/c²)

1.7

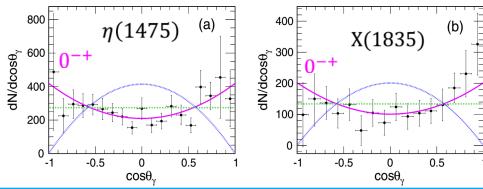

η(1405)/η(1475) puzzle

- → $\eta(1405)/\eta(1475)$ are two different states or one 0⁻⁺ state in different decay modes?
- MARK III reported two states mixture in the 1400 MeV/c² region for the first time in the PWA of $J/\psi \rightarrow K_S^0 K^{\pm} \pi^{\mp}$.
 - ✓ Described by $a_0(980)\pi$ and K^*K amplitudes [Phys. Rev. Lett. 65, 2507 (1990)]
- Confirmed by Crystall Barrel and Obelix [Phys. Lett. B 545, 261 (2002)]
- No observation by L3 on $\eta(1405)$. Both states not found by CLEO
- ✓ First observation of $\eta(1405) \rightarrow f_0(980)\pi^0$ by BESIII in J/ $\psi \rightarrow \gamma 3\pi$ decay with a narrow resonance $f_0(980)$ and isospin violation. [PRL 108, 182001 (2012)]

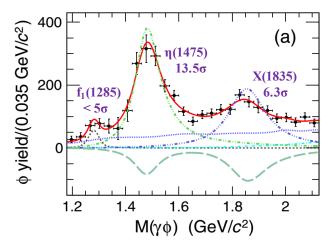
According to triangle singularity, the shift of the peak positions in different channels occurs via the intermediate $K^*\bar{K} + c.c$ rescattering [PRL 108, 081803 (2012)]

η(1405)andη(1475)couldbeonestateappearedasdifferentlineshapeindifferentchannel

Observation of $\eta(1475)$ and X(1835) in J/ $\psi \rightarrow \gamma \gamma \phi$ ($\phi \rightarrow K^+K^-$)


Phys. Rev. D 97, 051101(R) (2018)

- Two resonance structures corresponding to $\eta(1475)$ and X(1835) mass positions are observed in the ϕ yield versus M($\gamma \phi$) data
 - ✓ Angular distributions are in favor of 0^{-+}
 - ✓ Measured M and Γ are consistent with $\eta(1475)$ and X(1835)


Solution	Resonance	$m_R \; ({\rm MeV}/c^2)$	Γ (MeV)	$B (10^{-6})$
I	$\eta(1475)$	$1477\pm7\pm13$	$118\pm22\pm17$	$7.03 \pm 0.92 \pm 0.91$
	X(1835)	$1839\pm26\pm26$	$175\pm57\pm25$	$1.77 \pm 0.35 \pm 0.25$
Π	$\eta(1475)$	$1477\pm7\pm13$	$118\pm22\pm17$	$10.36 \pm 1.51 \pm 1.54$
	X(1835)	$1839\pm26\pm26$	$175\pm57\pm25$	$8.09 \pm 1.99 \pm 1.36$

- ► $\Gamma(\eta(1405/1475) \rightarrow \gamma \rho): \Gamma(\eta(1405/1475) \rightarrow \gamma \phi)$ is slightly larger than the prediction of 3.8:1 in PRD 87, 014023 (2013) for the case of a single pseudoscalar state.
- > Interpretation of $\eta(1475)/X(1835) \rightarrow \gamma \phi$
 - ✓ Sizable $s\bar{s}$ component

Solution1: constructive interference

Solution II: destructive interference $\begin{pmatrix} 400 \\ 9 \\ 300 \\ 200 \\ 100 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 1.8 \\ 2 \\ 1.8 \\ 2 \\ 1.8 \\ 2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 1.8 \\ 1.8 \\ 2 \\ 1.8 \\ 1.8 \\ 2 \\ 1.8 \\ 1.8 \\ 2 \\ 1.8 \\ 1.8 \\ 2 \\ 1.8 \\ 1.8 \\ 2 \\ 1.8 \\ 1.8 \\ 2 \\ 1.8 \\ 1.8 \\ 1.8 \\ 2 \\ 1.8 \\ 1.8 \\ 1.8 \\ 1.8 \\ 1.8 \\ 2 \\ 1.8 \\$

 $M(\gamma\phi)$ (GeV/c²)

Observation of X(2370) in $J/\psi \rightarrow \gamma K K \eta'$

- > The X(2120) and X(2370) states observed in $\pi\pi\eta'$ invariant mass spectrum through $J/\psi \rightarrow \gamma\pi\pi\eta'$
 - ✓ Possible pseudoscalar glueball candidates

► Prediction: $\frac{\Gamma_{G \to \eta' KK}}{\Gamma_G^{Tot}} = 0.011, \frac{\Gamma_{G \to \eta' \pi \pi}}{\Gamma_G^{Tot}} = 0.090$ with M(G)=2.37 GeV/c² [PRD 87, 054036(2013)]

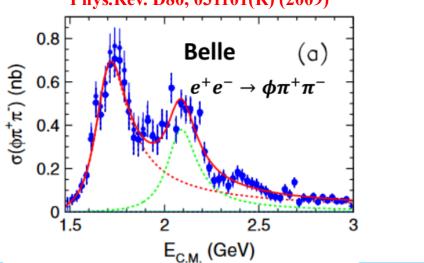
- Looking into this channel to support Glueball hypothesis
- Simultaneous fit is performed on all the four decay modes: $J/\psi \rightarrow \gamma K^+ K^- \eta'$ and $J/\psi \rightarrow \gamma K^0_S K^0_S \eta'$, each η' candidate has two modes $\eta \pi^+ \pi^-$ and $\gamma \pi^+ \pi^-$.

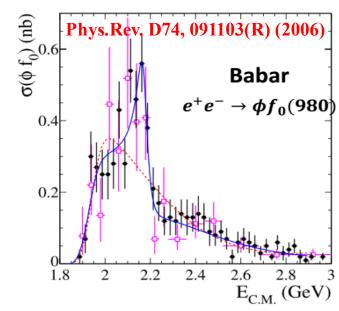
- M and Γ consistent with the X(2370) signal, significance: 7.6 σ .
- No evidence of X(2120) is found and set the upper limit at 90% C.L.

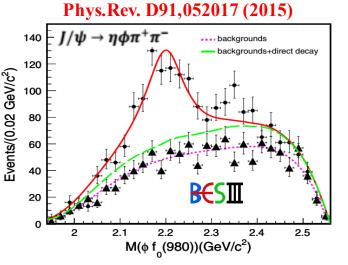
Preliminary

Search for strangeonium-like Z_s

Y(2175) was observed by BaBar, and confirmed by Belle, BESII and **BESIII**

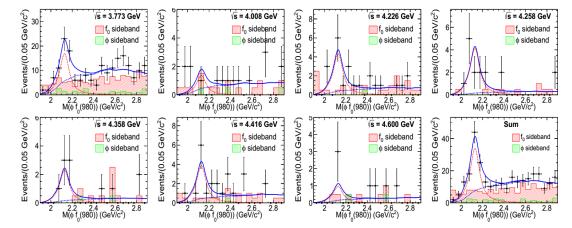

A candidate for a tetraquark state, a strangeonium hybrid state, \succ or a conventional $s\bar{s}$ state

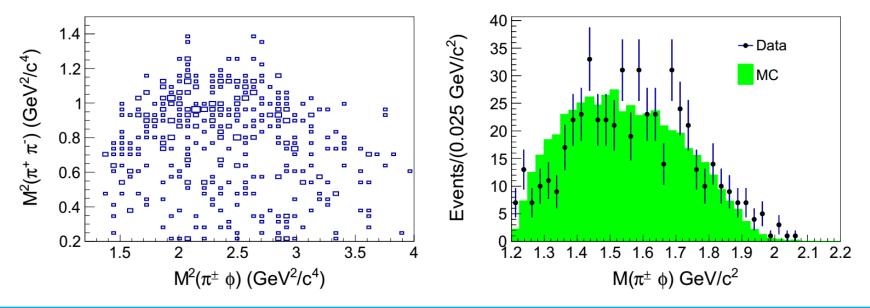

Unique place to search for the Z_S:


 \succ Y(2175) is regarded as strangeonium-like state analogous to Y(4260)

>
$$Z_C \rightarrow \pi^{\pm} J/\psi$$
 > $Z_S \rightarrow \pi^{\pm} \phi$ ($M_{Z_S} \approx 1.4 \text{ GeVc}^2$)

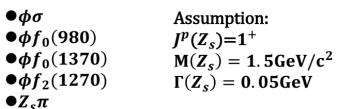
Phys.Rev. D80, 031101(R) (2009)

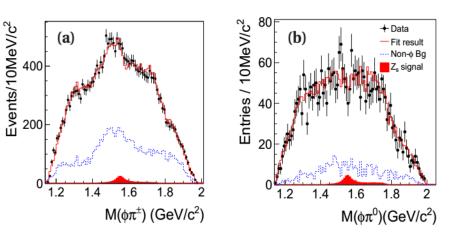


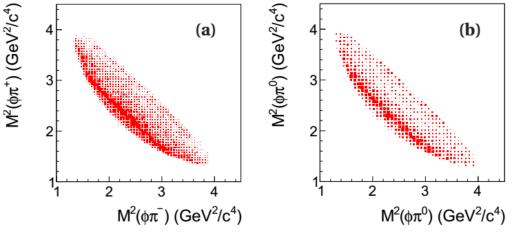


Observation of $e^+e^- \rightarrow \eta Y(2175)$ at $\sqrt{s} = 3.7 \text{ GeV}$ arXiv:1709.04323 (2017) submitted to PRD

- ► Perform the search for Y(2175) resonance in the process $e^+e^- \rightarrow \eta \phi f_0(980)$ using the data collected at the centerof-mass energies between 3.7 and 4.6 GeV.
- Combined significance for Y(2175) signal is observed to be larger than 10σ .

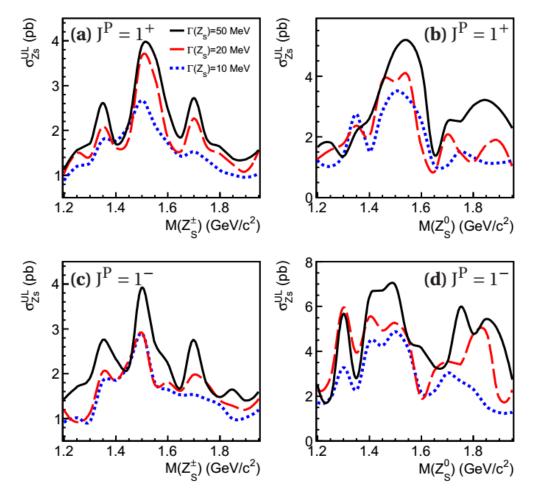



> No significant Z_S spectrum is found in $\phi \pi^{\pm}$ spectrum.


Search for Z_S at 2.125 GeV arXiv:1801.1038 (2018) submitted to PRL

- ▶ Perform the search for Z_S via $e^+e^- \rightarrow \phi \pi^+ \pi^- (\phi \pi^0 \pi^0)$ using 108 pb⁻¹ data collected at $\sqrt{s} = 2.125$ GeV.
- > PWA is performed

▶ No clear Z_S signal is observed in the $\phi\pi$ mass spectrums around 1.4 GeV/c².



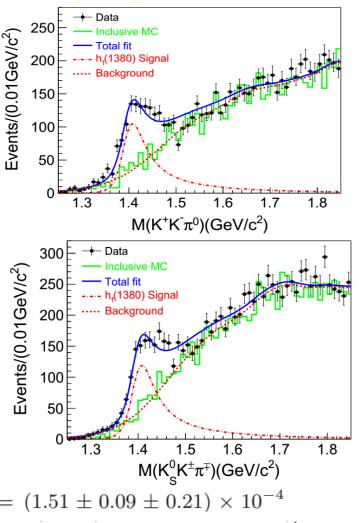
Systematic uncertainty

Source	Z_s^{\pm}	$\varphi \pi^+ \pi^-$	Z_s^0	$\phi \pi^0 \pi^0$
MDC tracking	4.5	4.5	1.5	1.5
Photon detection			4	4
K PID	3	3	3	3
π PID	2	2		
Kinematic fit	2.1	2.1	0.1	0.1
π^0 mass window			0.1	0.1
K ⁺ K ⁻ mass window	1.5		1.5	
Fitting range		0.1		1.4
Signal shape		1.5		2.3
Background shape		1.3		2.0
Model uncertainty		0.8		1.3
Branching fractions	1.1	1.1	1.1	1.1
Integrated luminosity	0.7	0.7	0.7	0.7
ISR	3.1	3.1	1.2	1.2
Total	7.2	7.3	5.7	6.5

Search for Z_S at 2.125 GeV arXiv:1801.1038 (2018) submitted to PRL

- 90% C.L. upper limits on the cross-section for Z_S production are determined.
 - ✓ Different assumptions of mass, width and J^P of Z_S
- > In addition, the cross-sections of $e^+e^- \rightarrow \phi \pi^+\pi^-$ and $e^+e^- \rightarrow \phi \pi^0\pi^0$ at 2.123 GeV/c² are measured to be (343.0±5.1±25.1) pb and (208.3±7.6±13.5) nb, respectively.

Observation of $h_1(1380)$ in $J/\psi \rightarrow \eta' KK\pi$


- Experimentally, the state h₁(1380) has been observed by LASS [PLB 201, 573 (1988)] and Crystal Barrel [PLB 415, 280 (1997)] collaborations.
- ► Reconfirmed by BESIII through $\psi(3686) \rightarrow \gamma \chi_{cJ}$ (J=1,2), $\chi_{cJ} \rightarrow \phi h_1(1380), h_1(1380) \rightarrow K^*(892)\bar{K}.$

[PRD **91**, 112008 (2015)]

- ▶ Perform the simultaneous fit to the M($K^*(892)\overline{K}$) in $K^+K^-\pi^0$ and $K^0_SK^\pm\pi^\mp$ modes.
- > Observation of $h_1(1380)$ in $J/\psi \rightarrow \eta' h_1(1380)$ (>10 σ).
- > The quark contents of the $h_1(1380)$ is predominantly $s\overline{s}$:
 - ✓ Mixing angle between $h_1(1170)$ and $h_1(1380):35.9^\circ \pm 2.6^\circ$ [PLB **707**, 116 (2012)]

Branching fractions:

 $M=(1423.2 \pm 2.1 \pm 7.3) MeV/c^{2}$ $\Gamma=(90.3 \pm 9.8 \pm 17.5) MeV/c^{2}$

 $\mathcal{B}(J/\psi \to \eta' h_1(1380)) \times \mathcal{B}(h_1(1380) \to K^*(892)^+ K^- + c.c.) = (1.51 \pm 0.09 \pm 0.21) \times 10^{-4}$ $\mathcal{B}(J/\psi \to \eta' h_1(1380)) \times \mathcal{B}(h_1(1380) \to K^*(892)\bar{K} + c.c.) = (2.16 \pm 0.12 \pm 0.29) \times 10^{-4}$

BR difference indicates the isospin symmetry violation

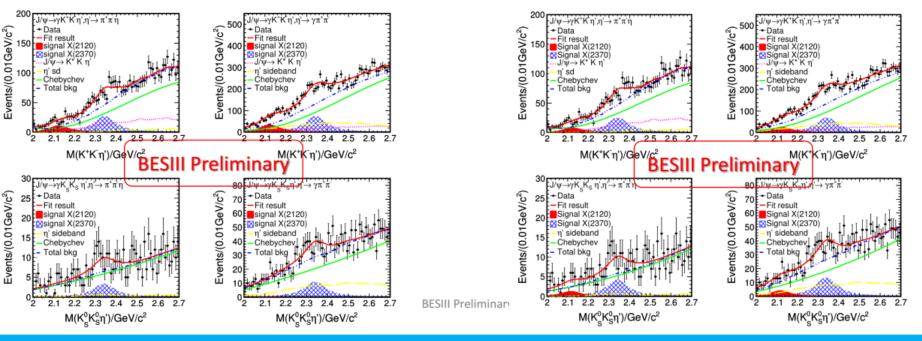
Summary and future prospects

- BESIII has been operating successfully since 2008, and will continue to collect data for the next five years (at least).
- Excellent laboratory to study the light Hadron spectroscopy and many other physics processes in the tau-charm region.
 - ✓ High statistics
 - ✓ Low backgrounds
- Many interesting results have been produced by the BESIII recently, and only few of them are reported in this talk.
- BESIII has collected around 4.6 billion additional J/ψ events this year, and will collect 4.1 billion J/ψ events next year (total statistics of the data would be 10 billion J/ψ events).
- More results are expected to come with this new J/ψ data in the near future.

Thank you!

14/07/2018

Back up Slide


14/07/2018

Observation of X(2370) in J/\psi \rightarrow \gamma K K \eta'

Upper limit(UL) of Branching fraction of $J/\psi \rightarrow \gamma X(2120) \rightarrow \gamma \eta' K \overline{K}$

- Simultaneous fit is performed.
- Signal and background treatment are similar with the simultaneous fit of the X(2370).
- The mass and width of the X(2120) are fixed on BESIII results
- The mass and width of the X(2370) are fixed on the results obtained in our analysis.
- The statistical significance of the X(2120) is 2.2σ .
- Fitting results when calculating the UL of $B(J/\psi \rightarrow \gamma X(2120) \rightarrow \gamma K^+K^-\eta') < 1.48 \times 10^{-5}$ at 90% C. L.

• Fitting results when calculating the UL of $B(J/\psi \rightarrow \gamma X(2120) \rightarrow \gamma K_s^0 K_s^0 \eta') < 4.57 \times 10^{-6}$ at 90% C. L.

	Mass GeV/c ²	Width GeV
X(2120)	2.122	0.083
X(2370)	2.343	0.118

Preliminary