

Institute of High Energy Physics Chinese Academy of Sciences

The polarization of hyperons at BESIII

Ronggang Ping

Institute of High Energy Physics, CAS pingrg@ihep.ac.cn

Workshop of the Baryon Production at BESIII, 14-16 Sept. 2019, USTC, Hefei 1

Beijing Electron Positron Collider (BEPC)

beam energy: 1.0 – 2.3 GeV

2004: started BEPCII upgrade, BESIII construction 2008: test run 2009 - now: BESIII physics run

LINAC

• 1989-2004 (BEPC):

L_{peak}=1.0x10³¹ /cm²s

• 2009-now (BEPCII):

L_{peak}=1.0x10³³/cm²s

BESIII $J/\psi, \psi'$ data sets

J/ψ : Total 10.047 billion J/ψ decays ψ' : 448 million decays

Hyperon pair production at BESIII

• $e^+e^- \rightarrow \gamma^* \rightarrow \Lambda \overline{\Lambda}, \Sigma \overline{\Sigma}, \Xi \overline{\Xi}, \Omega \overline{\Omega}, \Lambda_c^+ \overline{\Lambda}_c^-, @ \sqrt{s} = 2.0 \sim 4.6 \text{ GeV}, \text{ or update for } \Lambda_c^+ \overline{\Sigma}_c^-, \Sigma_c \overline{\Sigma}_c$

Role of polarization physics

Probing of spin degree freedom
 Test the dynamic of SM and low energy hadron interaction

Existant exp. : RHIC, Jlab, GRAAL, CERN and DESY Spin observable, spin-dependent structure function and parton distribution Spin crisis at eighties

- BEPCII/BESIII, unpolarized beam, inaccessible polarization of final state by BESIII
 - Polarized beam for post-BEPCII options, CPV in tau decay, Hyperon weak decay,.....
 - > Useful tool: transverse polarization of hyperon, spontaneous production at e^+e^- collision
 - > $\Lambda \rightarrow p\pi^-$ decay plays important role in particle physics

Transverse polarization (TP) of baryons in e^+e^- collisions

Time likespin ½ baryon FFs:

Dubnickova, Dubnicka, Rekalo Nuovo Cim. A109 (1996) 241 W. Lu, et.al., Phys.Lett., B368, 261 (1996) Gakh, Tomasi-Gustafsson Nucl.Phys. A771 (2006) 169 Czyz, Grzelinska, Kuhn PRD75 (2007) 074026

FäldtEPJ A51 (2015) 74; EPJ A52 (2016)141 Fäldt, G. & Kupsc, A, Phys. Lett. B 772 (2017) 16

$$\Gamma^{e}_{\mu}(k_1,k_2) = -ie_{\psi}\gamma_{\mu}$$

$$\Gamma^{\Lambda}_{\mu}(p_1, p_2) =$$

$$-ie_g \left[G_M^{\psi} \gamma_{\mu} - \frac{2M}{Q^2} (G_M^{\psi} - G_E^{\psi}) Q_{\mu} \right]$$

Transverse polarization of baryons in e^+e^- collisions

 $\Lambda \rightarrow p\pi^-$ as polarimeter

$$\frac{dN}{d\Omega} = \frac{1}{4\pi} \left(1 + \alpha_{\Lambda} \vec{P} \cdot \hat{q} \right) = \frac{1}{4\pi} \left(1 + \alpha_{\Lambda} P_{\Lambda} \cos \theta_{p} \right)$$

Lee-Yang parameters:

C- and P- transformation

$$\alpha_{\Lambda} = \frac{\left|\mathbf{B}_{+}\right|^{2} - \left|\mathbf{B}_{-}\right|^{2}}{\left|\mathbf{B}_{+}\right|^{2} + \left|\mathbf{B}_{-}\right|^{2}}, \alpha_{\overline{\Lambda}} = \frac{\left|\overline{\mathbf{B}}_{+}\right|^{2} - \left|\overline{\mathbf{B}}_{-}\right|^{2}}{\left|\overline{\mathbf{B}}_{+}\right|^{2} + \left|\overline{\mathbf{B}}_{-}\right|^{2}}$$

CP invariance:
$$\overline{\mathbf{B}}_{-\lambda_{p}} = \eta_{\Lambda}\eta_{p}\eta_{\pi}(-1)^{s_{\Lambda}-s_{p}-s_{\pi}}\mathbf{B}_{\lambda_{p}} = -\mathbf{B}_{\lambda_{p}}$$

If CP invariance:

 $\alpha_{\Lambda} = -\alpha_{\overline{\Lambda}}$

CP-odd observables

 \Box A_{Λ} at 10⁻⁵ level by CKM matrix, PDG: 0.006 \pm 0.021

Asymmetries B, B' require knowledge of both parent and daughter polarization

Proton polarization from $\Lambda ightarrow p\pi^-$

$$\vec{P}_{p} = \frac{(\alpha + \vec{P}_{\Lambda} \cdot \hat{q})\hat{q} + \beta (\vec{P}_{\Lambda} \times \hat{q}) + \gamma \hat{q} \times (\vec{P}_{\Lambda} \times \hat{q})}{(1 + \alpha \vec{P}_{\Lambda} \cdot \hat{q})}$$

- If $P_{\Lambda} = 0$ then $P_{p} = \alpha P_{\Lambda} \cdot q$
- T odd transverse polarization $\beta \neq 0$
- If CP is conserved :

$$\alpha = -\overline{\alpha}, \ \beta = -\overline{\beta},$$
$$\gamma = \overline{\gamma} \text{ and } \Gamma = \overline{\Gamma}$$

Previous Measurements

2018 PDG list

$lpha_- \ \mathsf{FOR} \ \mathbf{\Lambda} o oldsymbol{p} oldsymbol{\pi}^-$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.642 ± 0.013	OUR AVERAGE				
$0.584\ {\pm}0.046$	8500	ASTBURY	1975	SPEC	
$0.649\ {\pm}0.023$	10325	CLELAND	1972	OSPK	
0.67 ± 0.06	3520	DAUBER	1969	HBC	From Ξ decay
$0.645\ {\pm}0.017$	10130	OVERSETH	1967	OSPK	\varLambda from $\pi^- p$
0.62 ± 0.07	1156	CRONIN	1963	CNTR	\varLambda from $\pi^- p$

 $lpha_+ \ {\sf FOR} \ {\overline \Lambda} o {\overline p} \pi^+$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.71 ± 0.08	OUR AVERAGE				
$-0.755 \pm 0.083 \pm 0.063$	pprox 8.7k	ABLIKIM	2010	BES	$J/\psi ightarrow \Lambda \overline{\Lambda}$
-0.63 ± 0.13	770	TIXIER	1988	DM2	$J/\psi ightarrow \Lambda \overline{\Lambda}$

Most earlier measurement on α_{-}

- CNTR exp., $\pi^- + p \rightarrow \Lambda + K^0$
- Unpolarized $\Lambda \rightarrow p\pi^-$
- Proton polarization measured with carbon-plate spark chamber

 $W(\psi) = 1 + \alpha \, S \sin \epsilon \, \cos \psi$

Phys.Rev. 129 (1963) 1795-1807

FIG. 1. Schematic diagram showing arrangement of apparatus. An example of an event has been sketched in.

$$\alpha = \frac{2}{\pi} \frac{1}{\langle S \rangle \langle \sin \epsilon \rangle} \frac{N_{+} - N_{-}}{N_{+} + N_{-}},$$

1156 events $\langle S \rangle = 0.565$ $\langle \sin \epsilon \rangle = 0.84$, $\alpha = 0.62$.

14

PS185 at LEAR : $p\overline{p} \rightarrow \Lambda\overline{\Lambda}$

$\mathsf{DM2}: e^+e^- \to \mathrm{J}/\psi \to \Lambda\overline{\Lambda}$

- 1847 $\Lambda \overline{\Lambda} \rightarrow p \pi^- \bar{p} \pi^+$ from 8.6× $10^6 e^+ e^- \rightarrow J/\psi$
- No explicit assumption about Λ and $\overline{\Lambda}$ polarization needed
- Not consider the transverse polarization of Λ and $\overline{\Lambda}$

Fixing
$$\alpha_{\Lambda} = 0.642$$
 and fit yields
 $\alpha_{\overline{\Lambda}} = -0.63 \pm 0.13.$
 $\Rightarrow A_{\Lambda} = 0.01 \pm 0.10$

Hyperon decay parameters @ BESIII

$$e^+e^-
ightarrow J/\psi
ightarrow \Lambda \overline{\Lambda}
ightarrow p \overline{p} \pi^+ \pi^-$$

Event selection:

✓ No PID request for charged tracks
 ✓ Λ/Λ̄ reconstructed with second vertex fit
 ✓ Events reconstructed with kinematic fit

Hyperon decay parameters @ BESIII

$$e^{+}e^{-} \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda} \rightarrow p \overline{p} \pi^{+} \pi^{-}$$
G. Faldt and A. Kupsc
PLB,772, 16 (2017)
EPJA, 52, 141 (2016)
EPJA, 51, 74 (2015).

$$\frac{d\sigma}{d\Omega} \propto T_{0} + \sqrt{1 - \alpha_{J/\psi}^{2}} \sin(\Delta)(\alpha_{\Lambda} T_{3} + \alpha_{\overline{\Lambda}} T_{4})$$

$$+ \alpha_{\Lambda} \alpha_{\overline{\Lambda}} [T_{1} + \sqrt{1 - \alpha_{J/\psi}^{2}} \cos(\Delta) T_{2} + \alpha_{J/\psi} T_{5}],$$

$$T_{0}: \text{ angular distribution of } \Lambda \text{ and } \overline{\Lambda}$$

$$T_{3}, T_{4}, \text{ transverse polarization}$$

$$y_{1}$$

$$e^{-J/\psi} \Lambda$$
G. Faldt and A. Kupsc
PLB,772, 16 (2017)
EPJA, 52, 141 (2016)
EPJA, 51, 74 (2015).

$$T_{1}, T_{2}, T_{5}: \text{ spin correlation}$$

$$y_{1}$$

$$e^{-J/\psi} \Lambda$$

 $\bar{\Lambda}$

 \bar{x}

1

¥

 \overline{z}_1

 e^+

$e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda} \rightarrow p \overline{p} \pi^+ \pi^-, \ p \overline{n} \pi^- \pi^0$

Results of simultaneous fit to two data sets

 $\bar{\alpha}_0/\alpha_+$ 0.913 ± 0.028 ± 0.012 -

Systematic uncertainties

- Challenge to estimate detector asymmetry in tracking, and kinematic fit
- Systematic uncertainties well controlled Relative systematic uncertainties (%)

Source	$lpha_\psi$	α_{-}	α_+	\bar{lpha}_0	$\Delta \Phi$
Tracking, π^0 , \bar{n}	1.5	0.1	0.3	0.6	1.1
Kinematic fit	0.2	0.1	0.8	0.6	0.0
Fit method	0.0	0.5	0.4	0.4	0.1
Total	1.5	0.5	0.9	0.8	1.1

• Justify results with $J/\psi \to \Xi^- \overline{\Xi}^+ \to \Lambda \overline{\Lambda} \pi^+ \pi^- \to p \overline{p} 2(\pi^+ \pi^-)$

BESIII, <u>Nature Phys. 15 (2019) 631-634</u> arXiv: 1808.08917

Quick response from PDG2019

α_{-} FOR $\Lambda \rightarrow p\pi^{-}$ 2019 PDG list

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT		
$0.750 \pm 0.009 \pm 0.004$	420k	ABLIKIM	2018AG	BES3	J/ψ to $\Lambda\overline{\Lambda}$		
 We do not use the following data for averages, fits, limits, etc. 							
0.584 ± 0.046	8500	ASTBURY	1975	SPEC			
0.649 ± 0.023	10325	CLELAND	1972	OSPK			
0.67 ± 0.06	3520	DAUBER	1969	HBC	From <i>Ξ</i> decay		
0.645 ± 0.017	10130	OVERSETH	1967	OSPK	$arLambda$ from $\pi^- p$		
0.62 ± 0.07	1156	CRONIN	1963	CNTR	$arLambda$ from $\pi^- p$		

$lpha_+ \; \mathsf{FOR} \; \overline{oldsymbol{\Lambda}} o \overline{oldsymbol{p}} \pi^+$

VALUE	EVTS	DOCUMENT	T ID	TECN	COMMENT		
$-0.758 \pm 0.010 \pm 0.007$	420k	ABLIKIM	2018AG	BES3	J/ψ to $\Lambda\overline{\Lambda}$		
 • • We do not use the following data for averages, fits, limits, etc. • • • 							
$-0.755 \pm 0.083 \pm 0.063$	pprox 8.7k	ABLIKIM	2010	BES	$J/\psi o A\overline{\Lambda}$		
-0.63 ± 0.13	770	TIXIER	1988	DM2	$J/\psi o A\overline{A}$.		

Where does the TP come from?

- From the e⁺/e⁻ beam ?
 X No, BEPC beams unpolarized
- From the e^+/e^- natural polarization when circulating in the BEPCII storage ring ?

X Sokolov-Ternov effects: 4.3 hs $@\psi'$ peak, but beam lifetime ~ 2.0 hs

• From the J/ψ spin transfer ?

✓ Yes, it does from the J/ψ tensor polarization

$$J/\psi$$
 polarization: $\mathcal{P}_z = 0$, $T_{zz} = \frac{1}{\sqrt{6}}$

 Λ transverse polarization:

$$\mathcal{P}_{y} = \sqrt{6} \frac{T_{zz} \sin \theta \cos \theta \sin \Delta \sqrt{1 - \alpha_{\psi}^{2}}}{1 + \alpha_{\psi} \left[\frac{1}{3} + \frac{1}{\sqrt{6}} T_{zz} (1 + 3\cos 2\theta)\right]}$$

 \mathcal{P}_y manifest if $\sin \Delta \neq 0$

$e^+e^- \rightarrow \gamma^* \rightarrow \Lambda \overline{\Lambda} \rightarrow p \bar{p} \pi^+ \pi^-$

 Λ transverse polarization

□ data set: 2.396 GeV, L=66.9 pb⁻¹

555 candidate events
 ΔΦ = 37° ± 12° ± 6°
 Maximum polarization degree is ~30%

Open questions for understading Λ TP

- What physics behind the Λ transverse polarization?
- Is the phase difference Δ predictable in physics?
- What's relationship between the Λ TP and the Λ fragmentation function?
- How to simply understand the Λ TP in naïve quark model?
- How to predict the charmed hyper TP in e^+e^- experiments.

Ongoing polarization analyses at BESIII

- $J/\psi, \psi' \to \Sigma^- \overline{\Sigma}^+$ (talk by Liang Yan)
- $J/\psi \rightarrow \Xi^- \overline{\Xi}^+$ (Ξ, Λ asymmetry par., CP test)
- $\psi' \rightarrow \Omega^- \overline{\Omega}^+$ (polarization analysis)
- $\eta_c \to \Lambda \overline{\Lambda}$ (EPR test)
- $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$ > $\Lambda_c^+ \rightarrow \Lambda \pi^+, \Sigma^+ \pi^0, \Sigma^0 \pi^+, K_S p$, (talk by Binglong Wang)

 $\succ \Lambda_c$ spin

• future baryon program (talk by Andrezj)

Summary

- $\Lambda/\overline{\Lambda}$ transverse polarization significantly observed at BESIII in J/ψ or continuum processes
- BESIII 10 billion J/ψ data provides us chances to access hyperon physics.
- Extension study to charmed hyperon are ongoing.
- Polarized beam in the future super-tau charm facility (STCF) help to improve the precision.

Thanks for your attention!