

# Future hyperon studies at **BES** Andrzej Kupsc

Prospects for baryon spin physics: •  $e^+e^- \rightarrow J/\psi, \psi' \rightarrow B_1\overline{B}_2$  (ground state hyperons): • polarization, hyperon decay parameters •  $e^+e^- \rightarrow J/\psi, \psi' \rightarrow B_1\overline{B}_2V(P)$ : • spectroscopy

### Methods:

- 1. G.Fäldt, AK PLB772 (2017) 16
- 2. E.Perotti, G.Fäldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008
- 3. G. Fäldt, K. Schönning arXiv:1908.04157
- 4. P.Adlarson, AK arXiv:1908.03102

#### USTC 15-16 Sept. 2019 Workshop of the Baryon Production at BESIII

### **Baryon-antibaryon production in** $e^+e^-$ **collisions**

continuum:  $B_2$  $e^{\cdot}$  $B_1$ Baryons  $B_1$  and  $\overline{B}_2$ (spin 1/2, ...)  $\bar{B}_2$  $\bar{B}_1$  $e^{+}$  $V = \gamma, \rho, \omega, \varphi, \dots, J/\psi, \psi(2S), \dots$ Both processes described by two  $J/\psi$  decay: **complex FFs: relative phase**  $\Delta \Phi$  $e^{-}$  $J/\psi$ Cabibbo, Gatto PR124 (1961)1577 ΔΦ  $\bar{B}_2$  $e^+$  $I/\psi$ 

Time like spin <sup>1</sup>/<sub>2</sub> baryon FFs:

Dubnickova, Dubnicka, Rekalo Nuovo Cim. A109 (1996) 241 Gakh, Tomasi-Gustafsson Nucl.Phys. A771 (2006) 169 Czyz, Grzelinska, Kuhn PRD75 (2007) 074026 Fäldt EPJ A51 (2015) 74; EPJ A52 (2016)141

**Charmonia decays:**  $B_2$ Fäldt, AK PLB772 (2017) 16

# **Hyperon-hyperon pair production at BESIII**



#### Thresholds:

- $\Lambda\overline{\Lambda}$ : 2.231 GeV  $\Xi^{0}\overline{\Xi}^{0}$  2.630 GeV
- $\Lambda \overline{\Sigma}^0$  2.308 GeV

 $\Sigma^+\overline{\Sigma}^-$  2.379 GeV ( $\Omega\overline{\Omega}$  3.345 GeV)  $\Sigma^0 \overline{\Sigma}^0$  2.385 GeV  $\Sigma^- \overline{\Sigma}^+$  2.395 GeV  $\Xi^{-}\overline{\Xi}^{+}$  2.643 GeV



## $J/\psi, \psi(2S) \rightarrow B\overline{B}$ Expected number of events at BESIII

 $\mathcal{B}(J/\psi \to p\overline{p}) = (21.21 \pm 0.29) \times 10^{-4}$ 

| decay mode                               | $\mathcal{B}(\text{units } 10^{-4})$ | $lpha_{oldsymbol{\psi}}$ | eff | events               |
|------------------------------------------|--------------------------------------|--------------------------|-----|----------------------|
|                                          |                                      |                          |     | proposal             |
| $J/\psi \to \Lambda \bar{\Lambda}$       | $19.43 \pm 0.03 \pm 0.33$            | $0.469 \pm 0.026$        | 40% | $3200 \times 10^{3}$ |
| $\psi(2S) \to \Lambda \bar{\Lambda}$     | $3.97 \pm 0.02 \pm 0.12$             | $0.824\pm0.074$          | 40% | $650 \times 10^3$    |
| $J/\psi \rightarrow \Xi^0 \bar{\Xi}^0$   | $11.65\pm0.04$                       | $0.66 \pm 0.03$          | 14% | $670 \times 10^3$    |
| $\psi(2S) \to \Xi^0 \bar{\Xi}^0$         | $2.73\pm0.03$                        | $0.65\pm0.09$            | 14% | $160 \times 10^3$    |
| $J/\psi \to \Xi^- \bar{\Xi}^+$           | $10.40\pm0.06$                       | $0.58\pm0.04$            | 19% | $810 \times 10^3$    |
| $\psi(2S) \rightarrow \Xi^- \bar{\Xi}^+$ | $2.78\pm0.05$                        | $0.91 \pm 0.13$          | 19% | $210 \times 10^{3}$  |

 $\mathcal{B}(\psi' \to \Omega^- \overline{\Omega}^+) = (0.52 \pm 0.04) \times 10^{-4}$  CLEO-c: PRD 96, 092004

PRD 93, 072003 (2016) PLB770,217 (2017) PRD 95, 052003 (2017)

BESIII (Feb 2019): 10<sup>10</sup> J/ψ

BESIII proposal: $3.2 \times 10^9 \psi(2S)$ 



J/ψ

Ecm [GeV]

3.5

 $\Box$  better resolution: at  $J/\psi$  0.9 MeV:  $10^{10} J/\psi$ 

(Nam (pt - 100 MeV) 1000 (Nam - 1000 MeV) (Nam - 1000 MeV) (Nam - 1000 MeV) (Nam - 1000

500

0 2.0

2.2

2.4

2.6

2.8

33

Picture:Wolfgang Gradl & Xiaorong

□ boost of hadronic system may help efficiency

Belle 11, 50/ab, 2027

Belle II, 10/ab, 2023

4.5

# Hyperon-antihyperon pairs from J/ $\psi$ and $\psi$ (2S) decays

Motivations: CP violation, QM tests (entangled system) :

CP Asymmetries in Strange Baryon Decays I. I. Bigi, Xian-Wei Kang, Hai-Bo Li CPC42 (2018) 013101 arXiv:1704.04708 & BESIII Hai-Bo: arXiv:1612.01775



Hyperon decay parameters, hyperon FSI, charmonium decay mechanism,...

Ground state hyperons analyses: MLL fits of angular distributions:

Covariant

formalism

**Ref 1&3** 

- $\Lambda \overline{\Lambda}, \Sigma^+ \overline{\Sigma}^-, (\Sigma^- \overline{\Sigma}^+)$   $\Lambda \overline{\Sigma}^0, \Sigma^0 \overline{\Sigma}^0$
- ΞΞ

Amplitudes for precision BESIII:

$$e^+e^- \to \gamma^* (\to \psi)$$
  
$$\to B_{1/2} \ \overline{B}_{1/2}$$
  
$$\to B_{3/2} \ \overline{B}_{1/2}$$
  
$$\to B_{3/2} \ \overline{B}_{3/2}$$



**Ref 2:** Modular framework for entangled exclusive (DT) distributions with modifiable decay chains, Use correct variables vs amplitudes Weak decays sensitive to the helicity rotation definition



# **Baryon-antibaryon spin density matrix** $e^+e^- \rightarrow B_1\overline{B}_2$

**General two spin** <sup>1</sup>/<sub>2</sub> **particle state**:

$$\rho_{1/2,\overline{1/2}} = \frac{1}{4} \sum_{\mu \overline{\nu}} C_{\mu \overline{\nu}} \sigma_{\mu}^{B_1} \otimes \sigma_{\overline{\nu}}^{\overline{B}_2}$$



$$\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \sin(\Delta \Phi) \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \cos(\Delta \Phi)$$

$$e^{-} B_1 \qquad \theta$$

$$\hat{x}_2 \qquad \hat{y}_2 \qquad e^{+} \hat{z}$$

$$B_2 \qquad \hat{y}_2$$

E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008

# Hyperon decay parameters

# General Partial Wave Analysis of the Decay of a Hyperon of Spin $\frac{1}{2}$

T. D. LEE\* AND C. N. YANG Institute for Advanced Study, Princeton, New Jersey

Phys. Rev. 108 1645 (1957)

s wave parity violating p wave parity conserving

$$\begin{aligned} \alpha_Y &= \frac{2\text{Re}(s^*p)}{|s|^2 + |p|^2} , \ \beta_Y &= \frac{2\text{Im}(s^*p)}{|s|^2 + |p|^2} = \sqrt{1 - \alpha_Y^2} \sin \phi_Y \\ \gamma_Y &= \frac{|s|^2 - |p|^2}{|s|^2 + |p|^2} = \sqrt{1 - \alpha_Y^2} \cos \phi_Y \end{aligned}$$

 $Y \to B\pi: \frac{1}{2} \to \frac{1}{2} \to \frac{1}{2} \to 0$ 



# **Polarization of daughter baryons:**

$$\mathbf{Y} \rightarrow B\boldsymbol{\pi}$$
$$\mathbf{P}_{B} = \frac{(\alpha + \mathbf{P}_{Y} \cdot \widehat{\mathbf{n}})\widehat{\mathbf{n}} + \beta(\mathbf{P}_{Y} \times \widehat{\mathbf{n}}) + \gamma\widehat{\mathbf{n}} \times (\mathbf{P}_{Y} \times \widehat{\mathbf{n}})}{1 + \alpha\mathbf{P}_{Y} \cdot \widehat{\mathbf{n}}} \qquad \text{PDG}$$

$$\mathbf{P}_Y = \mathbf{0} \; \Rightarrow \; \mathbf{P}_B = \alpha \; \widehat{\mathbf{n}}$$

Density matrix for a spin ½ particle in the rest frame:  $\rho_{1/2} = \frac{1}{2} \sum_{\mu=0}^{3} I_{\mu} \sigma_{\mu} = \frac{1}{2} I_{0} \begin{pmatrix} 1 + P_{z} & P_{x} - iP_{y} \\ P_{x} + iP_{y} & 1 - P_{z} \end{pmatrix}$ 

$$\sigma_0 = \mathbf{1}_2, \sigma_1 = \sigma_{\chi}, \sigma_2 = \sigma_{\chi}, \sigma_3 = \sigma_z$$

**Transformation of base matrices:** 

$$\frac{1}{2}^{+} \rightarrow \frac{1}{2}^{+} + 0^{-} e.g. \Lambda \rightarrow p + \pi^{-}$$

**Decay matrices** 

$$\sigma_{\mu} \to \sum_{\nu=0}^{3} a_{\mu,\nu} \sigma_{\nu}^{d}$$

 $4 \times 4$  decay matrix:  $a_{\mu,\nu}$ 

E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008

# Measuring $\alpha$ , $\beta$ , $\gamma$ in the 20<sup>th</sup> century









PHYSICAL REVIEW

VOLUME 129, NUMBER 4

15 FEBRUARY 1963

#### Measurement of the Decay Parameters of the $\Lambda^0$ Particle\*

JAMES W. CRONIN AND OLIVER E. OVERSETH Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received 26 September 1962)

The decay parameters of  $\Lambda^0 \to \pi^- + p$  have been measured by observing the polarization of the decay protons by scattering in a carbon-plate spark chamber. The experimental procedure is discussed in some detail. A total of 1156 decays with useful proton scatters was obtained. The results are expressed in terms of polarization parameters,  $\alpha$ ,  $\beta$ , and  $\gamma$  given below:

> $\alpha = 2 \operatorname{Res} p^* / (|s|^2 + |p|^2) = +0.62 \pm 0.07,$  $\beta = 2 \operatorname{Im} s p^* / (|s|^2 + |p|^2) = +0.18 \pm 0.24$  $\gamma = |s|^2 - |p|^2 / (|s|^2 + |p|^2) = +0.78 \pm 0.06,$

where s and p are the s- and p-wave decay amplitudes in an effective Hamiltonian  $s + \rho \sigma \cdot \mathbf{p} / |\mathbf{p}|$ , where **p** is the momentum of the decay proton in the center-of-mass system of the  $\Lambda^0$ , and  $\sigma$  is the Pauli spin operator. The helicity of the decay proton is positive. The ratio |p|/|s| is  $0.36_{-0.05}^{+0.05}$  which supports the conclusion that the KAN parity is odd. The result  $\beta = 0.18 \pm 0.24$  is consistent with the value  $\beta = 0.08$  expected on the basis of time-reversal invariance.

$$P_{p} = \frac{\left(\alpha + P_{\Lambda}\cos\theta\right)\dot{z} + \beta P_{\Lambda}\dot{x} + \gamma P_{\Lambda}\dot{y}}{1 + \alpha P_{\Lambda}\cos\theta}$$



no  $H_2$  target, no magnet; use kinematics and proton's range in carbon to infer  $E_{p}$ 





### Inclusive decay angular distributions



 $\Lambda \rightarrow p\pi^{-}: \widehat{\mathbf{n}}_{1} \rightarrow \Omega_{1} = (\cos \theta_{1}, \phi_{1}) : \boldsymbol{\alpha}_{-}$ 

 $\Rightarrow$  Determine product:  $\alpha_{-}P_{v} \sim \alpha_{-} \sin(\Delta \Phi)$ 

### **Exclusive** joint angular distribution

$$e^+e^- \rightarrow (\Lambda \rightarrow p\pi^-)(\overline{\Lambda} \rightarrow \overline{p}\pi^+)$$

 $\Lambda \to p\pi^{-}: \widehat{\mathbf{n}}_{1} \to (\cos \theta_{1}, \phi_{1}) : \boldsymbol{\alpha}_{-} \qquad \overline{\Lambda} \xrightarrow{\vee} \overline{p}\pi^{+}: \widehat{\mathbf{n}}_{2} \to (\cos \theta_{2}, \phi_{2}) : \boldsymbol{\alpha}_{+}$ 

 $\boldsymbol{\xi}:(\cos \theta_{\Lambda}, \widehat{\mathbf{n}}_1, \widehat{\mathbf{n}}_2)$  5D PhSp

 $d\Gamma \propto W(\boldsymbol{\xi}; \boldsymbol{\alpha_{\psi}}, \boldsymbol{\Delta \Phi}, \boldsymbol{\alpha}_{-}, \boldsymbol{\alpha}_{+}) =$  $1 + \alpha_{\psi} \cos^2 \theta_{\Lambda}$  Cross section  $+ \alpha_{-} \alpha_{+} \left\{ \sin^{2} \theta_{\Lambda} (n_{1,x} n_{2,x} - \alpha_{\psi} n_{1,y} n_{2,y}) + (\cos^{2} \theta_{\Lambda} + \alpha_{\psi}) n_{1,z} n_{2,z} \right\}$  $+ \boldsymbol{\alpha}_{-} \boldsymbol{\alpha}_{+} \sqrt{1 - \boldsymbol{\alpha}_{\psi}^{2}} \cos(\boldsymbol{\Delta}\boldsymbol{\Phi}) \sin \theta_{\Lambda} \cos \theta_{\Lambda} \left( n_{1,x} n_{2,z} + n_{1,z} n_{1,x} \right)$  $+\sqrt{1-\alpha_{\psi}^{2}}\sin(\Delta \Phi)\sin\theta_{\Lambda}\cos\theta_{\Lambda}(\alpha_{-}n_{1,y}+\alpha_{+}n_{2,y})$  Polarization  $\Delta \Phi \neq 0 \Rightarrow$  independent determination of  $\alpha_{-}$  and  $\alpha_{+}$ 

Fäldt, AK PLB772 (2017) 16

# **Exclusive** joint angular distribution (modular form) $e^+e^- \rightarrow (\Lambda \rightarrow p\pi^-)(\overline{\Lambda} \rightarrow \overline{p}\pi^+)$

**General two spin** <sup>1</sup>/<sub>2</sub> **particle state:** 

$$\rho_{1/2,\overline{1/2}} = \frac{1}{4} \sum_{\mu \overline{\nu}} C_{\mu \overline{\nu}} \sigma_{\mu}^{\Lambda} \otimes \sigma_{\overline{\nu}}^{\overline{\Lambda}}$$

$$(\sigma_0 = \mathbf{1}_2, \sigma_1 = \sigma_x, \sigma_2 = \sigma_y, \sigma_3 = \sigma_z)$$



$$\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \sin(\Delta \Phi) \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \cos(\Delta \Phi)$$

**Apply decay matrices:** 

$$\sigma^{\Lambda}_{\mu} \rightarrow \sum_{\mu'=0}^{3} a^{\Lambda}_{\mu,\mu'} \sigma^{p}_{\mu'}$$

The angular distribution:

$$W = Tr\rho_{p,\bar{p}} = \sum_{\mu,\overline{\nu}=0}^{3} C_{\mu\overline{\nu}} a^{\Lambda}_{\mu,0} a^{\overline{\Lambda}}_{\overline{\nu},0}$$

E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008



 $A_{\Lambda} = 0.013 \pm 0.021$ PS185 PRC54(96)1877

Liang's talk  $J/\psi, \psi' \to \Sigma^+ \overline{\Sigma}^-$ 

# 2) Why the big change in $\alpha$ ?

### Why different?

from: Kiyoshi Tanida JAEA Japan



#### • Multiple scattering:

- E.g., at 95 MeV with 3 cm scatterer (target),
- $\theta_0$  becomes as large as 1.5 degree.
- $\rightarrow$  5 degree multiple scattering occurs with a probability
- of 1 % order and dominates over single scattering
- Actual scatterer thickness is even larger
- Of course, analyzing power for multiple Coulomb scattering is almost 0
  - ightarrow Can explain the difference
- Note: effective A<sub>N</sub> depends on target thickness
  - This is why target thickness is explicit in the new data.
  - We have to be careful!!



#### Also: in PDG $\leq$ 2018 syst uncertainty was not included

### How to verify the result?

 $\vec{\gamma}p \rightarrow K^+\Lambda$  $\alpha_- = 0.721(6)(5)$ D. Ireland et al arXiv:1904.07616

#### **Measure proton polarization?**



**Independent verifications at BESIII:** 

$$J/\psi \to \gamma \eta_c \to \gamma \Lambda \overline{\Lambda}$$
$$BF = 1.7\% \times 1.1 \times 10^{-3}$$



 $\langle \alpha_- \rangle_{\rm BESIII} = \frac{\alpha_- - \alpha_+}{2} = 0.754(3)(2)$ 

Since  $\rho(stat) = 0.82$  and using quoted syst uncertainties for  $\alpha_-, \alpha_+, A_\Lambda$ to deduce  $\rho(syst) = 0.835$ 

ie 4% difference with 3.8  $\sigma$  new puzzle?...

 $\eta_c \to \Lambda \overline{\Lambda}$ 

$$W = (1 - \alpha_{-}\alpha_{+}\cos\theta_{p\bar{p}})$$

# $e^+e^- \rightarrow J/\psi \rightarrow \Sigma^0 \overline{\Sigma}{}^0 \rightarrow \Lambda \gamma \overline{\Lambda} \gamma \rightarrow p \pi^- \gamma \overline{p} \pi^+ \gamma$

$$W = \sum_{\mu,\overline{\nu}} C_{\mu\overline{\nu}} \sum_{\mu',\overline{\nu}'} \check{a}^{\Sigma^{0}}_{\mu,\mu'} \check{a}^{\overline{\Sigma}^{0}}_{\overline{\nu},\overline{\nu}}, a^{\Lambda}_{\mu',0} a^{\overline{\Lambda}}_{\overline{\nu}',0}$$

Errors in  $\alpha_{\Lambda}$  and  $\alpha_{\bar{\Lambda}}$ 

0 12

### For EM decay $\Sigma \rightarrow \Lambda \gamma$

- $\check{a}_{00} = 1$ ,
- $\check{a}_{13} = -\sin\theta\cos\phi\,,$
- $\check{a}_{23} = -\sin\theta\sin\phi\,,$
- $\check{a}_{33} = -\cos\theta\,,$ 
  - G. Fäldt, K. Schönning arXiv:1908.04157

#### Annele Heikkila MSc Thesis UU

# **Comparison of** $\Lambda\overline{\Lambda}$ **and** $\Lambda\overline{\Lambda}$ **(simplified)**

$$e^+e^-\to J/\psi\to\Lambda\overline\Lambda$$



$$e^+e^- \to J/\psi \to \Xi^- \overline{\Xi}^+ \to \Lambda \pi^- \overline{\Lambda} \pi^+$$

Λ from  $Ξ^- → Λπ^-$  is polarized even if  $Ξ^-$  unpolarized:  $P_Λ = |α_Ξ| ≈ 39\%$ 

 $W \propto 1 + \alpha_{\Lambda} \alpha_{\Xi} \cos \theta_p$ 

Question: Can one determine  $\alpha_{\Lambda}$  in unique way?

### $e^+e^- \rightarrow J/\psi \rightarrow \Xi^-\overline{\Xi}^+ \rightarrow \Lambda \pi^-\overline{\Lambda}\pi^+ \rightarrow p\pi^-\pi^-\overline{p}\pi^+\pi^+$

 $d\Gamma \propto W(\xi; \omega)$   $\xi$  9 kinematical variables 9D PhSp Parameters: 2 production + 6 for decay chains

$$\boldsymbol{\omega} = \left( \boldsymbol{\alpha}_{\boldsymbol{\psi}}, \Delta \boldsymbol{\Phi}, \boldsymbol{\alpha}_{\Xi}, \boldsymbol{\phi}_{\Xi}, \boldsymbol{\alpha}_{\Lambda}, \overline{\boldsymbol{\alpha}}_{\Xi}, \overline{\boldsymbol{\phi}}_{\Xi}, \overline{\boldsymbol{\alpha}}_{\Lambda} \right)$$

$$W = \sum_{\mu,\overline{\nu}} C_{\mu\overline{\nu}} \sum_{\mu',\overline{\nu}'} a^{\Xi}_{\mu,\mu'} a^{\overline{\Xi}}_{\overline{\nu},\overline{\nu}'} a^{\Lambda}_{\mu',0} a^{\overline{\Lambda}}_{\overline{\nu}',0}$$

Variables and parameters factorize:  $W(\xi; \omega) = \sum_{k=1}^{M} f_k(\omega) T_k(\xi)$   $\Delta \Phi \neq 0$  is not needed!

$$\Xi^{-}\overline{\Xi}^{+} \Lambda \overline{\Lambda}$$
$$\Delta \Phi \neq 0: \quad M = 72 \quad (7)$$

 $\Delta \Phi = 0: \quad M = 56 \quad (5)$ 

E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008

# **Asymptotic likelihood method**

$$V_{kl}^{-1} = E\left(-\frac{\partial^2 \ln \mathcal{L}}{\partial \omega_k \partial \omega_l}\right) = N \int \frac{1}{\mathcal{P}} \frac{\partial \mathcal{P}}{\partial \omega_k} \frac{\partial \mathcal{P}}{\partial \omega_l} d\boldsymbol{\xi}$$

### Tool to determine:

 $\alpha_{\Lambda}$ 

 $\overline{\alpha}_{\Lambda}$ 

 $\alpha_{\psi}$ 

$$V_{kl}$$
 – covariance matrix  
 $\mathcal{L}(\omega) = \prod_{i=1}^{N} \mathcal{P}(\boldsymbol{\xi}_i, \omega) \equiv \prod_{i=1}^{N} \frac{\mathcal{W}(\boldsymbol{\xi}_i, \omega)}{\int \mathcal{W}(\boldsymbol{\xi}, \omega) d\boldsymbol{\xi}},$ 

- Best possible (ultimate) sensitivity and correlations for parameters
- Structure of complicated angular distribution: e.g.  $V_{kl}^{-1}$  singular – parameters cannot be determined separately

### Validation of the method

0.87

| ( | e <sup>+</sup> e <sup>-</sup> | → J/վ                    | $J \rightarrow \Lambda \Lambda$ |
|---|-------------------------------|--------------------------|---------------------------------|
|   | $\overline{lpha}_A$           | $lpha_{oldsymbol{\psi}}$ | $\Delta \Phi$                   |

-0.05 - 0.07

0.07

0.28

0.05

| $\sigma(\alpha_{\Lambda}) = \frac{7}{\sqrt{N}}$ | (0.011) |
|-------------------------------------------------|---------|
| $\sigma(A_{\Lambda}) = \frac{9}{\sqrt{N}}$      | (0.014) |

Consistent with BESIII Nature Phys. 15,631(2019)

| $e^+e$ | $\rightarrow$ | J/ป | J→ | ΞΞ |
|--------|---------------|-----|----|----|
|        |               | //  |    |    |

**Correlation matrix:** 

|                                          | $ar{lpha}_{arepsilon}$ | $lpha_A$   | $\overline{lpha}_A$ | $\phi_{\varXi}$ | $ar{\phi}_arepsilon$ | $lpha_{oldsymbol{\psi}}$ | $\Delta \Phi$ |
|------------------------------------------|------------------------|------------|---------------------|-----------------|----------------------|--------------------------|---------------|
| $lpha_{\varXi}$                          | 0.03                   | 0.37       | 0.11                | 0.0             | 0.0                  | 0.0                      | 0.0           |
| $ar{lpha}_{arepsilon}$                   |                        | 0.11       | 0.37                | 0.0             | 0.0                  | 0.0                      | 0.0           |
| $\alpha_A$                               |                        |            | 0.43                | 0.0             | 0.0                  | -0.1                     | 0.0           |
| $\bar{\alpha}_A$                         | Δ                      | <b>A</b>   | 0                   | 0.0             | 0.0                  | 0.1                      | 0.0           |
| $\phi_{\varXi}$                          |                        | $\Phi = 0$ | U                   |                 | 0.0                  | 0.0                      | 0.0           |
| $ar{\phi}_{\scriptscriptstyle arEomega}$ |                        |            |                     |                 |                      | 0.0                      | 0.0           |
| $lpha_{oldsymbol{\psi}}$                 |                        |            |                     |                 |                      |                          | 0.0           |

$$\sigma(\alpha_{\Xi}) = \frac{2}{\sqrt{N}}$$
$$\sigma(\phi_{\Xi}) = \frac{6}{\sqrt{N}}$$
$$\sigma(\alpha_{\Lambda}) = \frac{3}{\sqrt{N}}$$

 $\sigma(A_{\Lambda}) = \frac{3.3}{\sqrt{N}}$ 

P.Adlarson, AK arXiv:1908.03102

$$e^+e^- 
ightarrow J/\psi 
ightarrow \Xi\overline{\Xi}$$

#### **Correlation matrix:**

|                            | $\overline{lpha}_{\varXi}$ | $\alpha_{\Lambda}$  | $\bar{\alpha}_{\Lambda}$ | $\phi_{\varXi}$     | $ar{\phi}_arepsilon$ | $lpha_{oldsymbol{\psi}}$ | $\Delta \Phi$                      |
|----------------------------|----------------------------|---------------------|--------------------------|---------------------|----------------------|--------------------------|------------------------------------|
| $lpha_{\varXi}$            | 0.03                       | 0.37                | 0.11                     | 0.0                 | 0.0                  | 0.0                      | 0.0                                |
| $\overline{lpha}_{\varXi}$ |                            | 0.11                | 0.37                     | 0.0                 | 0.0                  | 0.0                      | 0.0                                |
| $\alpha_{\Lambda}$         |                            |                     | 0.43                     | 0.0                 | 0.0                  | -0.1                     | 0.0                                |
| $\bar{\alpha}_{\Lambda}$   | Δ                          | <b>A</b>            | 0                        | 0.0                 | 0.0                  | 0.1                      | 0.0                                |
| $\phi_{\varXi}$            |                            | $\Phi = 0$          | U                        |                     | 0.0                  | 0.0                      | 0.0                                |
| $ar{\phi}_arepsilon$       |                            | $\overline{\alpha}$ | α.                       | $\overline{\alpha}$ |                      | 0.0                      | 0.0                                |
| $lpha_{oldsymbol{\psi}}$   | $\alpha_{\Xi}$             | 0.01                | 0.31                     | 0.07                |                      |                          | 0.0                                |
|                            | $\bar{\alpha}_{\Xi}$       |                     | 0.07                     | 0.31                |                      |                          | 3.3                                |
|                            | $\alpha_{\Lambda}$         | ٨                   | $\pi$                    | 0.39                |                      | $\sigma(A_{I})$          | $_{\Lambda}) = \frac{1}{\sqrt{N}}$ |
|                            |                            | ΔΨ                  | $-\frac{1}{2}$           |                     |                      |                          |                                    |

$$\sigma(\alpha_{\Xi}) = \frac{2}{\sqrt{N}}$$
$$\sigma(\phi_{\Xi}) = \frac{6}{\sqrt{N}}$$
$$\sigma(\alpha_{\Lambda}) = \frac{3}{\sqrt{N}}$$

P.Adlarson, AK arXiv:1908.03102

# Spin density matrix for $e^+e^- \rightarrow \Omega^-\Omega^+$

$$\rho_{3/2,\overline{3/2}}^{\lambda_1\lambda_2,\lambda_{1'}\lambda_{2'}} = \sum_{\kappa=\pm 1} D_{\kappa,\lambda_1-\lambda_2}^{1*} (0,\theta_{\Omega},0) D_{\kappa,\lambda_{1'}-\lambda_{2'}}^1 (0,\theta_{\Omega},0) A_{\lambda_1\lambda_2} A_{\lambda_{1'}\lambda_{2'}}^* A_{\lambda_{1'}\lambda_{2'}}^* A_{\lambda_1}^* A$$

Using base 3/2 spin matrices Q:

M.G.Doncel, L.Michel, P.Minnaert Nucl. Phys. B38, 477(1972)

$$\rho_{3/2,\overline{3/2}} = \sum_{\mu=0}^{15} \sum_{\bar{\nu}=0}^{15} C_{\mu,\bar{\nu}} Q_{\mu} \otimes Q_{\bar{\nu}}$$

# Single tag angular distribution

Single 3/2-spin baryon density matrix is

$$\rho_{3/2} = \sum_{\mu=0}^{15} r_{\mu}Q_{\mu} = \sum_{\mu=0}^{15} C_{\mu,0}Q_{\mu}$$

Angular distribution (using decay matrices in helicity frames):



$$r_{0} = (1 + \cos^{2}\theta_{\Omega})(h_{2}^{2} + 2h_{3}^{2}) + 2\sin^{2}\theta_{\Omega}(h_{1}^{2} + h_{4}^{2})$$

$$r_{1} = 2\sin^{2}\theta_{\Omega}\frac{2\Im(\mathbf{h}_{1}\mathbf{h}_{2}^{*}) + \sqrt{3}\Im(\mathbf{h}_{3}^{*}(\mathbf{h}_{1} + \mathbf{h}_{4}))}{\sqrt{30}}$$

$$r_{6} = -\frac{2\sin^{2}\theta_{\Omega}(h_{1}^{2} - h_{4}^{2}) + h_{2}^{2}(\cos^{2}\theta + 1)}{\sqrt{3}}$$

$$r_{7} = \sqrt{2}\sin^{2}\theta_{\Omega}\frac{\Re(\mathbf{h}_{3}(\mathbf{h}_{4} - \mathbf{h}_{1}))}{\sqrt{3}}$$

$$r_{8} = 2\sin^{2}\theta_{\Omega}\frac{\Re(\mathbf{h}_{3}\mathbf{h}_{2}^{*})}{\sqrt{3}}$$

$$r_{10} = 2\sin^{2}\theta_{\Omega}\frac{\Im(\mathbf{h}_{3}\mathbf{h}_{2}^{*})}{\sqrt{3}}$$

$$r_{11} = 2\sin^{2}\theta_{\Omega}\frac{\Im(\sqrt{3}\mathbf{h}_{2}\mathbf{h}_{1}^{*} + \mathbf{h}_{3}^{*}(\mathbf{h}_{1} + \mathbf{h}_{4}))}{\sqrt{15}}$$

$$\alpha_{\psi} = \frac{h_{2}^{2} - 2(h_{1}^{2} - h_{3}^{2} + h_{4}^{2})}{h_{2}^{2} + 2(h_{1}^{2} + h_{3}^{2} + h_{4}^{2})}$$

$$\frac{d\Gamma}{d\cos\theta_{\Omega}} = 1 + \alpha_{\psi}\cos^{2}\theta_{\Omega}$$

E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008

 $d\cos\theta_{\Omega}$ 

# **Polarization of a spin 3/2 particle:**

$$\rho_{3/2} = r_0 \left( Q_0 + \frac{3}{4} \sum_{M=-1}^{1} r_M^1 Q_M^1 + \frac{3}{4} \sum_{M=-2}^{2} r_M^2 Q_M^2 + \frac{3}{4} \sum_{M=-3}^{3} r_M^3 Q_M^3 \right)$$

M.G.Doncel, L.Michel, P.Minnaert Nucl. Phys. B38, 477(1972)

real coefficients, scalable J=1/2,3/2,...

Degree of polarization

$$\frac{3}{4} Q_M^L \to Q_\mu , \mu = 1, \dots, 15$$
$$Q_0 = \frac{1}{4} I \qquad \rho_{3/2} = \sum_{\mu=0}^{15} r_\mu Q_\mu$$

$$d(\rho_{3/2}) = \sqrt{\sum_{L=1}^{3} \sum_{M=-L}^{L} (r_M^L)^2}$$

At threshold: d(3/2)=23%

# Light baryon spectroscopy



If there are (anti)hyperons one can determine spin density matrix for free

# $e^+e^- ightarrow J/\psi$ , $\psi' ightarrow B_1 \overline{B}_2 V(P)$

Feynman Diagram Calculation: FDC-PWA Nucl.Instrum.Meth. A534 (2004) 241 Package used for baryon PWA at BESIII

mesons and baryons J=(0, 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2)Automatically generated Feynman diagrams in  $\psi' \rightarrow \pi^0 p \bar{p}$ Diagram 2 Diagram 3 Diagram 4 Diagram 5 Diagram Diagram 6 Diagram Diagram 8 Diagram 9 Diagram 10 Diagram 12 Diagram 13 Diagram 15 Diagram 14

From effective Lagrangian Feynman rules are generated and angular distribution is calculated. Fit parameters are:

• Resonance parameters

• Coupling constants (complex) However hyperons are treated as stable particles...

# **Conclusions:**

BESIII Hyperon group: goal to develop and verify formalism and methods for precision hyperon production and decay studies at BESIII in  $e^+e^- \rightarrow B_1\overline{B}_2(M)$  including spin degrees of freedom.

J/ $\psi$  and  $\psi$ ' decays into hyperon-antihyperon: unique spin entangled system for CP tests and for determination of (anti-)hyperon decay parameters. **BESIII in progress:** analyses using collected 10<sup>10</sup> J/ $\psi$ **Plan:** more  $\psi$ ' data ...

Prospects for a CP violation signal at Super Tau Charm Factories. Methods can be extended for analyses at BelleII and PANDA

Thank you!