
Theore&cal	overview	on	rare	charm	decays		

Svjetlana	Fajfer	
Physics	Department,	University	of	Ljubljana	and		

Ins&tute	J.	Stefan,	Ljubljana,		Slovenia	
	

"The	2nd	Interna&onal	Workshop	on	High	Intensity	Electron-Positron	Accelerator	(HIEPA)	
@2-7GeV	in	China	(HIEPA2018)”,	Beijing,	March	19-21	2018	



Overview	

•  Mo&va&on;		
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	RD(*)	puzzle:		Charged	current	b					c	τυτ	 RK(*)	puzzle:	FCNC		transi&on		b					s	l+	l-		

(g-2)μ	discrepancy	SM	predic&on	and	
experimental	result	

Anomalies	in	flavour	physics	

	tests	of	LFU	conserva&on	in	
		π	and	K	physics	hold	up	to	1	percent!	

Mo&va&on	

Impact	of	NP	on	RARE	CHARM	decays?	



RD(⇤) =
BR(B ! D(⇤)⌧⌫⌧ )

BR(B ! D(⇤)µ⌫µ)

B ! K⇤µ+µ�		P5’	in		

3.9σ	

(angular	distribu&on	func&ons)	3σ	

charged		current	SM	tree	level	

FCNC	-	SM	loop	process		

B	physics	anomalies:	experimental	results	≠	SM	predic&ons!	

																																																																																		in	the	dilepton	invariant	mass	bin		
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We propose that both anomalies in B meson decays, RD(⇤) and RK might be explained by only
one vector leptoquark weak triplet state. The constraints on the parameter space are obtained by
considering t ! b⌧⌫⌧ data, lepton flavor universality tests in the kaon sector, bounds on the lepton
flavor violating decay B ! Kµ⌧ , and b ! cµ⌫µ decays. The presence of such vector leptoquark
could be exposed in precise measurements of top semitauonic decays to b quark. The model predicts
that LFU ratio RK⇤ in B ! K⇤`+`� decays is larger than RK .

I. INTRODUCTION

Although LHC has not found yet any particles not present in the Standard Model (SM), low-energy precision
experiments in B physics pointed out a few puzzling results. Namely, we are witnessing persistent indications of
disagreement with the SM prediction of lepton flavor universality (LFU) ratio in the ⌧/µ and ⌧/e sector. In the case

of ratio RD(⇤) = �(B!D(⇤)⌧⌫)
�(B!D(⇤)`⌫)

[1–6], the deviation from the SM is at 3.5� level [7] and has attracted a lot of attention

recently [8, 9]. Since the denominator of these ratios are the well measured decay rates with light leptons in the final
states, ` = e, µ, the most obvious interpretation of RD(⇤) results are in terms of new physics a↵ecting semileptonic
b ! c⌧⌫ processes [10].

The second group of observables, testing rare neutral current processes with flavor structure (s̄b)(µ+µ�) also indicate
anomalous behaviour [11–21]. Decay B ! K⇤µ+µ� deviates from the SM in the by-now-famous P 0

5

angular observable
at the confidence level of above 3� [22]. If interpreted in terms of new physics, all analyses point to modifications of
the leptonic vector current, which is also subject to large uncertainties due to nonlocal QCD e↵ects. However, several
studies have shown that even with generous errors assigned to QCD systematic e↵ects, the anomaly is not washed
away [23]. Furthermore, the sizable violation of LFU in the ratio RK = �(B!Kµµ)

�(B!Kee) in the dilepton invariant mass

bin 1 GeV2  q2  6 GeV2, has been established at 2.6�. This ratio is largely free of theoretical uncertainties and
experimental systematics, deviates in the muon channel consistently with the deviation in B ! Kµ+µ�. Strikingly
enough all these disagreements were observed in the B meson decays to the leptons of the second and third generation.
As pointed out in [10] lepton flavour universality has been tested at percent level and are in the case of pion and kaon
in excellent agreement with the SM predictions. It has been already suggested that scalar leptoquark might account
for this anomalous behaviour in many works [7, 12, 14, 24–27].

Many models of New Physics (NP) [1–6, 8, 9, 11–21, 27] have been employed to explain either RK and P 0
5

anomalies
or RD(⇤) . Reference [15] suggested that RK and P 0

5

can be explained if NP couples only to the third generations of
quarks and leptons. Similarly, the authors of [9] suggested that both RD(⇤) and RK anomalies can be correlated if the
e↵ective four-fermion semileptonic operators consist of left-handed doublets. The model of [28] proposed existence
of an additional weak bosonic triplet and falls in the category of weak doublet fermions coupling to the weak triplet
bosons, which then can explain all three B meson anomalies. Among the NP proposals a number of them suggest

that one scalar leptoquark accounts for either R(⇤)
D or RK anomalies. Howerer, in the recent paper [7] both deviations

were addressed by a single scalar leptoquark with quantum numbers (3, 1,�1/3) in such a way that RD(⇤) anomalies
is explained at the tree level, while RK only at loop level. This leptoquark scalar, unfortunately can couple to diquark
state too and therefore it potentially leads to proton decay. One may impose that this dangerous coupling vanishes,
but such a scenario is not easily realised within any GUT approach.

In this paper, we extend the SM by a vector SU(2) triplet leptoquark, which accomplishes both of the above
requirements by generating purely left handed currents with quarks and leptons. Furthermore, the triplet nature
of the state connects the above mentioned anomalies with the rare decay modes of B mesons to a final states with

⇤
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~4σ	

13	Sept.	2017	
LHCb	result	

~2	σ	

BR(Bc ! J/ ⌧⌫⌧ )

BR(Bc ! J/ µ⌫µ)
= 0.71± 0.17± 0.18

F = 0 scalar LQs contribute as

a` = � Ncm`

8⇡2m2
LQ

X

q

"

m`

�|lq`|2 + |rq`|2
�

(QSfS(xq)� fF (xq))

+mqRe(r
⇤
q`lq`) (QSgS(xq)� gF (xq))

#

.

(76)

The above expression is valid for LQ with F = 0 and can be recast to the
|F | = 2 case by changing the sign before QS . Eq. (76) reveals that a chiral
LQ charge-eigenstate contributes to a` with a definite sign depending only on
QS . However, complete LQ multiplets could have contributions from different
QS and in such cases the sign may depend on the interplay between Yukawa
couplings of differently charged states. We do not consider contributions of
vector LQ states towards a` since their contributions largely depend on the UV
details of the theory.

Currently the most precise experimental result on the magnetic moment
of the muon is due to the E821 experiment performed at BNL [211, 212] and
amounts to aexpµ = 1.16592080(63) ⇥ 10

�3. Comparing it to the contemporary
state-of-the-art SM predictions, aSMµ = 1.16591803(70) ⇥ 10

�3 [14] (see also
[213]) the difference between the two numbers, �aµ ⌘ aexpµ � aSMµ = (2.8 ±
0.9)⇥ 10

�9, entails a strong constraint on the couplings of LQ states to muon.
Next generation experiments will reduce the error in aexpµ by a factor of 4 [214].

The contributions of LQs to a` have been presented in Refs. [215, 216, 217,
218, 219]. The connection between aµ and the electric dipole of the muon, in
light of the BNL measurement, has been advocated in [217]. The interplay
between LFV lepton decays have been studied in Refs. [220, 135]. Bounds on
the LQ couplings, albeit weak, have been also derived from the measurements
of neutrino magnetic moments in Ref. [221].

3.4.3. ` ! `0`0`00

The four-lepton lepton flavor violating amplitude is mediated by box dia-
grams involving leptoquarks and quarks corresponding to diagrams of neutral
meson mixing via LQ turned inside out. The amplitudes of scalar LQ media-
tion scale as ⇠ y4/m2

LQ, where y is the relevant LQ coupling, whereas for the
vector LQ the contribution could be suppressed by a GIM-like mechanism [3].
Formulas for the neutral meson mixing amplitudes, i.e., (64) and (66), can be
straightforwardly adapted to cover the ` ! `0`0`00 processes. The upper bounds
stemming from µ ! 3e decay on the relevant sets of couplings characteristic
of box diagrams have been derived in [3], with Z and � penguin contributions
neglected. The box diagram of µ ! 3e is a product of LQ couplings present in
µ ! e� and the LQ coupling to electrons and quarks. On the other hand, the
photon penguin diagram contribution to ` ! `0`0`00 have similar structure as
` ! `0� amplitudes and have been shown to be important in the case of unitary
coupling matrices in Ref. [208].
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�aµ = (2.8± 0.9)⇥ 10�9

Muon	anomalous	magne&c	moment	

~3σ	
		



Models	of	NP	explaining	B	anomalies	

Color	singlet								Color	tripet	
	

Spin	

0											2HDM																							Scalar	LQ		

1											W’	,Z’																								Vector		LQ		

R	parity	-	sbotom	

2HDMII		cannot	explain	RD(*)	

New	gauge	bosons,	W’,	Z’-	
difficult	to	construct	UV	
complete	theory		
		

Leptoquarks?	

Nature	of	anomaly	requires	NP	in	quark	and	lepton		sector!		
It	seems	that	LQs	are	ideal	candidates	to	explain	all		
B	anomalies	at	tree	level!	

Dark	mater?	

A new model for RK and RD
D. Becirevic, S. Fajfer, N. Kosnik, OS. 1608.08051

We can also explain RD if a new ingredient is added to the model
�1/6 = (3, 2)1/6: three light RH neutrinos ⌫R.

LY = YL
ij L̄i

e�(1/6)dRj +YR
ij Q̄i�

(1/6)⌫Rj + h.c.

For b ! c⌧ ⌫̄ ) |M(B ! D (⇤)`⌫)|2 = |M
SM

|2 + |M
NP

|2.

Naturally generates RNP
D(⇤) > RSM

D(⇤) if |Y L
b⌧ | & |Y L

bµ|.

Olcyr Sumensari (LPT - Orsay) NP and LF(U)V in B Decays 15 / 17

Ø  Is	charm	physics	sensi&ve	on		NP	explaining	B	puzzles	?	
	
Ø  Can	some	NP	be	present	in	charm	and	not	in	beauty	mesons?	



Charm 2016, BolognaN. Kosnik

Neutral currents - effective description

Tree-level 4-quark operators

O7 =
emc

(4⇡)2
(ū�µ⌫PRc)F

µ⌫ OS =
e2

(4⇡)2
(ūPRc)(¯̀̀ )

O9 =
e2

(4⇡)2
(ū�µPLc)(¯̀�µ`) OP =

e2

(4⇡)2
(ūPRc)(¯̀�5`)

O10 =
e2

(4⇡)2
(ū�µPLc)(¯̀�µ�5`) OT =

e2

(4⇡)2
(ū�µ⌫c)(¯̀�

µ⌫`)

OT5 =
e2

(4⇡)2
(ū�µ⌫c)(¯̀�

µ⌫�5`)

12

1) At scale mW all penguin contributions vanish due to GIM 
2) SM contributions to C7…10 at scale mc entirely due to mixing of tree-

level  operators into penguin ones under QCD 

3)  SM values at mc 

4)  All operators’ contributions to D→πℓℓ can be absorbed into q2  
     dependent effective Wilsons C7,9eff(q2) 

(Short-distance) penguin  
operators

C7 = 0.12, C9 = �0.41

[de Boer, Hiller, 1510.00311]

He↵ = �dHd + �sHs � 4GF�bp
2

X

i=3,...,10,S,P,...

CiOi

Tree-level	4-quark	operators		
	

(Short-distance)	penguin	operators		
	

1)  At	scale	mW	all	penguin	contribu&ons	vanish	due	to	GIM;	

2)			SM	contribu&ons	to	C7...10	at	scale	mc	en&rely	due	to	mixing	of	tree-		
level	operators	into	penguin	ones	under	QCD		
	
3)			SM	values	at	mc	
	

Charm 2016, BolognaN. Kosnik
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(ū�µPLc)(¯̀�µ`) OP =

e2

(4⇡)2
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(ū�µ⌫c)(¯̀�

µ⌫�5`)

12

1) At scale mW all penguin contributions vanish due to GIM 
2) SM contributions to C7…10 at scale mc entirely due to mixing of tree-

level  operators into penguin ones under QCD 

3)  SM values at mc 

4)  All operators’ contributions to D→πℓℓ can be absorbed into q2  
     dependent effective Wilsons C7,9eff(q2) 

(Short-distance) penguin  
operators

C7 = 0.12, C9 = �0.41

[de Boer, Hiller, 1510.00311]

He↵ = �dHd + �sHs � 4GF�bp
2

X

i=3,...,10,S,P,...

CiOi

4)		All	operators’	contribu&ons	to	D→πll	can	be	absorbed	into	q2	
dependent	effec&ve	Wilsons	C7,9eff(q2)	

(recent	results	:de	Boer,	Hiller,	
1510.00311,	1701.06392,		
De	Boer	et	al,	1606.05521)	
1707.00988	)	
	

SM	effec&ve	Hamiltonian	for	rare	charm	decays	



	SM	in																									and			

BR(D ! Xu�) ⇠ 10�8C.	Greub	et	al.,	PLB	382	(1996)	415;		

Effec&ve	Lagrangian	
	

c ! u�
c ! ul+l�
Q7		contributes	to																							and			

c ! ul+l�
all	three	operators	contribute	to		

c ! u� c ! ul+l�



Introduction D → V γ Λc → pγ Summary

Two approaches

(1) Compute leading power corrections (∼ ΛQCD/mc) as in
b-physics. [Bosch et al. 2001, 2004]

Power corrections depend on uncertain λD, the first negative
moment of D-meson light-cone distribution amplitude.

c u
Q1,2

×

c uQ1,2

× ×

c uQ8
×

Figure: Weak annihilation and hard spectator interaction diagrams. Crosses indicate photon emission.

Stefan de Boer EPS-HEP2017

photon	emission	
Weak	annihila&on	and	hard	spectator	interac&on	diagrams.		
recent	work:	Hiller	&	De	Boer	1701.06392	
previuos	works:	G.	Burdman	et	al.,	PRD	66	(2002)	014009;	
S.	F.	P.	Singer		and	J.	Zupan,	EPJC	27(2003)	201		
	

1)  Compute	leading	power	correc&ons	(∼	ΛQCD/mc)	as	in	b-physics,	QCD	factoriza&on		
						(Bosch	&	Buchalla	hep-ph0408231);	
			
2)		Model	resonant	amplitudes	as	a	hybrid	of	factoriza&on,	heavy	quark	effec&ve	theory		
					and	chiral	theory,	where	SU(3)	flavor	symmetry	is	broken	via	measured	parameters		
					(SF,	S.	Prelovsek	and	P.	Singer,	hep-ph/9801279);	

Two	approaches:	

11

branching ratio D0 ! ⇢0� D0 ! !� D0 ! �� D0 ! ¯K⇤0�

Belle [24]† (1.77± 0.31)⇥ 10

�5 – (2.76± 0.21)⇥ 10

�5
(4.66± 0.30)⇥ 10

�4

BaBar [33]†a – – (2.81± 0.41)⇥ 10

�5
(3.31± 0.34)⇥ 10

�4

CLEO [34] – < 2.4⇥ 10

�4 – –

BBelle
0.030± 0.005 – 0.039± 0.003 0.49± 0.03

BBaBar – – 0.039± 0.006 0.35± 0.04

a
We update the normalization [35].

TABLE I: Experimental data on D0 ! V � branching ratios. The corresponding numerical values for the

reduced branching ratios B, see eqs. (26,29) and analogously for ��, are given in the last row. †Statistical

and systematic uncertainties are added in quadrature.

FIG. 2: The polarization fraction r, eq. (32) and 2r/(1 + r2), which drives A�, eq. (11), as a function of

|TC 0
7| (blue shaded band) for the current data on B assuming r0 ' 0. The range accessible by leptoquark

models is indicated by the green box. Model-independently, and in generic SUSY models, there is no upper

limit on r.

The polarization fraction r is a null test of the SM for negligible r0. We can already now make

a data-based prediction for r given C 0
7 irrespective of C7. Possible values of r from eq. (32)

are illustrated in figure 2, where the blue band displays the one sigma range of B. Within

leptoquark models holds |C 0
7| . 0.02, which, using T = 0.7 [6], implies r . 0.09, indicated

by the green box. On the other hand, SUSY models can provide significantly higher values

|C 0
7| . 0.3, while model-independently holds |C 0

7| . 0.5. As r diverges towards C 0
7 ' 0.15,

in both latter cases there is no upper limit on r. Upper limits on the Wilson coefficients are

taken from [6].
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branching ratio D0 ! ⇢0� D0 ! !� D+ ! ⇢+� Ds ! K⇤+�

two-loop QCD (0.14� 2.0) · 10�8
(0.14� 2.0) · 10�8

(0.75� 1.0) · 10�8
(0.32� 5.5) · 10�8

HSI+WA (0.11� 3.8) · 10�6
(0.078� 5.2) · 10�6

(1.6� 1.9) · 10�4
(1.0� 1.4) · 10�4

hybrid (0.041� 1.17) · 10�5
(0.042� 1.12) · 10�5

(0.017� 2.33) · 10�4
(0.053� 1.54) · 10�4

[5, 6] (0.1� 1) · 10�5
(0.1� 0.9) · 10�5

(0.4� 6.3) · 10�5
(1.2� 5.1) · 10�5

[8] (0.1� 0.5) · 10�5
0.2 · 10�5

(2� 6) · 10�5
(0.8� 3) · 10�5

[9]a 3.8 · 10�6 – 4.6 · 10�6 –

data† (1.77± 0.31) · 10�5 < 2.4 · 10�4 – –

aUncertainties not available. We take a1 = 1.3 and a2 = �0.55 [34].

TABLE I: Branching ratios of D ! V � within the SM at two-loop QCD, from the hard spectator interaction

plus weak annihilation and the hybrid approach. We vary the form factors, decay constants, lifetimes,

Gegenbauer moments, relative strong phases and µc 2 [mc/
p
2,
p
2mc]. The branching ratios from the hard

spectator interaction plus weak annihilation scale as (0.1GeV)/�D)

2. Also given are data by the Belle [15]

and the CLEO (at 90% CL) [35] collaborations as well as SM predictions from [5, 6], via pole diagrams and

VMD [8] and QCD sum rules [9]. †Statistical and systematic uncertainties are added in quadrature.

modes. The branching ratio from two-loop QCD eq. (7) is subleading in each case. The branching

ratios in the hybrid approach cover the ranges previously obtained in [5, 6, 8, 9]. The measured

D0 ! ⇢0� branching ratio is somewhat above the SM prediction in the hybrid model.

The branching ratios of D ! ⇢� as a function of �
D

are shown in figure 2. The D+ ! ⇢+�

SM branching ratio is . 2 · 10�4, a measurement would constrain �
D

efficiently. Specifically, we

find B(D+ ! ⇢+�) ' [44, 2900] · B(D0 ! ⇢0�) by means of hard spectator interaction plus weak

annihilation and in the hybrid model B(D+ ! ⇢+�) ' [0.3, 280] · B(D0 ! ⇢0�). The D0 ! ⇢0�

branching ratio can be subject to stronger cancellations between the contributions in eq. (18) than

in the hybrid model. Assuming that the phase of each amplitude AI/II/III
PV/PC is equal for D+ ! ⇢+�

and D0 ! ⇢0� reduces the possible isospin breaking to B(D+ ! ⇢+�) ' [0.6, 140] · B(D0 ! ⇢0�).

Note, isospin is already significantly broken by the lifetimes ⌧(D0
)/⌧(D+

) ' 0.4 [36].

The uncertainties in the hybrid model are dominated by the relative strong phases, followed by

the phenomenological fit coefficients a1 = 1.3± 0.1, a2 = �0.55± 0.1 [34] (also [37, 38]).

The branching ratios of D0 ! (�, ¯K⇤0,K⇤0
)�, D+ ! K⇤+� and D

s

! ⇢+� are given in table II.

The measurements by Belle [15] and BaBar [39] of B(D0 ! ¯K⇤0�) differ by 2.2�, yet both are in

the range of the hybrid model predictions. Interpreted in the QCD framework to the order we are

working, B(D0 ! (

¯K⇤0,�)�) data require a low value of �
D

below 0.1 GeV or a low charm mass

scale µ
c

⇠ m
c

/2, similar to B(D0 ! ⇢0�) data assuming the SM. Quite generally the deficiency in

From	Hiller&	de	Boer	1701.	06392	
	
[5]	SF&	Singer,	hep-ph/9705327,	
[6]	SF,	Prelovsek	&hep-ph/9801279	
[8]	Burdman	et	al.	hep-ph/9502329,	
[9]	Khodjamirian	et	al,	hep-ph/9506242	
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branching ratio D0 ! �� D0 ! ¯K⇤0� D0 ! K⇤0� D+ ! K⇤+� Ds ! ⇢+�

WA (0.0074� 1.2) · 10�5
(0.011� 1.6) · 10�4

(0.032� 4.4) · 10�7
(0.73� 1.1) · 10�5

(1.8� 2.9) · 10�3

hybrid (0.24� 2.8) · 10�5
(0.26� 4.6) · 10�4

(0.076� 1.3) · 10�6
(0.48� 7.6) · 10�6

(0.11� 1.3) · 10�3

[5, 6] (0.4� 1.9) · 10�5
(6� 36) · 10�5

(0.03� 0.2) · 10�5
(0.03� 0.44) · 10�5

(20� 80) · 10�5

[8] (0.1� 3.4) · 10�5
(7� 12) · 10�5

0.1 · 10�6
(0.1� 0.3) · 10�5

(6� 38) · 10�5

[9]a – 1.8 · 10�4 – – 4.7 · 10�5

Belle [15]† (2.76± 0.21) · 10�5
(4.66± 0.30) · 10�4 – – –

BaBar [39]†b (2.81± 0.41) · 10�5
(3.31± 0.34) · 10�4 – – –

aUncertainties not available. We use a1 = 1.3 and a2 = �0.55 [34].
bWe update the normalization [36].

TABLE II: Branching ratios of D0 ! (�, ¯K⇤0,K⇤0
)�, D+ ! K⇤+� and Ds ! ⇢+� within the SM from weak

annihilation and within the hybrid framework [5, 6] (appendix C). We vary the decay constants, lifetimes

and µc 2 [mc/
p
2,
p
2mc]. The branching ratios induced by weak annihilation scale as (0.1GeV)/�D)

2. Also

given are available data by the Belle [15] and BaBar [39] collaborations, as well as SM predictions obtained

in [5, 6], via pole diagrams and VMD [8] and QCD sum rules [9]. †Statistical and systematic uncertainties

are added in quadrature.

finite CP asymmetry, estimated in equation (28). Taking into account a percent level uū + d ¯d

content in the � [36] values of A
CP

up to O(10

�4
) in the SM and up to O(10

�3
) in BSM models

can arise in D0 ! �� decays. Effects from rescattering at the �-mass are roughly y . 0.1, hence

corresponding CP asymmetries can reach O(10

�3
) in the SM and O(10

�2
) in BSM scenarios. The

following asymmetries have been measured [15],

A
CP

(D0 ! ��) = �0.094± 0.066± 0.001 , A
CP

(D0 ! ¯K⇤0�) = �0.003± 0.020± 0.000 . (29)

A
CP

(D0 ! ��) exhibits presently a mild tension with zero.

We stress that in our numerical evaluations we vary all relative strong (unknown) phases, includ-

ing those between the WA+HS contributions and the perturbative ones. In view of the appreciable

uncertainties we refrain from putting an exact upper limit on the SM-induced CP asymmetries, but

consider, to be specific, CP asymmetries at percent-level and higher as an indicator of BSM physics,

consistent with [4]. This is supported by the large measured branching fractions, which indicate

unsuppressed WA topologies. For the FCNC decays this suggests no large cancellations between the

contributions in eq. (18), allowing for possible additional suppressions of CP asymmetries beyond

CKM factors.

Note:	all	SM	TH	predic&ons	for		
BR(D0	→	ρ0γ	)	smaller	than	exp.	rate!	
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NP	in	charm		

Constraints	from	K,	B	physics	

Constraints	from	EW	physics,	
oblique	correc&ons,	

Constraints	from	LHC	

Z ! bb̄

Up	quark	weak	doublet	“talks”	to	down	quark	via	CKM!	
	
Effects	of	NP		in	charm		suppressed	by	Vcb

*	Vub.	

If	there	is	NP	in	down-	quark	sector	then	effects	can	be	seen	in	charm		
if	NP	mediator	is		a	doublet	or	triplet	of	the	weak	isospin.	

QiL	=	

V*il	uJ	

di	
L	



SU(3)⇥ SU(2)⇥ U(1) Spin Symbol Type 3B + L
(3,3, 1/3) 0 S3 LL (SL

1 ) �2

(3,2, 7/6) 0 R2 RL (SL
1/2), LR (SR

1/2) 0

(3,2, 1/6) 0 ˜R2 RL (

˜SL
1/2), LR 0

(3,1, 4/3) 0 ˜S1 RR (

˜SR
0 ) �2

(3,1, 1/3) 0 S1 LL (SL
0 ), RR (SR

0 ), RR �2

(3,1,�2/3) 0 ¯S1 RR �2

(3,3, 2/3) 1 U3 LL (V L
1 ) 0

(3,2, 5/6) 1 V2 RL (V L
1/2), LR (V R

1/2) �2

(3,2,�1/6) 1 ˜V2 RL (

˜V L
1/2), LR �2

(3,1, 5/3) 1 ˜U1 RR (

˜V R
0 ) 0

(3,1, 2/3) 1 U1 LL (V L
0 ), RR (V R

0 ), RR 0

(3,1,�1/3) 1 ¯U1 RR 0

Table 1: List of scalar and vector leptoquarks. See text for details.

leptoquark states. The SM fermions are Li
L ⌘ (1,2,�1/2)i = (⌫iL eiL)

T ,
eiR ⌘ (1,1,�1)

i, Qi
L ⌘ (3,2, 1/6)i = (ui

L diL)
T , ui

R ⌘ (3,1, 2/3)i, and
diR ⌘ (3,1,�1/3)i, where the numbers within brackets represent the SM gauge
group SU(3) ⇥ SU(2) ⇥ U(1) transformation properties. For example, a state
denoted as (3,2, 1/6) transforms as triplet (doublet) of SU(3) (SU(2)) with the
U(1) hypercharge of 1/6. Superscript i(= 1, 2, 3) is a flavor index and subscripts
L and R denote left- and right-chiral fermion fields, respectively. Superscript T
will always stand for transposition. It is in the SU(2) group space of the SM
in this particular instance. We take quarks (leptons) to have baryon (lepton)
number B = 1/3 (L = 1) in accordance with the usual convention.

The (hyper)charge normalization is defined through ˆQ = I3 +Y , where ˆQ is
the electric charge operator that yields eigenvalues Q in units of absolute value
of the electron charge, I3 stands for the diagonal generator of SU(2), and Y
represents U(1) hypercharge operator. The electric charge of dR ⌘ (3,1,�1/3)
is, for example, Q = 0 + (�1/3) = �1/3, where dR is right-chiral down-type
quark.

At least two neutrinos are conclusively massive. However, their Dirac and/or
Majorana nature is not yet experimentally ascertained. One might accordingly
add to the SM fermion content one or more electrically neutral fields that could
take on a role of right-chiral neutrinos. We denote these hypothetical fermions
with ⌫R(⌘ (1,1, 0)). If these states are added one could have more LQ states
than there would be in the SM model with purely left-chiral neutrinos. We
include this possibility to insure generality of our considerations.

The list of all possible LQs is given in Table 1. There are, all in all, six
scalar and six vector leptoquark multiplets if one uses transformations under
the SM gauge group as the classification criterion. In the first column we ex-
plicitly specify the SM transformation properties that can be easily understood
on purely group theoretical grounds as follows.

5

F=3B	+L		fermion	number;	F=0		no	proton		decay	at	tree	level	(see	Assad	et	al,	1708.06350)			

Leptoquarks	in	RK(*)		and			RD(*)		

Q=I3	+Y	

color	SU(3),	weak	isospin	SU(2)	,	weak	hypercharge	U(1)	

Suggested	by	many	authors:	naturally	accommodate	LUV	and	LFV	

Doršner,	SF,	Greljo,	Kamenik		Košnik,	(1603.04993)	

LQ 

l 

q 
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B. Leptoquark models

We consider contributions from scalar S1,2,3 and vector V2,3, ˜V1,2 leptoquark representations to

c ! u� processes, see [11, 43–46] for Lagrangians and details 2. In this section we denote by M

the mass of the leptoquark and by �
L/R

leptoquark couplings to left-/right-handed leptons. For

vector-like couplings we omit the chirality index.

Due to the light leptons in the loop �
LQ

C(0)
1�8(µ = M) = 0, however, the following vector (V )

and scalar (S) operators are induced at tree-level

O(l)
V

= (ū
L

�
µ

l
L

)(l
L

�µc
L

) , O(l)
S

= (ū
L

l
R

)(l
L

c
R

) (37)

plus chirality-flipped contributions. Here, schematically, C(l)
V

(µ = M) = ��⇤/M2 and

C(l)
S

(µ = M) = �
R

�⇤
L

/M2. At one-loop QCD C(l)
V

(µ
c

) = C(l)
V

(M) and C(l)
S

(µ) =

(↵
s

(M)/↵
s

(µ))8/(2�0)C(l)
S

(M), where �0 = 11 � 2/3n
f

and n
f

is the number of active flavors,

hence thresholds need to be taken into account.

At the scale µ = m
⌧

the ⌧ lepton is to be integrated out. Since numerically m
⌧

⇠ p
2m

c

we

include the tau-loop contributions in the matrix element of O(l)
V,S

, see figure 5. The contribution of

c u

l l

O(l)

1

FIG. 5: Diagram inducing c ! u� within leptoquark models.

O(l)(0)
V

vanishes to all orders in ↵
s

. From the matrix element of O(l)(0)
S

we obtain

�
LQ

A(0)
7 (µ

c

) =

�Q
l

4

p
2G

F

m
l

m
c

✓
1 + ln

µ2
c

m2
l

◆✓
↵
s

(M)

↵
s

(µ
t

)

◆12/21✓↵
s

(µ
t

)

↵
s

(µ
b

)

◆12/23✓↵
s

(µ
b

)

↵
s

(µ
c

)

◆12/25 ⌫(0)

M2
. (38)

Here, Q
l

denotes the electric charge of the leptons. The couplings ⌫(0) within leptoquark models are

given in table III. Note that �
LQ

A(0)
8 (µ

c

) is additionally ↵
e

/(4⇡) suppressed and will be neglected

throughout.

Constraints on ⌧ couplings are worked out and given in table IV, where we followed [11] and used

[36]. The representations V2,3 turn about to be not relevant for c ! u� decays and no constraints

2 In [11] the notation differs from the one used here by means of charge conjugated fields. Here we write q ! q̄C for
the leptoquarks S1, S3, V2 and Ṽ2 in [11] and adjust their couplings correspondingly. Moreover, here an additional
sign for all vector leptoquarks is accounted for. Conclusions in [11] are unaffected.
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couplings/mass constraint observable

|�(u⌧)
S3

| ⇠ [0.0, 0.2] ⌧� ! ⇡�⌫⌧

Re[�(u⌧)
SR (�(u⌧)

SL )

⇤
] ⇠ [0.00, 0.09]

Re[�(u⌧)
S1L,S3

(�(c⌧)
S1L,S3

)

⇤
] ⇠ [�0.2, 0.2] ⌧� ! K�⌫⌧

Re[�(u⌧)
SR (�(c⌧)

SL )

⇤
] ⇠ [�0.07, 0.04]

|Im[�(u⌧)
SR (�(c⌧)

SL )

⇤
]| ⇠ [0.0, 0.7]

|Re[�(u⌧)
SL,SR(�

(c⌧)
SL,SR)

⇤
]| ⇠ [0, 0.02] �mD0

|Re[�(u⌧)
S3

(�(c⌧)
S3

)

⇤
]| ⇠ [0, 0.007]

Re[�(u⌧)
SR (�(c⌧)

SL )

⇤
] . 0.3 D+ ! ⌧+⌫⌧

Re[�(c⌧)
SR (�(c⌧)

SL )

⇤
] ⇠ [�1, 0.09] Ds ! ⌧+⌫⌧

|�(c⌧)
S3

| ⇠ [0.0, 0.4]

|�(u⌧)
S1L,S3

�(c⌧)
S1L,S3

| . 4 · 10�4
(K+ ! ⇡+⌫̄⌫)/(K+ ! ⇡0ē⌫)

TABLE IV: Scalar leptoquark constraints on couplings to ⌧ ’s scaling as TeV/M and
p

TeV/M for �mD0 .

The kaon constraints are found via [47]. The vector ( ˜V1,2) leptoquark couplings are unconstrained by the

above observables.

from the inclusion of a light mass, which we drop in the following. The resulting coefficients are

worked out numerically in table V. There are no contributions to A(0)
7 in leptoquark models V2,3. For

LQ �hLQiA7 �hLQiA
0
7

S1 �0.003�(cl)
R (�(ul)

R )

⇤ �0.003�(cl)
L (�(ul)

L )

⇤

S2 0.005 (�(cl)
R )

⇤�(ul)
R 0.006 (�(cl)

L )

⇤�(ul)
L

S3 0 �0.002�(cl)
(�(ul)

)

⇤

˜V1 0.04 (�(cl)
)

⇤�(ul) 0
˜V2 0 �0.02�(cl)

(�(ul)
)

⇤

V2,3 0 0

TABLE V: Leptoquark induced coefficients for M = 1TeV from eq. (40) and ml = 0. For M ! 10TeV the

effective coupling scales as �(cl)�(ul)/(M = 1TeV)

2 ! 0.9�(cl)�(ul)/(M = 10TeV)

2.

l = e, µ we find with the constraints given in [11] that |�hṼ1iA7|e,µ . 0.002 and |�hṼ2iA
0
7|e,µ . 0.002.

The contributions from scalar leptoquarks are negligible, |�hS1,2,3iA
(0)
7 |

e,µ

. O(10

�5
).

The ⌧ couplings for S3 and S1L receive their strongest constraint from K decays, |�hS1L,3iA
0
7|⌧ .

O(10

�6
). All other bounds in table IV can be escaped with phase-tuning Im[�(u⌧)

(�(c⌧)
)

⇤
] �

Re[�(u⌧)
(�(c⌧)

)

⇤
]. Corresponding BSM coefficients �A7 and �A0

7 can be read off from table V

for �(q⌧)
L,R

. 1. Assuming instead Im[�(u⌧)
(�(c⌧)

)

⇤
] . Re[�(u⌧)

(�(c⌧)
)

⇤
], one obtains from D-mixing

|�hS1L,2L,2RiA
(0)
7 |

⌧

. O(10

�4
). For vector leptoquarks we find |�hṼ2iA

0
7|⌧ . 0.02 and |�hṼ1iA7|⌧ . 0.04.

Within	LQ	models	the	c	→	uγ	branching	ra&os	are	SM-like	with	CP	asymmetries	
at	O(0.01)	for	S1,2	and	V	̃2	and	SM-like	for	S3.		
Vector	LQ		V	̃1	ACP	~	O(10%).	The	largest	effects	arise	from	τ-loops.		

Hiller&	de	Boer	1701.	06392	
	

Masses	of	mLQ	≈	1	TeV.	

S3	can	explain		
RK(*)	!	
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implications of the recent measurements by Belle [15]

B(D0 ! ⇢0�) = (1.77± 0.30± 0.07) · 10�5 ,

A
CP

(D0 ! ⇢0�) = 0.056± 0.152± 0.006 , (1)

where the CP asymmetry A
CP

is defined as1

A
CP

(D ! V �) =
�(D ! V �)� �(

¯D ! ¯V �)

�(D ! V �) + �(

¯D ! ¯V �)
. (2)

We compare data (1) to the SM predictions and derive model-independent constraints on BSM

couplings. We further discuss two specific BSM scenarios, leptoquark models and the minimal

supersymmetric standard model with flavor mixing (SUSY). For the former we point out that large

logarithms from the leading 1-loop diagrams with leptons and leptoquarks require resummation.

The outcome is numerically of relevance for the interpretation of radiative charm decays.

We further obtain analytical expressions for the contributions from the QCD-penguin operators

to the effective dipole coefficient at 2-loop QCD. This extends the description of radiative and

semileptonic |�C| = |�U | = 1 processes at this order [3, 11, 17].

While one expects the heavy quark and ↵
s

-expansion to perform worse than in b-physics an

actual quantitative evaluation of the individual contributions in radiative charm decays has not

been done to date. Our motivation is to fill this gap and detail the expansion’s performance when

compared to the hybrid model, and to data. In view of the importance of charm for probing flavor

in and beyond the SM seeking after opportunities for any, possibly data-driven improvement of the

theory-description is worthwhile.

The organization of this paper is as follows: In section II we calculate weak annihilation and hard

scattering contributions to D ! V � decay amplitudes. In section III we present SM predictions for

branching ratios and CP asymmetries in this approach and in the hybrid model. We present model-

independent constraints on BSM physics and look into leptoquark models and SUSY within the

mass insertion approximation in section IV. Section V is on ⇤

c

! p� decays and the testability of

a polarized ⇤

c

-induced angular asymmetry at future colliders [18, 19]. In section VI we summarize.

In appendix A and B we give the numerical input and D ! V form factors used in our analysis.

Amplitudes in the hybrid model are provided in appendix C. Details on the 2-loop contribution

from QCD-penguin operators are given in appendix D.

1 The CP asymmetry of D0 ! ⇢0� is mostly direct, analogous to the time-integrated CP asymmetry in D0 ! K+K�

[16]. We thank Alan Schwartz for providing us with this information. In this work, we refer to ACP as the direct
CP asymmetry, neglecting the small indirect contribution.

2

implications of the recent measurements by Belle [15]

B(D0 ! ⇢0�) = (1.77± 0.30± 0.07) · 10�5 ,

A
CP

(D0 ! ⇢0�) = 0.056± 0.152± 0.006 , (1)

where the CP asymmetry A
CP

is defined as1

A
CP

(D ! V �) =
�(D ! V �)� �(

¯D ! ¯V �)

�(D ! V �) + �(

¯D ! ¯V �)
. (2)

We compare data (1) to the SM predictions and derive model-independent constraints on BSM

couplings. We further discuss two specific BSM scenarios, leptoquark models and the minimal

supersymmetric standard model with flavor mixing (SUSY). For the former we point out that large

logarithms from the leading 1-loop diagrams with leptons and leptoquarks require resummation.

The outcome is numerically of relevance for the interpretation of radiative charm decays.

We further obtain analytical expressions for the contributions from the QCD-penguin operators

to the effective dipole coefficient at 2-loop QCD. This extends the description of radiative and

semileptonic |�C| = |�U | = 1 processes at this order [3, 11, 17].

While one expects the heavy quark and ↵
s

-expansion to perform worse than in b-physics an

actual quantitative evaluation of the individual contributions in radiative charm decays has not

been done to date. Our motivation is to fill this gap and detail the expansion’s performance when

compared to the hybrid model, and to data. In view of the importance of charm for probing flavor

in and beyond the SM seeking after opportunities for any, possibly data-driven improvement of the

theory-description is worthwhile.

The organization of this paper is as follows: In section II we calculate weak annihilation and hard

scattering contributions to D ! V � decay amplitudes. In section III we present SM predictions for

branching ratios and CP asymmetries in this approach and in the hybrid model. We present model-

independent constraints on BSM physics and look into leptoquark models and SUSY within the

mass insertion approximation in section IV. Section V is on ⇤

c

! p� decays and the testability of

a polarized ⇤

c

-induced angular asymmetry at future colliders [18, 19]. In section VI we summarize.

In appendix A and B we give the numerical input and D ! V form factors used in our analysis.

Amplitudes in the hybrid model are provided in appendix C. Details on the 2-loop contribution

from QCD-penguin operators are given in appendix D.

1 The CP asymmetry of D0 ! ⇢0� is mostly direct, analogous to the time-integrated CP asymmetry in D0 ! K+K�

[16]. We thank Alan Schwartz for providing us with this information. In this work, we refer to ACP as the direct
CP asymmetry, neglecting the small indirect contribution.

Belle,	1603.03257		
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branching ratio D0 ! �� D0 ! ¯K⇤0� D0 ! K⇤0� D+ ! K⇤+� Ds ! ⇢+�

WA (0.0074� 1.2) · 10�5
(0.011� 1.6) · 10�4

(0.032� 4.4) · 10�7
(0.73� 1.1) · 10�5

(1.8� 2.9) · 10�3

hybrid (0.24� 2.8) · 10�5
(0.26� 4.6) · 10�4

(0.076� 1.3) · 10�6
(0.48� 7.6) · 10�6

(0.11� 1.3) · 10�3

[5, 6] (0.4� 1.9) · 10�5
(6� 36) · 10�5

(0.03� 0.2) · 10�5
(0.03� 0.44) · 10�5

(20� 80) · 10�5

[8] (0.1� 3.4) · 10�5
(7� 12) · 10�5

0.1 · 10�6
(0.1� 0.3) · 10�5

(6� 38) · 10�5

[9]a – 1.8 · 10�4 – – 4.7 · 10�5

Belle [15]† (2.76± 0.21) · 10�5
(4.66± 0.30) · 10�4 – – –

BaBar [39]†b (2.81± 0.41) · 10�5
(3.31± 0.34) · 10�4 – – –

aUncertainties not available. We use a1 = 1.3 and a2 = �0.55 [34].
bWe update the normalization [36].

TABLE II: Branching ratios of D0 ! (�, ¯K⇤0,K⇤0
)�, D+ ! K⇤+� and Ds ! ⇢+� within the SM from weak

annihilation and within the hybrid framework [5, 6] (appendix C). We vary the decay constants, lifetimes

and µc 2 [mc/
p
2,
p
2mc]. The branching ratios induced by weak annihilation scale as (0.1GeV)/�D)

2. Also

given are available data by the Belle [15] and BaBar [39] collaborations, as well as SM predictions obtained

in [5, 6], via pole diagrams and VMD [8] and QCD sum rules [9]. †Statistical and systematic uncertainties

are added in quadrature.

finite CP asymmetry, estimated in equation (28). Taking into account a percent level uū + d ¯d

content in the � [36] values of A
CP

up to O(10

�4
) in the SM and up to O(10

�3
) in BSM models

can arise in D0 ! �� decays. Effects from rescattering at the �-mass are roughly y . 0.1, hence

corresponding CP asymmetries can reach O(10

�3
) in the SM and O(10

�2
) in BSM scenarios. The

following asymmetries have been measured [15],

A
CP

(D0 ! ��) = �0.094± 0.066± 0.001 , A
CP

(D0 ! ¯K⇤0�) = �0.003± 0.020± 0.000 . (29)

A
CP

(D0 ! ��) exhibits presently a mild tension with zero.

We stress that in our numerical evaluations we vary all relative strong (unknown) phases, includ-

ing those between the WA+HS contributions and the perturbative ones. In view of the appreciable

uncertainties we refrain from putting an exact upper limit on the SM-induced CP asymmetries, but

consider, to be specific, CP asymmetries at percent-level and higher as an indicator of BSM physics,

consistent with [4]. This is supported by the large measured branching fractions, which indicate

unsuppressed WA topologies. For the FCNC decays this suggests no large cancellations between the

contributions in eq. (18), allowing for possible additional suppressions of CP asymmetries beyond

CKM factors.
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branching ratio D0 ! �� D0 ! ¯K⇤0� D0 ! K⇤0� D+ ! K⇤+� Ds ! ⇢+�
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(6� 36) · 10�5

(0.03� 0.2) · 10�5
(0.03� 0.44) · 10�5

(20� 80) · 10�5
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TABLE II: Branching ratios of D0 ! (�, ¯K⇤0,K⇤0
)�, D+ ! K⇤+� and Ds ! ⇢+� within the SM from weak

annihilation and within the hybrid framework [5, 6] (appendix C). We vary the decay constants, lifetimes

and µc 2 [mc/
p
2,
p
2mc]. The branching ratios induced by weak annihilation scale as (0.1GeV)/�D)

2. Also

given are available data by the Belle [15] and BaBar [39] collaborations, as well as SM predictions obtained

in [5, 6], via pole diagrams and VMD [8] and QCD sum rules [9]. †Statistical and systematic uncertainties

are added in quadrature.

finite CP asymmetry, estimated in equation (28). Taking into account a percent level uū + d ¯d

content in the � [36] values of A
CP

up to O(10

�4
) in the SM and up to O(10

�3
) in BSM models

can arise in D0 ! �� decays. Effects from rescattering at the �-mass are roughly y . 0.1, hence

corresponding CP asymmetries can reach O(10

�3
) in the SM and O(10

�2
) in BSM scenarios. The

following asymmetries have been measured [15],

A
CP

(D0 ! ��) = �0.094± 0.066± 0.001 , A
CP

(D0 ! ¯K⇤0�) = �0.003± 0.020± 0.000 . (29)

A
CP

(D0 ! ��) exhibits presently a mild tension with zero.

We stress that in our numerical evaluations we vary all relative strong (unknown) phases, includ-

ing those between the WA+HS contributions and the perturbative ones. In view of the appreciable

uncertainties we refrain from putting an exact upper limit on the SM-induced CP asymmetries, but

consider, to be specific, CP asymmetries at percent-level and higher as an indicator of BSM physics,

consistent with [4]. This is supported by the large measured branching fractions, which indicate

unsuppressed WA topologies. For the FCNC decays this suggests no large cancellations between the

contributions in eq. (18), allowing for possible additional suppressions of CP asymmetries beyond

CKM factors.
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FIG. 3: The CP asymmetry versus the branching ratio for D0 ! ⇢0� decays in the SM. We vary the form

factor, the two-loop QCD and hard spectator interaction plus weak annihilation within uncertainties, where

�D 2 [0.1, 0.6]GeV, A0
7-contributions as in eq. (20) and relative strong phases. The measured ACP eq. (1)

covers the shown range, whereas the measured branching ratio at one � is above it.

IV. D ! V � BEYOND THE STANDARD MODEL

In section IVA we work out model-independent constraints on A(0)
7 , C(0)

7 and C(0)
8 . We calculate

BSM Wilson coefficients within leptoquark models in section IVB and in SUSY in section IV C,

respectively, and discuss BSM implications.

A. Model-independently

Model-independently, from B(D0 ! ⇢0�) data, eq. (1), we obtain

|A(0)
7 , �A(0)

7 | . 0.5 . (30)

Constraints from B(D+ ! ⇡+µ+µ�
) data are similar [11]. These constraints prohibit that decays

D+ ! ⇢+� and D
s

! K⇤+� are dominated by a BSM dipole contribution. Still, a sizable �C(0)
7

can give the leading contribution to the neutral modes, causing their branching ratios to be very

close to each other, B(D0 ! !�) ⇠ B(D0 ! ⇢0�), similar to the SM, see table I. Non-observation

of this correlation indicates the presence of intermediate values of �C(0)
7 [7].
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following a proposal for Bs-mesons [10] 1, and briefly discussed in [11] for charm. As first-principle

theory predictions have large uncertainties, we propose to use data and U-spin to obtain a data-

driven SM prediction for the photon polarization in D0 ! V �, V =

¯K⇤0,�, ⇢0,!. We work out the

phenomenology, and provide predictions in models beyond the SM (BSM). We further suggest to

study an up-down asymmetry in D ! ¯K1(! ¯K⇡⇡)� along the lines the one known to B-decays

[4, 12–14], as a consistency check of the SM prediction for the photon polarization. An analogous

asymmetry allows to test the SM with Ds ! K+
1 (! K⇡⇡)� decays.

The paper is organized as follows: In section II we review time-dependence in decays into CP-

eigenstates and show how the photon polarization in D ! V � decays can be probed. Features of

different charm decay observables and their relations are discussed in section III. In section IV we

show how the SM can be tested and give BSM expectations. In section V we summarize. In the

appendix we give the angular distribution of D(s) ! K1� ! K⇡⇡� decays.

II. TIME-DEPENDENCE IN D ! V �

The D ! V � decay amplitudes can be written as

AL,R = A(D ! V �L,R) =
X

j

A
(j)
L,Re

i�
(j)
L,Rei�

(j)
L,R , (1)

where L,R denote the chirality, j labels different amplitudes, A(j)
L,R � 0, �(j)L,R are strong phases and

�
(j)
L,R are weak phases. The corresponding CP-conjugated amplitudes are

¯AR = CP(AL) = ⇠
X

j

A
(j)
L ei�

(j)
L e�i�

(j)
L , ¯AL = CP(AR) = ⇠

X

j

A
(j)
R ei�

(j)
R e�i�

(j)
R , (2)

where ⇠ denotes the CP eigenvalue of the self-conjugate vector meson V , i.e. ⇠ = +1 for V =

⇢0,�, ¯K⇤0
(K0

S⇡
0
) and ⇠ = �1 for V =

¯K⇤0
(K0

L⇡
0
).

We define the normalized CP asymmetry as usual

ACP(D ! V �) =
�(D ! V �)� ¯

�(D ! V �)

�(D ! V �) + ¯

�(D ! V �)
, (3)

where �(D ! V �) = �(D ! V �L) + �(D ! V �R). The time-dependent decay rate is given as

�(t) = N e��t
�
cosh[��t/2] +A�

sinh[��t/2] + ⇣C cos[�mt]� ⇣S sin[�mt]
�
, (4)

where ⇣ = +1 for a D meson, ⇣ = �1 for a ¯D meson and the normalization N can be found in,

e.g., [15]. Here, �� = �H � �L > 0 and �m = mH � mL are the differences between the heavy

1
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and light D mass eigenstates and � is the mean width. Note that different sign conventions and

notations are used in the literature. The direct CP asymmetry Adir
CP = C and the observable S [10]

can be measured only when the initial flavor is tagged. On the other hand, A� can be observed

in untagged time-dependent measurements by means of a finite width difference ��, as has been

shown already for the decays B0
s ! �� [16].

The observable A� is given in terms of the decay amplitudes as

A�
=

2Re[

q
p

�
¯ALA⇤

L +

¯ARA⇤
R

�
]

|AL|2 + |AR|2 +
��� qp
���
2 ⇣�� ¯AL

��2
+

�� ¯AR

��2
⌘

=

1

N
4 ⇠

����
q

p

����
X

j,k

A
(j)
R A

(k)
L cos[�

(j)
R � �

(k)
L ] cos[�� �

(j)
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(k)
L ] , (5)

where

N =

X

j,k

A
(j)
L A

(k)
L

  
1 +

����
q

p

����
2
!
cos[�

(j)
L � �

(k)
L ] cos[�

(j)
L � �

(k)
L ]

�
 
1�

����
q

p

����
2
!
sin[�

(j)
L � �

(k)
L ] sin[�

(j)
L � �

(k)
L ]

!
+ [L $ R] . (6)

The 95% C.L. intervals of the D0 � ¯D0 mixing parameters read [15]
����
q

p

���� 2 [0.77, 1.12] , � = Arg(q/p) 2 [�30.2, 10.6]� , ��/(2�) 2 [0.50, 0.80]% . (7)

It is instructive to consider A� in the limit q/p ' 1 and assuming that the decays can be

described by only one amplitude per chirality. One obtains in this limit

A� ' 2⇠
ALAR

|AL|2 + |AR|2 cos(�L � �R) cos(�L � �R) , (8)

where Aa, �a and �a denote the modulus, strong and weak phase, respectively of the chirality

amplitude Aa = Aae
i�aei�a , a = L,R. Eq. (8) holds if there is no CP violation in the decay, or

if strong phases are negligible. As CKM-induced CP violation in charm is small due to the GIM-

mechanism this is a useful approximation within the SM and in models with no BSM sources of

CP-violation. Defining the photon polarization fraction r as

r =

AR

AL
, (9)

it follows

A� ' 2⇠
r

1 + r2
cos(�L � �R) cos(�L � �R) . (10)
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FIG. 1: Weak annihilation (left) and short-distance (right) diagrams for D ! V � decays. There are

additional diagrams (not shown) induced by Q1,2 where the photon is emitted from other quark lines.

The polarization fraction in D ! V � decays can be extracted via A� obtained from the time-

dependent distribution (4) with an O(1%) coefficient (7). As direct CP violation requires the

presence of both strong and weak phase, a measurement of ACP is complementary to A�. In this

work we consider only BSM models with negligible CP-violation. The expression for A� valid for

this type of models including the full dependence on the mixing parameters reads

A�
=

4 ⇠
��� qp
��� cos�

✓
1 +

��� qp
���
2
◆ r

1 + r2
cos(�L � �R) . (11)

We discuss expectations for the strong phases �L,R and relations between D0 ! V � modes in

section III.

III. DECAY ANATOMIES

The decays D ! V �, V =

¯K⇤0,�, ⇢0,! are dominated in the SM by weak annihilation (WA)

[6, 11, 17], see figure 1, plot to the left. While this holds model-independently for V =

¯K⇤0, the

final state mesons ⇢0,! and, to a lesser degree, the � allow for additional contributions in and

beyond the SM. Here we consider BSM effects in dipole operators,

Q7 =
emc

16⇡2
(ūL�

µ1µ2cR)Fµ1µ2 , Q0
7 =

emc

16⇡2
(ūR�

µ1µ2cL)Fµ1µ2 ,

Q8 =
gsmc

16⇡2
(ūL�

µ1µ2T acR)G
a
µ1µ2

, Q0
8 =

gsmc

16⇡2
(ūR�

µ1µ2T acL)G
a
µ1µ2

, (12)

in the effective Lagrangian

Lweak
eff =

4GFp
2

0

@
X

q=d,s

V ⇤
cqVuq

2X

i=1

CiQ
(q)
i +

8X

i=7

�
CiQi + C 0

iQ
0
i

�
1

A , (13)



the	photon	polariza&on	and	therefore	A∆	in		
D0	→	ρ0(→	π+π−)γ	becomes	a	null	test	of		the	SM.		
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where, in the notation of the previous sections, a0, a00 correspond to AL, AR, respectively. Then,

the ratio of right- to left-handed photons is given as

r0 =

����
a00
a0

���� . (27)

A measurement of B0, r0 returns the magnitude of both amplitudes

|a0| =
s

B0

1 + r20
, |a00| = r0

s
B0

1 + r20
. (28)

The BSM-sensitive mode D0 ! ⇢0� can be affected by contributions from left- and right-handed

Wilson coefficients C7 and C 0
7, respectively. We write the branching ratio as (note, factor 1/2 for

isospin)

B(D0 ! ⇢0�) = 1/2 ⌧D0

m3
D0

32⇡

 
1� m2

⇢

m2
D0

!3
↵e(GFmc)

2

⇡3
· B ,

B = |a+ TC7|2 + |a0 + TC 0
7|2 , (29)

a(0) = �V ⇤
cd

V ⇤
cs

a
(0)
0 ⇥ fL(R) , (30)

where T denotes the D0 ! ⇢0 dipole form factor at maximum momentum transfer, and fL,R 6= 1

accounts for U-spin breaking effects beyond phase space and CKM already discussed in section III.

The polarization fraction of D0 ! ⇢0� is given as

r =

����
a0 + TC 0

7

a+ TC7

���� . (31)

Experimental findings for the reduced branching ratios B0, B and B�, the latter corresponding to

D ! �� decays, are given in table I.

Measurement of 4 observables, B,B0, r, r0 determines 4 coefficients, the SM contributions a, a0

and the BSM ones C7, C
0
7. By definition, r, r0 � 0. Presently, only branching ratios are measured,

see table I. It would be desirable to have more precise data available, in particular, the discrepancy

in D0 ! ¯K⇤0� between Belle and BaBar should be settled.

In absence and anticipation of future polarization data we discuss the following limiting cases:

a) C7, C
0
7 ' 0. This corresponds to the SM, r ' r0, discussed around eq. (18).

b) r0 ' 0. It follows

r =

|TC 0
7|pB � |TC 0

7|2
. (32)

D0	→	ρ0γ		

the	polariza&on	frac&on	r		
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B. D0 ! ⇢0� decays

The WA-contributions of D0 ! ⇢0� and D0 ! ¯K⇤0� are related by U-spin. Therefore, in the

SM,

ASM
L,R(⇢

0
) = AL,R(

¯K⇤0
)⇥ [U-spin corrections] . (17)

Here we neglected contributions from the soft gluon operator c ! u�g [25], see also [26], to D ! ⇢0�,

where it is GIM-suppressed [6]. The perturbative and hard spectator interaction induced SM-

amplitudes for c ! u transitions are negligible with respect to the WA-amplitude [6].

While the U-spin breaking from differences in masses and CKM elements can be accounted for

trivially, the residual one on the left and right-chiral amplitude, denoted by fL, fR, respectively,

depends on hadronic physics. Note, fL,R are in general complex-valued. Estimations based on

factorization identify the largest WA-contributions as the ones with the photon being radiated off

the initial state [6, 17, 27]. In this case, the breaking in the matrix element is given by the final vector

meson’s matrix element, hV |q̄�µq0|0i / mV fV . For the modes at hand, fL,R = m⇢f⇢/(mK⇤0fK⇤
) '

0.9, an effect within the nominal size of U-spin breaking in charm, O(0.2� 0.3), e.g., [28–30]. We

find that in the hybrid model [20, 21], also [31], using the expressions compiled in [6], the U-spin

breaking is of similar size, fL,R ' 0.9± 0.1, where we varied input parameters.

From (17) follows

rSM = r0 , (18)

subject to corrections of the order fR/fL. Eq. (18) provides, once r0 is known from D0 ! ¯K⇤0�

data, a SM-prediction for D0 ! ⇢0�. Hence, up to U-spin breaking,

A�
SM(D0 ! ⇢0�) ' ⇠K̄⇤0⇠⇢0A

�
(D0 ! ¯K⇤0�) . (19)

Any sizeable deviation from eq. (19) would signal BSM physics in the c ! u transition which

contributes to D0 ! ⇢0�, but not to D0 ! ¯K⇤0�. On the other hand, experimental confirmation

of eq. (19) would establish c ! u� amplitudes other than WA ones to be subleading.

C. D0 ! �� decays

The decay D0 ! �� is not a pure WA-induced decay due to the d ¯d+uū admixture, or rescattering

[32]. We parameterize such effects by a complex-valued parameter y, and y . O(0.1) as follows [6]

AL,R(�) ' AWA
L,R(�) + y

⇣
AWA

L,R(⇢
0
)�A7,8

L,R(⇢
0
)

⌘
, (20)

D0	→	φγ	or	D0	→	K	̄0∗γ	decays		(SM-dominated)	

Λc→pγ	

Hiller&	de	Boer	1701.	06392	
	
If	Λc-baryons	are	produced	polarized,	such	as	at	the	Z,		
angular	asymmetries	in		Λc	→	pγ	can	probe		
chirality-flipped	contribu&ons		
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FIG. 6: The angular asymmetry (47) of ⇤c ! p� decays as a function of r = A0
7/A7 for P⇤c = �0.44. The

bands represent the statistical uncertainties for N = 10

3 (orange) and N = 10

5 (purple). Within the SM

and leptoquark models r . 0.2, indicated by the dashed vertical line, and corresponding A�-ranges shown

by the horizontal bands. Within SUSY all values r . O(1) are possible.

above the QCD factorization range given, suggesting, to the order we are working, a low value of

the parameter �
D

. 0.1 GeV or low charm mass scale. One has to keep in mind, however, that

poor convergence of the 1/m
c

and ↵
s

-expansion prohibits a sharp conclusion without further study.

Decays of charged mesons with color allowed weak annihilation contribution are better suited for

extracting �
D

as there is lesser chance for large cancellations, see also figure 2. The measured

branching ratios are close to the top end of the ones obtained in the hybrid model. D0 ! �� and

D0 ! ¯K⇤0� belong to the class of those decays with no direct contribution from electromagnetic

dipole operators. Corresponding decays are listed in table II, their branching ratios have essentially

no sensitivity to BSM physics unlike the CP asymmetry in D0 ! ��, cf. equations (28), (29).

The measured D0 ! ⇢0� branching ratio provides a model-independent upper limit on the decay

amplitudes given in eq. (30), which is similar to the one from D ! ⇡µµ decays [11]. If B(D0 ! ⇢0�)

is saturated with BSM physics or in the SM, B(D0 ! (⇢0/!)�) are very close to each other. For

intermediate scenarios the two branching ratios can differ by orders of magnitude [7], and indicate

BSM physics.

CP asymmetries in c ! u� transitions constitute SM null tests. We find ASM
CP

. few · 10�3

for D0 ! ⇢0�, see figure 3, and similar for other radiative rare charm decays. Among the modes
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V. ON ⇤c ! p�

We investigate possibilities to probe the handedness of the c ! u� current in the decay ⇤

c

! p�

with polarization asymmetries, that arise once ⇤

c

’s are produced polarized. We follow closely

related works on ⇤

b

! ⇤� decays [54, 55].

The ⇤

c

! p� branching ratio is not measured to date. Quite generally we assume

B(⇤
c

! p�) ⇠ O(10

�5
) , (45)

in agreement with naive expectations from B(D0 ! ⇢0�) 3. Note, we employ equation (45) only to

estimate uncertainties. B(⇤
c

! p�) should be determined experimentally.

The number of ⇤
c

! p� events N , modulo reconstruction efficiencies, can be obtained from

N = N(cc̄) f(c ! ⇤

c

)B(⇤
c

! p�) ⇠ N(cc̄) · 10�6 , (46)

where f(c ! ⇤

c

) ' 0.06 [63] is the fragmentation fraction of charm to ⇤

c

-baryons and N(cc̄) the

number of cc̄ produced. At the forthcoming Belle II experiment, where �(e+e� ! c̄c) ' 1.3 nb,

L ' 5 ab�1 within a year [2], N ⇠ [10

3, 104]. At a future e+e�-collider running at the Z (FCC-ee),

where N(Z) ⇠ 10

12 within one year [19] and B(Z ! cc̄) ' 0.12 [36], N ⇠ 10

5. This environment

suggests a measurement of the ⇤

c

! p� branching ratio, the ⇤

c

polarization and the angular

asymmetry A� of ⇤
c

! p� decays. The latter is defined in the ⇤

c

rest frame by the angle between

the ⇤

c

spin and the proton momentum, that is, the forward-backward asymmetry of the photon

momentum relative to the ⇤

c

boost, and normalized to the width. It reads [54]

A�

= �P⇤c

2

1� |r|2
1 + |r|2 , (47)

where P⇤c denotes the (longitudinal) ⇤

c

polarization and r = A0
7/A7. A� ! P⇤c/2 for r ! 1

and A� ! �P⇤c/2 for r ! 0. Calculating A7, A0
7 in the SM is a difficult task and beyond the

scope of our work. In the subsequent estimates of BSM sensitivity we assume that approximately

A(0)
7 ⇠ �C(0)

7 for large BSM effects and A0
7 ⌧ A7 in SM-like situations. A� is measurable in the

laboratory frame for a boost ~� = ~p⇤c/E⇤c , where ~p⇤c denotes the ⇤

c

three-momentum in the

laboratory frame, as

hqki|~�| = �E⇤
�

✓���~�
���+

2

3

A�

◆
. (48)

3 Via weak annihilation r(⇤c ! p�/D0 ! ⇢0�) ⇠
p
2 due to color counting, via resonances r(⇤c ! p�/D0 ! ⇢0�) ⇠

1 due to the amplitude AIII,⇤c!p� [56] and r(⇤c ! p�/D0 ! ⇢0�) '
p
2f?/T ⇠ 1 via SM effective and BSM

Wilson coefficients. Here, the form factor f? = fT
?(0) = fT5

? (0) is defined as in [57] and calculated within QCD
LCSR [58, 59], a covariant confined quark model [60] and a relativistic quark model [61]. Within a constituent
quark model B⇤c!p� = 2.2 · 10�5 [62] in agreement with eq. (45).
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FIG. 6: The angular asymmetry (47) of ⇤c ! p� decays as a function of r = A0
7/A7 for P⇤c = �0.44. The

bands represent the statistical uncertainties for N = 10

3 (orange) and N = 10

5 (purple). Within the SM

and leptoquark models r . 0.2, indicated by the dashed vertical line, and corresponding A�-ranges shown

by the horizontal bands. Within SUSY all values r . O(1) are possible.
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FIG. 1: The effective coefficient C9(µc = mc) given in Eq. (20) at NLO and the pure (N)NLO-terms in the

SM. The two-loop matrix elements of P1,2 are not known presently and not included. See text for details.

Integrating the distribution in different q2-bins yields the non-resonant SM branching ratios

given in Table II. The first uncertainty given corresponds to the normalization, which is dominated

by the D-lifetime, relative to which CKM uncertainties are subdominant. The dominant theory

uncertainty stems from the charm scale µc, which here is varied within mc/
p
2  µc 

p
2mc. The

effect of a larger upper limit on µc is to enhance (decrease) the branching ratios at low (high) q2. For

instance, allowing for values of µc as large as 4 GeV doubles (cuts into halves) the branching ratios

obtained for µc =
p
2mc at low (high) q2. Consequently, the effect on the full q2-range of integration

averages out. The other scales are varied within mW,b/2  µW,b  2mW,b. Uncertainties due to

power corrections are not included. Electroweak corrections, which are subleading relative to QCD-

ones, are neglected. We checked this explicitly by calculating the effects of electromagnetic mixing

among the Pi at leading order [28, 29]. Additional uncertainties from ↵s(mZ) = 0.1185 ± 0.0006

amount to a few percent.

Further non-resonant SM branching fractions for inclusive c ! ull decays and additional D !
Pll decays are also worked out and given in App. E. Our findings are consistent with [13, 30], but

disagree with those of [18–20] by orders of magnitude. As already discussed around Eq. (14), this

goes back to the inclusion of light quark masses in [18–20] in the matching at µW .

Next we model the contributions from resonances by using a (constant width) Breit-Wigner

de	Boer,	Hiller,	1510.00311:		
SM	update:	
(N)NLO	QCD	SM	Wilson	coefficients)	
	

In	SM	contribute	all	these	operators,		
but	SM			C10	≈	0	

SM	in		c ! ul+l�

3

Here, GF is the Fermi constant and Vij denote the Cabibbo–Kobayashi–Maskawa (CKM) matrix

elements. Within the OPE (1), (2) heavy fields are integrated in the Wilson coefficients ˜Ci and the

operators Pi are composed out of light fields. The SM operators up to dimension six read [14–16]

P
(q)
1 = (ūL�µ1T

aqL)(qL�
µ1T acL) , (3)

P
(q)
2 = (ūL�µ1qL)(qL�

µ1cL) , (4)

P3 = (ūL�µ1cL)
X

{q:mq<µ}

(q�µ1q) , (5)

P4 = (ūL�µ1T
acL)

X

{q:mq<µ}

(q�µ1T aq) , (6)

P5 = (ūL�µ1�µ2�µ3cL)
X

{q:mq<µ}

(q�µ1�µ2�µ3q) , (7)

P6 = (ūL�µ1�µ2�µ3T
acL)

X

{q:mq<µ}

(q�µ1�µ2�µ3T aq) , (8)

P7 =
e

g2s
mc (ūL�

µ1µ2cR)Fµ1µ2 , (9)

P8 =
1

gs
mc (ūL�

µ1µ2T acR)G
a
µ1µ2

, (10)

P9 =
e2

g2s
(ūL�µ1cL)

�
l�µ1 l

�
, (11)

P10 =
e2

g2s
(ūL�µ1cL)

�
l�µ1�5l

�
, (12)

where qL,R = (1⌥ �5)/2 q denotes chiral quark fields, T a are the SU(3)C generators, e is the elec-

tromagnetic coupling, gs is the strong coupling, �µ1µ2
= i[�µ1 , �µ2

]/2, Fµ1µ2 is the electromagnetic

field strength tensor, Ga
µ1µ2

is the chromomagnetic field strength tensor and the covariant derivative

is Dµ = @µ + igsAa
µT

a
+ ieQAµ.

In this section we give results for the (N)NLO QCD SM Wilson coefficients

˜Ci(µ) = ˜C
(0)
i (µ) +

↵s(µ)

4⇡
˜C
(1)
i (µ) +

✓
↵s(µ)

4⇡

◆2
˜C
(2)
i (µ) +O �

↵3
s(µ)

�
. (13)

˜C1,2(µW ) can be inferred from [15, 17] and ˜C3�10(µW ) = 0 due to CKM unitarity for vanishing

light quark masses. If one were to keep finite light quark masses in the Wilson coefficients at µW

as in [18–20] spurious large logarithms are induced, e.g., [21]

X

q=d,s,b

V ⇤
cqVuq

˜C
(q)
9 (µW ) ' V ⇤

csVus
(�2)

9

ln

m2
s

m2
d

' �0.29 , (14)

a procedure that is not consistent with the factorization of scales in the effective Lagrangian [11, 13].

Logarithms are resummed to all orders in perturbation theory via the renormalization group (RG)
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where

Q
(l)
9 = (ū�µPLc)

�
l�µl

�
, Q

(l)0
9 = (ū�µPRc)

�
l�µl

�
,

Q
(l)
10 = (ū�µPLc)

�
l�µ�5l

�
, Q

(l)0
10 = (ū�µPRc)

�
l�µ�5l

�
,

Q
(l)
S = (ūPRc)

�
¯ll
�
, Q

(l)0
S = (ūPLc)

�
¯ll
�
, (28)

Q
(l)
P = (ūPRc)

�
¯l�5l

�
, Q

(l)0
P = (ūPLc)

�
¯l�5l

�
,

Q
(l)
T =

1

2

(ū�µ⌫c)
�
¯l�µ⌫ l

�
, Q

(l)
T5 =

1

2

(ū�µ⌫c)
�
¯l�µ⌫�5l

�
.

As we use muonic modes frequently, in the following Wilson coefficients and operators without a

lepton flavor index are understood as muonic ones, that is C
(µ)
i = Ci etc.

Neglecting the SM Wilson coefficients, we find the following constraints on the BSM Wilson

coefficients from the limits on the branching fraction of D+ ! ⇡+µ+µ� given in Table II in the

high q2-region (
p

q2 � 1.25GeV) at CL=90%

0.9|C9 + C 0
9|2 + 0.9|C10 + C 0

10|2 + 4.1|CS + C 0
S |2 + 4.2|CP + C 0

P |2 + 1.1|CT |2 + 1.0|CT5|2

+ 0.6Re[(C9 + C 0
9)C

⇤
T ] + 1.2Re[(C10 + C 0

10)(CP + C 0
P )

⇤
]

+ 2.3|C7|2 + 2.8Re[C7(C9 + C 0
9)

⇤
] + 0.8Re[C7C

⇤
T ] . 1 . (29)

Analogous constraints in the full q2-region are somewhat stronger. They read

1.3|C9 + C 0
9|2 + 1.4|C10 + C 0

10|2 + 2.2|CS + C 0
S |2 + 2.3|CP + C 0

P |2 + 0.9|CT |2 + 0.8|CT5|2

+ 0.9Re[(C9 + C 0
9)C

⇤
T ] + 1.0Re[(C10 + C 0

10)(CP + C 0
P )

⇤
]

+ 3.7|C7|2 + 4.4Re[C7(C9 + C 0
9)

⇤
] + 1.3Re[C7C

⇤
T ] . 1 . (30)

The branching fraction B(D0 ! µ+µ�
) < 6.2 · 10�9 at CL=90% [31] provides complementary

constraints as

|CS � C 0
S |2 + |CP � C 0

P + 0.1(C10 � C 0
10)|2 . 0.007 . (31)

Thus, D ! ⇡µµ is sensitive to the complete set of operators, however, the purely leptonic decays

put stronger constraints on scalar and pseudoscalar operators.

Barring cancellations, we find, consistent with [36], |C(0)
9,10| . 1, which can exceed the resonance

contribution at high q2. Assuming no further flavor suppression for the BSM contribution g2/⇤2

(weakly-induced tree level) or g4/(16⇡2
⇤

2
) (weak loop), the limits on C

(0)
9,10 imply quite mild con-

straints for the scale of new physics: ⇤ & O(5) TeV or ⇤ around the electroweak scale, respectively.

With SU(2)L-relations C9 = �C10 the bounds on new physics ease by a factor of 1/
p
2. Analogous

D0 ! µ+µ�

10
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The branching fraction B(D0 ! µ+µ�
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constraints as
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straints for the scale of new physics: ⇤ & O(5) TeV or ⇤ around the electroweak scale, respectively.

With SU(2)L-relations C9 = �C10 the bounds on new physics ease by a factor of 1/
p
2. Analogous

LHCb	bound,	1305.5059		
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2

while separate branching fractions in the low- and high- q2 bins were bounded as [14]1:

BR(⇡+µ+µ�)I ⌘ BR(D+ ! ⇡+µ+µ�)q22[0.0625,0.276] GeV2 < 2.5⇥ 10�8

BR(⇡+µ+µ�)II ⌘ BR(D+ ! ⇡+µ+µ�)q22[1.56,4.00] GeV2 < 2.9⇥ 10�8 .
(3)

Motivated by these improved bounds we consider several NP models and either derive constraints on their flavor
parameters and masses, or for the models that are severely bounded from alternative flavor observables (e.g. D0� D̄0

mixing, K, or B physics), we comment on the prospects of observing their signals in rare charm decays. To this end,
we use the e↵ective Lagrangian encoding the short-distance NP contributions in a most general way. Namely, the
experimental results (1) and (3) give us a possibility to constrain NP in c ! u`+`� also in a model independent way.

In the case of b ! s`+`� transitions, LHCb has recently observed large departure of the experimentally determined
lepton flavor universality (LFU) ratio RK = BR(B ! Kµ+µ�)q22[1,6]GeV2/BR(B ! Ke+e�)q22[1,6]GeV2 from the

expected SM value [15]. This value was found to be RLHCb
K = 0.745+0.090

�0.074 ± 0.036, lower than the SM prediction
RSM

K = 1.0003 ± 0.0001 [16]. This surprising result of LHCb indicates possible violation of LFU in the µ-e sector.
Due to the importance of this result, we investigate whether analogous tests in the µ-e LFU can be carried out in
c ! u`+`� processes.

The outline of this article is as follows. In Section 2 we describe e↵ective Lagrangian of |�C| = 1 transition
and determine bounds on the Wilson coe�cients coming from the experimental limits on BR(D+ ! ⇡+µ+µ�) and
BR(D0 ! µ+µ�). Sec. 3 contains analysis in the context of specific theoretical models of new physics, contributing
to the c ! u`+`� and related processes. Sec. 4 discusses lepton flavor universality violation. Finally, we summarize
the results and present conclusions in Sec. 5.

II. OBSERVABLES AND MODEL INDEPENDENT CONSTRAINTS

A. E↵ective Hamiltonian for c ! u`+`�

The relevant e↵ective Hamiltonian at scale µc ⇠ mc is split into three contributions corresponding to diagrams with
intermediate quarks q = d, s, b [9, 17]

He↵ = �dHd + �sHs + �bHpeng , (4)

where each of them is weighted by an appropriate combination �q = VuqV
⇤
cq of Cabibbo-Kobayashi-Maskawa (CKM)

matrix elements. Virtual contributions of states heavier than charm quark is by convention contained within

Hpeng = �4GFp
2

X

i=3,...,10

CiOi . (5)

The operators appearing in the above Hamiltonian have thus enhanced sensitivity to new physics contributions:

O7 =
emc

(4⇡)2
(ū�µ⌫PRc)F

µ⌫ , OS =
e2

(4⇡)2
(ūPRc)(¯̀̀ ) ,

O9 =
e2

(4⇡)2
(ū�µPLc)(¯̀�µ`) , OP =

e2

(4⇡)2
(ūPRc)(¯̀�5`) ,

O10 =
e2

(4⇡)2
(ū�µPLc)(¯̀�µ�5`) , OT =

e2

(4⇡)2
(ū�µ⌫c)(¯̀�

µ⌫`) ,

OT5 =
e2

(4⇡)2
(ū�µ⌫c)(¯̀�

µ⌫�5`) .

(6)

The chiral projectors are defined as PL,R = (1 ⌥ �5)/2, Fµ⌫ is the electromagnetic field strength tensor. For each of
the operators O7,9,10,S,P we introduce the corresponding counterpart O0

7,9,10,S,P with opposite chiralities of quarks.
Within the SM the Wilson coe�cients Ci result from the perturbative dynamics of the electroweak interactions and
QCD renormalization. The latter e↵ect determines the value of C7(mc) by two-loop mixing with current-current
operators and was found to be V ⇤
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(ū�µ⌫PRc)F

µ⌫ , OS =
e2

(4⇡)2
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(ū�µ⌫c)(¯̀�

µ⌫`) ,

OT5 =
e2

(4⇡)2
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FIG. 2: The differential branching fraction dB(D+ ! ⇡+µ+µ�
)/dq2 in the SM. The solid blue curve is the

non-resonant prediction at µc = mc and the lighter blue band its µc-uncertainty. The orange band is the

pure resonant contribution taking into account the uncertainties specified in Eq. (22) at 1 � and varying the

relative strong phases. The dashed black line denotes the 90% CL experimental upper limit [27].

large BSM contributions to the Wilson coefficients to be above the resonant background. We will

quantify this in Sec. III.

The dominance of resonances in the decay rate for SM-like Wilson coefficients is common to all

c ! ul+l� induced processes, such as inclusive D ! Xul
+l�, or other exclusive decays, e.g., D !

⇡⇡l+l� [33] and ⇤c ! pl+l�. Choosing c ! ul+l� induced decay modes other than D+ ! ⇡+l+l�

does not help gaining BSM sensitivity in the dilepton spectrum, however, other modes may allow to

construct more advantageous observables. Here we discuss opportunities in semileptonic exclusive

decays with observables where the resonance contribution is not obstructing SM tests.

Clean SM tests are provided by the angular distribution in D ! ⇡l+l� decays, notably, the

lepton forward-backward asymmetry AFB and the "flat" term [34], FH , see App. D. Both observables

are null tests of the SM and require scalar/pseudoscalar operators and tensors to be non-negligible.

A promising avenue to probe operators with Lorentz structures closer to the ones present in the

SM is to study CP-asymmetries in the rate

ACP (q
2
) =

d�/dq2 � d

¯

�/dq2
R q2

max

q2
min

dq2(d�/dq2 + d

¯

�/dq2)
, (23)

where d

¯
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while separate branching fractions in the low- and high- q2 bins were bounded as [14]1:

BR(⇡+µ+µ�)I ⌘ BR(D+ ! ⇡+µ+µ�)q22[0.0625,0.276] GeV2 < 2.5⇥ 10�8

BR(⇡+µ+µ�)II ⌘ BR(D+ ! ⇡+µ+µ�)q22[1.56,4.00] GeV2 < 2.9⇥ 10�8 .
(3)

Motivated by these improved bounds we consider several NP models and either derive constraints on their flavor
parameters and masses, or for the models that are severely bounded from alternative flavor observables (e.g. D0� D̄0

mixing, K, or B physics), we comment on the prospects of observing their signals in rare charm decays. To this end,
we use the e↵ective Lagrangian encoding the short-distance NP contributions in a most general way. Namely, the
experimental results (1) and (3) give us a possibility to constrain NP in c ! u`+`� also in a model independent way.

In the case of b ! s`+`� transitions, LHCb has recently observed large departure of the experimentally determined
lepton flavor universality (LFU) ratio RK = BR(B ! Kµ+µ�)q22[1,6]GeV2/BR(B ! Ke+e�)q22[1,6]GeV2 from the

expected SM value [15]. This value was found to be RLHCb
K = 0.745+0.090

�0.074 ± 0.036, lower than the SM prediction
RSM

K = 1.0003 ± 0.0001 [16]. This surprising result of LHCb indicates possible violation of LFU in the µ-e sector.
Due to the importance of this result, we investigate whether analogous tests in the µ-e LFU can be carried out in
c ! u`+`� processes.

The outline of this article is as follows. In Section 2 we describe e↵ective Lagrangian of |�C| = 1 transition
and determine bounds on the Wilson coe�cients coming from the experimental limits on BR(D+ ! ⇡+µ+µ�) and
BR(D0 ! µ+µ�). Sec. 3 contains analysis in the context of specific theoretical models of new physics, contributing
to the c ! u`+`� and related processes. Sec. 4 discusses lepton flavor universality violation. Finally, we summarize
the results and present conclusions in Sec. 5.

II. OBSERVABLES AND MODEL INDEPENDENT CONSTRAINTS

A. E↵ective Hamiltonian for c ! u`+`�

The relevant e↵ective Hamiltonian at scale µc ⇠ mc is split into three contributions corresponding to diagrams with
intermediate quarks q = d, s, b [9, 17]

He↵ = �dHd + �sHs + �bHpeng , (4)

where each of them is weighted by an appropriate combination �q = VuqV
⇤
cq of Cabibbo-Kobayashi-Maskawa (CKM)

matrix elements. Virtual contributions of states heavier than charm quark is by convention contained within

Hpeng = �4GFp
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i=3,...,10
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The operators appearing in the above Hamiltonian have thus enhanced sensitivity to new physics contributions:

O7 =
emc

(4⇡)2
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The chiral projectors are defined as PL,R = (1 ⌥ �5)/2, Fµ⌫ is the electromagnetic field strength tensor. For each of
the operators O7,9,10,S,P we introduce the corresponding counterpart O0

7,9,10,S,P with opposite chiralities of quarks.
Within the SM the Wilson coe�cients Ci result from the perturbative dynamics of the electroweak interactions and
QCD renormalization. The latter e↵ect determines the value of C7(mc) by two-loop mixing with current-current
operators and was found to be V ⇤

cbVubC
SM
7 = V ⇤

csVus(0.007 + 0.020i)(1 ± 0.2) [4, 8]. On the other hand the value of
C9 Wilson coe�cient was found to be small after including renormalization group running e↵ects as shown in [7] and
confirmed in [6], while C10 is negligible in the SM [18].
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(ū�µ⌫c)(¯̀�

µ⌫�5`) .

(6)

The chiral projectors are defined as PL,R = (1 ⌥ �5)/2, Fµ⌫ is the electromagnetic field strength tensor. For each of
the operators O7,9,10,S,P we introduce the corresponding counterpart O0

7,9,10,S,P with opposite chiralities of quarks.
Within the SM the Wilson coe�cients Ci result from the perturbative dynamics of the electroweak interactions and
QCD renormalization. The latter e↵ect determines the value of C7(mc) by two-loop mixing with current-current
operators and was found to be V ⇤

cbVubC
SM
7 = V ⇤

csVus(0.007 + 0.020i)(1 ± 0.2) [4, 8]. On the other hand the value of
C9 Wilson coe�cient was found to be small after including renormalization group running e↵ects as shown in [7] and
confirmed in [6], while C10 is negligible in the SM [18].

1

Note that the high-q2 bin quoted by the experiment extends beyond the maximal allowed q2
max

= (mD �m⇡)
2

= 2.99 GeV

2

.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1

2

3

q2[GeV2]

∼d
Γ/
dq

2
[a
rb
itr
ar
y
un
its
]

C7
(')

C9,10
(')

CS,P
(')

CT,T5

LHCb	1304.6365		



Forward-backward	asymmetry	for	the	resonant	background	itself		
(orange)		and	in	the	scenario		 CS = 0.049/�b

CT = 0.2/�b

4

whereas the angular coe�cients are

a`(q
2) =

�

2

�
|V |2 + |A|2

�
+ 8m2

`m
2
D|A|2 + 2q2

⇥
�2
` |S|2 + |P |2

⇤

+ 4m`(m
2
D �m2

⇡ + q2)Re[AP ⇤] ,

b`(q2)

4
= q2�2

`Re[ST
⇤] + q2Re[PT ⇤

5 ]

+m`(m
2
D �m2

⇡ + q2)Re[AT ⇤
5 ] +m`�

1/2�`Re[V S⇤] ,

c`(q
2) = ���2

`

2

�
|V |2 + |A|2

�
+ 2q2

�
�2
` |T |2 + |T5|2

�
+ 4m`�`�

1/2Re[V T ⇤] .

(13)

The coe�cients a` and c` enter then the q2 distribution of branching ratio whereas b` is proportional to forward-
backward asymmetry:

dBR

dq2
(D ! ⇡``) = ⌧D 2N�1/2�`


a`(q

2) +
1

3
c`(q

2)

�
,

AFB(q
2) ⌘

⇣R 1

0
�
R 0

�1

⌘
dcos ✓ d�(D!⇡``)

dq2 d cos ✓

d�(D ! ⇡``)/dq2
=

b`(q2)

a`(q2) +
1
3c`(q

2)
.

(14)

Contributions of the vector resonances ⇢, !, and �, decaying to µ+µ�, is due to the first two terms in the e↵ective
Hamiltonian (4) and electromagnetic interaction. E↵ects of vector resonances to the spectrum can be treated assuming
näıve factorization by adding a q2-dependent piece to C9 that contains vector current of leptons. Analogously, the
scalar contribution of ⌘ feeds into CS . The procedure is described in detail in Ref. [28] for the contribution of
D+ ! ⇡+⇢0(!) and updated for the D+ ! ⇡+� ! ⇡+µ+µ� in Ref. [26]. The current experimental upper bound
outside the resonance region indicates that the long distance contribution is very suppressed. One might expect
that at high invariant dilepton mass bin some excited states of vector mesons might give additional long distance
contribution. However, it was shown in [29] and [30] that contributions of these states is negligible in comparison
with the leading long distance contributions. We parametrize the resonances with the Breit-Wigner shapes,

Cres
9 =

�d

�b

"
a⇢

m2
⇢

q2 �m2
⇢ + i

p
q2�⇢

+ a!
m2

!

q2 �m2
! + im!�!

� a�
m2

�

q2 �m2
� + im���

#
,

Cres
S =

�d

�b

a⌘m
2
⌘

q2 �m2
⌘ + im⌘�⌘

.

(15)

The magnitude of unknown parameters aX (X = ⇢,!,�, ⌘), can be fitted to the measured resonant branching ratios,
given in Tab. I [31]. The corresponding values of |aX | are given in the second row in Tab. I. We treat the relative
phases as free parameters. Alternatively, for the relative phases and magnitudes of aX one can use flavor structure
arguments [18]. In the left-hand panel in Fig. 1 we present the long distance contributions to the di↵erential branching
ratio for D+ ! ⇡+µ+µ� as a function of dilepton invariant mass for a representative set of parameters |aX | from the
1� region (Tab. I) and random phases of aX . On the right-hand panel in Fig. 1 we also indicate the interpretation of
experimental upper bounds (3) in the case where the total amplitude would be constant, namely in the case where all
angular coe�cient functions a`, b`, c` would be independent of q2. We also estimate the saturation of these bounds
by the total resonant decay branching ratio and find for the low- and high-q2 bin contributions to be smaller than
7.3 ⇥ 10�9 and 5.3 ⇥ 10�9, respectively. On the other hand, the short distance contribution to the total branching
ratio of the SM due to the quoted value of C7 is of the order 10�12 and thus negligible.

X ⇢ ! � ⌘

BR(D+ ! ⇡+X(! µ+µ�))[10�8] 3.7(7) < 3.1 160(10) 2.0(3)

|aX | 1.21(12) < 0.26 0.94(3) 0.27(2)

Table I. 1� ranges and 90% CL upper bounds on resonant branching ratios and amplitude parameters [31].

bl(q
2)

S,T5	necessary!	
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Figure 2. Comparison of short-distance spectrum sensitivities to di↵erent Wilson coe�cients. Grey regions indicate the LHCb
experimental low- and high-q2bins.
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C̃
9

= ±C̃
10

1.3 0.81 0.63

Table II. Maximal allowed values of the Wilson coe�cient moduli, |C̃i| = |VubV
⇤
cbCi|, calculated in the nonresonant regions of

D+ ! ⇡+µ+µ� in the low lepton invariant mass region (q2 2 [0.0625, 0.276] GeV2), denoted by I, in the high invariant mass
region (q2 2 [1.56, 4.00] GeV2), denoted by II, and from the upper bound BR(D0 ! µ+µ�) < 7.6 ⇥ 10�9 [13]. The last row
gives the maximal value for the case where C̃

9

= ±C̃
10

. All the quoted bounds have been derived for real Ci. The bounds for
C̃i apply also to the chirally flipped coe�cients C̃0

j .
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Figure 3. Forward-backward asymmetry for the resonant background itself (orange) and in the scenario with CS = 0.049/�b,
CT = 0.2/�b (cyan).

We turn to the discussion of specific models the in next section.
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Test	of	lepton	flavour	universality	viola&on	in	charm	FCNC	decays			

In	1510.0311	(de	Beor	and	Hiller)	it	was	pointed	out	that	bounds	on		
electron-positron	mode	are	weaker:		

BR(D+ ! ⇡+e+e�) < 1.1⇥ 10�6

10

As we use muonic modes frequently, in the following Wilson coefficients and operators without a

lepton flavor index are understood as muonic ones, that is C
(µ)
i = Ci etc.

Neglecting the SM Wilson coefficients, we find the following constraints on the BSM Wilson

coefficients from the limits on the branching fraction of D+ ! ⇡+µ+µ� given in Table II in the

high q2-region (
p
q2 � 1.25GeV) at CL=90%

0.9|C9 + C 0
9|2 + 0.9|C10 + C 0

10|2 + 4.1|CS + C 0
S |2 + 4.2|CP + C 0

P |2 + 1.1|CT |2 + 1.0|CT5|2

+ 0.6Re[(C9 + C 0
9)C

⇤
T ] + 1.2Re[(C10 + C 0

10)(CP + C 0
P )

⇤
]

+ 2.3|C7|2 + 2.8Re[C7(C9 + C 0
9)

⇤
] + 0.8Re[C7C

⇤
T ] . 1 . (29)

Analogous constraints in the full q2-region are somewhat stronger. They read

1.3|C9 + C 0
9|2 + 1.4|C10 + C 0

10|2 + 2.2|CS + C 0
S |2 + 2.3|CP + C 0

P |2 + 0.9|CT |2 + 0.8|CT5|2

+ 0.9Re[(C9 + C 0
9)C

⇤
T ] + 1.0Re[(C10 + C 0

10)(CP + C 0
P )

⇤
]

+ 3.7|C7|2 + 4.4Re[C7(C9 + C 0
9)

⇤
] + 1.3Re[C7C

⇤
T ] . 1 . (30)

The branching fraction B(D0 ! µ+µ�
) < 6.2 · 10�9 at CL=90% [29] provides complementary

constraints as

|CS � C 0
S |2 + |CP � C 0

P + 0.1(C10 � C 0
10)|2 . 0.007 . (31)

Thus, D ! ⇡µµ is sensitive to the complete set of operators, however, the purely leptonic decays

put stronger constraints on scalar/pseudoscalar operators.

Barring cancellations, we find, consistent with [34], |C(0)
9,10| . 1, which can exceed the resonance

contribution at high q2. Assuming no further flavor suppression for the BSM contribution g2/⇤2

(weakly-induced tree level) or g4/(16⇡2
⇤

2
) (weak loop), the limits on C

(0)
9,10 imply quite mild con-

straints for the scale of new physics: ⇤ & O(5) TeV or ⇤ around the electroweak scale, respectively.

With SU(2)L-relations C9 = �C10 the bounds on new physics ease by a factor of 1/
p
2. Analogous

constraints on the other coefficients read |CT,T5| . 1 and |C(0)
S,P | . 0.1. In Fig. 3 we illustrate BSM

effects in the D+ ! ⇡+µ+µ� differential branching fraction at high q2 with two viable choices for

BSM-induced Wilson coefficients. As anticipated, the BSM distributions can exceed the SM one.

Constraints on c ! uee modes are weaker than the c ! uµµ ones, B(D+ ! ⇡+e+e�) < 1.1·10�6

and B(D0 ! e+e�) < 7.9 · 10�8 at CL=90% [29], and imply
���C(e)

S,P � C
(e)0
S,P

��� . 0.3 ,
���C(e)

9,10 � C
(e)0
9,10

��� . 4 ,
���C(e)

T,T5

��� . 5 ,
���C7

⇣
C

(e)
9 � C

(e)0
9

⌘��� . 2 . (32)
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With SU(2)L-relations C9 = �C10 the bounds on new physics ease by a factor of 1/
p
2. Analogous

constraints on the other coefficients read |CT,T5| . 1 and |C(0)
S,P | . 0.1. In Fig. 3 we illustrate BSM
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In	1510.0965	(S.F.	and	N.	Košnik)	it	was	suggested,	assuming	as	in	the	case	
																																	that	NP	does	not	affect	electron-positron	mode,	that	tests	of	LFU		
can	be	performed	either	in	I	or	II	bin		
B ! Ke+e�

10

For the transitions c ! u`+`� the driving flavor changing parameter is ✏u12 that induces scalar and pseudoscalar
Wilson coe�cients, while we assume that ✏`22 is negligible [41]:

�CP = CS =
⇡

4
p
2GF↵�b

mµ

v

✏u⇤12 tan�

m2
H

, (37)

C 0
P = C 0

S =
⇡

4
p
2GF↵�b

mµ

v

✏u21 tan�

m2
H

. (38)

The best upper bounds on CP , CS , or C 0
P , C

0
S pairs are obtained from BR(D0 ! µ+µ�) and read |C̃S � C̃ 0

S |  0.05
and |C̃P � C̃ 0

P |  0.05 which makes them very di�cult to probe in D ! ⇡µ+µ� decay, unless the cancellation between
CS (CP ) and C 0

S (C 0
P ) in D0 ! µ+µ� is arranged by fine-tuning.

D. Flavor specific Z0 extension

An additional neutral gauge boson appears in many extensions of the SM. Current searches for Z 0 at the LHC are
well motivated by many extensions of the SM, see e.g. [42, 43]. Even more, a Z 0 boson can explain B ! K⇤µ+µ�

angular asymmetries puzzle, as presented in e.g. [44, 45]. Assuming as in [43] flavor nonuniversal couplings of Z 0 to
fermions, we allow Z 0 to couple only to the pair c̄u and cū. Such model in the most general way has been considered by
the authors of [3]. In order to avoid constraints coming from the down-type quark sector which will a↵ect left-handed
quark couplings, we allow only right-handed couplings of Lq

Z0 = Cu(ū�µPRc)Z 0
µ. This assumption leads to the same

e↵ective operator He↵ = C6(ū�µPRc)(ū�µPRc) as already discussed in the case of leptoquarks. The e↵ective Wilson
coe�cient describing D0 � D̄0 transition is now:

C6(mZ0) =
|Cu|2
2m2

Z0
. (39)

The bound on C6 (27) leads to |Cu| < 7.1 ⇥ 10�4(mZ0/1 TeV). Allowing Z 0 to couple to muons as in the SM with
g`L = (g/ cos ✓W )(�1/2 + sin2 ✓W ) and g`R = g sin2 ✓W / cos ✓W , we obtain

C 0
9 =

4⇡p
2GF�b↵

(g`L + g`R)C
u

2m2
Z0

(40)

and

C 0
10 =

4⇡p
2GF�b↵

(�g`L + g`R)C
u

2m2
Z0

. (41)

For mZ0 ⇠ 1 TeV this amounts to |C9| . 8 and |C10| . 100, (|C̃9| < 10�3 and |C̃10| < 0.014), and induces negligible
e↵ects in D ! ⇡µ+µ� and D ! µ+µ� decays.

V. LEPTON FLAVOR UNIVERSALITY VIOLATION

Lepton flavor universality was checked in the case of B ! K`+`� with ` = e, µ by the LHCb experiment [15] in
the low dilepton invariant mass region, q2 2 [1, 6] GeV2. The disagreement between the measurement and the value
predicted within the SM is 2.6 � [46]. This disagreement might be result of NP as first pointed out in Ref. [46]. Many
subsequent studies found a number of models which can account for the observed discrepancy. In the following we
assume that the amplitude for D+ ! ⇡+e+e� receives SM contributions only, while in the case of ⇡+µ+µ� mode,
there can be NP contributions, similarly to what was assumed for RK in Ref. [47]. We define LFU ratios in the low-
and high-q2 regions as

RI
⇡ =

BR(D+ ! ⇡+µ+µ�)q22[0.252,0.5252]GeV2

BR(D+ ! ⇡+e+e�)q22[0.252,0.5252]GeV2

, (42)

and

RII
⇡ =

BR(D+ ! ⇡+µ+µ�)q22[1.252,1.732]GeV2

BR(D+ ! ⇡+e+e�)q22[1.252,1.732]GeV2
. (43)
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BR(D0 ! e+e�) < 7.9⇥ 10�8
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|C̃i|max

RII

⇡

SM - 0.999± 0.001

C̃
7

1.6 ⇠ 6–100

C̃
9

1.3 ⇠ 6–120

C̃
10

0.63 ⇠ 3–30

C̃S 0.05 ⇠ 1–2

C̃P 0.05 ⇠ 1–2

C̃T 0.76 ⇠ 6–70

C̃T5

0.74 ⇠ 6–60

C̃
9

= ±C̃
10

0.63 ⇠ 3–60

C̃0
9

= �C̃0
10

��
LQ(3,2,7/6)

0.34 ⇠ 1–20

Table III. The LFU ratio RII

⇡ at high dilepton invariant mass bin and maximal value of each Wilson coe�cient (applies also for
the primed coe�cients, C̃0

i). It is assumed that NP contributes only to the muonic mode. The SM value of RII

⇡ is given in the
first row.

In the SM the departure of the above ratios from 1 comes entirely from lepton mass di↵erences. We find RI,SM
⇡ =

0.87 ± 0.09 in the low-q2 and RII,SM
⇡ = 0.999 ± 0.001 in the high-q2 region, where in the latter region both leptons

are e↵ectively massless. In Tab. III we quote ranges for the ratio RII
⇡ for the maximal allowed values of Wilson

coe�cients by rare charm decays considered in the previous Sections. Generally we find that with currently allowed
Wilson coe�cients and assuming no NP contribution in electronic modes these ratios could become much larger. The
spread in these predictions is large because of unknown relative phases in the resonant part of the spectrum, i.e.,
BR(D+ ! ⇡+e+e�) ⇡ BR(D+ ! ⇡+µ+µ�) ⇡ (0.5–5.3) ⇥ 10�9. Note that large enhancements are allowed in the
scenarios which are currently constrained by D+ ! ⇡+µ+µ�. In the low-q2 region the interference terms in RI

⇡ are
even more pronounced since the e↵ect of nearby ⇢ resonance is interfering either in positive or in negative direction,
and thus we cannot conclude the sign of deviation from the SM value of RI

⇡.

VI. SUMMARY AND OUTLOOK
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10, C
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0
S are obtained from the bound on the
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i = 7, 9, 10, S, P, T, T5 as well as on the coe�cients of the operators of opposite chirality. The constraints are stricter
in the high dilepton invariant mass bin than in the low dilepton invariant mass bin, and this statement applies in
particular to the contributions of the scalar and pseudoscalar operators. Forward-backward asymmetry is sensitive to
the combination of scalar and tensor coe�cients at high-q2.

Then, we have investigated new physics models in which the e↵ective operators may be generated. We have found
that the presence of a leptoquark which is either scalar and weak doublet, (3, 2, 7/6), or has spin-1 and is a weak
singlet, (3, 1, 5/3), can lead to sizeable contributions to the Wilson coe�cients C 0
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SM extension by a Z 0 gauge boson where tree-level amplitude in D0 � D̄0 mixing is a dominant constraint and leaves
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we find that in the high-q2 bin the ratio RII

⇡ is in most cases significantly increased with respect to the SM prediction,
while there is no clear preference between higher and lower values at low-q2 bin ratio RI

⇡. In the leptoquark models
studied in this paper the ratio may be greatly increased, but slight decrease cannot be excluded, presently due to
unknown interplay of weak phases with the phases of resonant spectrum. Chances to observe new physics in rare charm
decays are possible in models where the connection to the stringent constraints stemming from B and K flavor physics
are hindered. New physics models which fulfill this condition are main candidates to be exposed experimentally by

RI,SM
⇡ = 0.87± 0.09

Assump&ons:	
-  e+e-	modes	are	SM-like;	
-  NP	enters	in	μ+μ-	mode	only;	
-  listed	Wilson	coefficients	are	maximally	allowed	by	current	LHCb	data.	
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For the transitions c ! u`+`� the driving flavor changing parameter is ✏u12 that induces scalar and pseudoscalar
Wilson coe�cients, while we assume that ✏`22 is negligible [41]:

�CP = CS =
⇡

4
p
2GF↵�b

mµ

v

✏u⇤12 tan�

m2
H

, (37)

C 0
P = C 0

S =
⇡

4
p
2GF↵�b

mµ

v

✏u21 tan�

m2
H

. (38)

The best upper bounds on CP , CS , or C 0
P , C

0
S pairs are obtained from BR(D0 ! µ+µ�) and read |C̃S � C̃ 0

S |  0.05
and |C̃P � C̃ 0

P |  0.05 which makes them very di�cult to probe in D ! ⇡µ+µ� decay, unless the cancellation between
CS (CP ) and C 0

S (C 0
P ) in D0 ! µ+µ� is arranged by fine-tuning.

D. Flavor specific Z0 extension

An additional neutral gauge boson appears in many extensions of the SM. Current searches for Z 0 at the LHC are
well motivated by many extensions of the SM, see e.g. [42, 43]. Even more, a Z 0 boson can explain B ! K⇤µ+µ�

angular asymmetries puzzle, as presented in e.g. [44, 45]. Assuming as in [43] flavor nonuniversal couplings of Z 0 to
fermions, we allow Z 0 to couple only to the pair c̄u and cū. Such model in the most general way has been considered by
the authors of [3]. In order to avoid constraints coming from the down-type quark sector which will a↵ect left-handed
quark couplings, we allow only right-handed couplings of Lq

Z0 = Cu(ū�µPRc)Z 0
µ. This assumption leads to the same

e↵ective operator He↵ = C6(ū�µPRc)(ū�µPRc) as already discussed in the case of leptoquarks. The e↵ective Wilson
coe�cient describing D0 � D̄0 transition is now:

C6(mZ0) =
|Cu|2
2m2

Z0
. (39)

The bound on C6 (27) leads to |Cu| < 7.1 ⇥ 10�4(mZ0/1 TeV). Allowing Z 0 to couple to muons as in the SM with
g`L = (g/ cos ✓W )(�1/2 + sin2 ✓W ) and g`R = g sin2 ✓W / cos ✓W , we obtain

C 0
9 =

4⇡p
2GF�b↵

(g`L + g`R)C
u

2m2
Z0

(40)

and

C 0
10 =

4⇡p
2GF�b↵

(�g`L + g`R)C
u

2m2
Z0

. (41)

For mZ0 ⇠ 1 TeV this amounts to |C9| . 8 and |C10| . 100, (|C̃9| < 10�3 and |C̃10| < 0.014), and induces negligible
e↵ects in D ! ⇡µ+µ� and D ! µ+µ� decays.

V. LEPTON FLAVOR UNIVERSALITY VIOLATION

Lepton flavor universality was checked in the case of B ! K`+`� with ` = e, µ by the LHCb experiment [15] in
the low dilepton invariant mass region, q2 2 [1, 6] GeV2. The disagreement between the measurement and the value
predicted within the SM is 2.6 � [46]. This disagreement might be result of NP as first pointed out in Ref. [46]. Many
subsequent studies found a number of models which can account for the observed discrepancy. In the following we
assume that the amplitude for D+ ! ⇡+e+e� receives SM contributions only, while in the case of ⇡+µ+µ� mode,
there can be NP contributions, similarly to what was assumed for RK in Ref. [47]. We define LFU ratios in the low-
and high-q2 regions as

RI
⇡ =

BR(D+ ! ⇡+µ+µ�)q22[0.252,0.5252]GeV2

BR(D+ ! ⇡+e+e�)q22[0.252,0.5252]GeV2

, (42)

and

RII
⇡ =

BR(D+ ! ⇡+µ+µ�)q22[1.252,1.732]GeV2

BR(D+ ! ⇡+e+e�)q22[1.252,1.732]GeV2
. (43)
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Z0 = Cu(ū�µPRc)Z 0
µ. This assumption leads to the same
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The LQ Yukawa matrices YL and YR are written in the mass basis of up-type quarks and charged leptons with the
CKM and PMNS rotations present in the down-type quarks and neutrinos. Thus, the couplings of LQ component
with charge 5/3 are

L(5/3) = (¯̀RYLuL)�
(5/3)⇤ � (ūRYR`L)�

(5/3) + h.c. . (23)

The tree level amplitude induced by a nonchiral LQ state �(5/3) involves both chiralities of fermions and is matched
onto the set of (axial)vector, (pseudo)scalar, and (pseudo)tensor operators:

CP = CS = � ⇡

2
p
2GF↵�b

Y L⇤
µu Y R⇤

cµ

m2
�

,

�C 0
P = C 0

S = � ⇡

2
p
2GF↵�b

Y L
µcY

R
uµ

m2
�

,

CT = � ⇡

8
p
2GF↵�b

Y R
uµY

L
µc + Y R⇤

cµ Y L⇤
µu

m2
�

,

CT5 = � ⇡

8
p
2GF↵�b

�Y R
uµY

L
µc + Y R⇤

cµ Y L⇤
µu

m2
�

,

C10 = C9 =
⇡p

2GF↵�b

Y L
µcY

L⇤
µu

m2
�

�C 0
10 = C 0

9 =
⇡p

2GF↵�b

Y R⇤
cµ Y R

uµ

m2
�

.

(24)

In the minimal numerical scenario, strict bounds in the down-type quark sector can be evaded completely by putting
to zero the couplings to the left-handed quarks. In this case we are allowed to have significant contributions to
rare charm decays via the C 0

9 = �C 0
10 contributions for which the bound from the last line of Tab. II applies. The

contribution to D0� D̄0 mixing amplitude is matched onto the e↵ective Hamiltonian H = C6(ūR�
µcR)(ūR�µcR) with

the e↵ective coe�cient at scale m�

C6(m�) = �
�
Y R⇤
cµ Y R

uµ

�2

64⇡2m2
�

= � (GF↵)2

32⇡4
m2

�(C̃
0
10)

2 . (25)

We have assumed that leptoquark does not couple to electrons or tau leptons. Hadronic matrix element of the above
operator in mixing is customarily expressed as

⌦
D̄0

�� (ūR�µcR)(ūR�
µcR)

��D0
↵
= 2

3m
2
Df2

DB, where the bag parameter

in the MS scheme BD(3 GeV) = 0.757(27)(4) has been computed on the lattice by the ETM Collaboration with
2 + 1 + 1 dynamical fermions [39]. The SM part of the mixing amplitude is poorly known due to its nonperturbative
nature and the only robust bound on the LQ couplings is obtained by requirement that the mixing frequency (in the
absence of CP violation) has to be smaller than the world average x = 2|M12|/� = (0.49+0.14

�0.15)% as quoted by the
HFAG [24],

|rC6(m�)|
2mDf2

DBD

3�D
< x , (26)

where r = 0.76 is a renormalization factor due to running of C6 from scale m� = 1 TeV down to 3 GeV [3]. Finally
we find a bound on C 0

9 slightly stronger but comparable to the one obtained from D0 ! µ+µ�:

|C6(m�)| < 2.5⇥ 10�13 GeV�2 =) |C̃ 0
9, C̃

0
10| < 0.34 . (27)

One can imagine an extension of this scenario which would include also scalar and tensor operators. Namely, we
consider a numerically tuned example with m� = 1 TeV and large Y R

cµ = 3. The bound on C 0
10 from D0 ! µ+µ�

would then impose the smallness of coupling Y R
uµ, Y

R
uµ < 0.007. Bounds of similar strength are expected from D0�D̄0

mixing. Now one can introduce a nonzero coupling to left-handed quark doublet Y L
µu that would, together with large

Y R
cµ contribute to the Wilson coe�cients CS,P and CT,T5. However, a very strong bound on CS now emerges from

D0 ! µ+µ� and limits the left-handed coupling, Y L
µu < 1.2⇥ 10�3. Thus we can realize

� C̃ 0
10 = C̃ 0

9 = 0.63 , 4C̃T = 4C̃T5 = C̃P = C̃S = �0.049 , (28)

together with small enough Y L
µu = 1.2 ⇥ 10�3 to comply with the constraints from B, K physics and four fermion

operator constraints [40].

generates	S,	P,		T,T5,		V	and	A	

In	the	case	of	Δ	C=	2		in																							
oscilla&on	there	is	also	a	LQ		contribu&on			
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(5/3) + h.c. . (23)

The tree level amplitude induced by a nonchiral LQ state �(5/3) involves both chiralities of fermions and is matched
onto the set of (axial)vector, (pseudo)scalar, and (pseudo)tensor operators:

CP = CS = � ⇡

2
p
2GF↵�b

Y L⇤
µu Y R⇤

cµ

m2
�

,

�C 0
P = C 0

S = � ⇡

2
p
2GF↵�b

Y L
µcY

R
uµ

m2
�

,

CT = � ⇡

8
p
2GF↵�b

Y R
uµY

L
µc + Y R⇤

cµ Y L⇤
µu

m2
�

,

CT5 = � ⇡

8
p
2GF↵�b

�Y R
uµY

L
µc + Y R⇤

cµ Y L⇤
µu

m2
�

,

C10 = C9 =
⇡p

2GF↵�b

Y L
µcY

L⇤
µu

m2
�

�C 0
10 = C 0

9 =
⇡p

2GF↵�b

Y R⇤
cµ Y R

uµ

m2
�

.

(24)

In the minimal numerical scenario, strict bounds in the down-type quark sector can be evaded completely by putting
to zero the couplings to the left-handed quarks. In this case we are allowed to have significant contributions to
rare charm decays via the C 0

9 = �C 0
10 contributions for which the bound from the last line of Tab. II applies. The

contribution to D0� D̄0 mixing amplitude is matched onto the e↵ective Hamiltonian H = C6(ūR�
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�� (ūR�µcR)(ūR�
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In the minimal numerical scenario, strict bounds in the down-type quark sector can be evaded completely by putting
to zero the couplings to the left-handed quarks. In this case we are allowed to have significant contributions to
rare charm decays via the C 0

9 = �C 0
10 contributions for which the bound from the last line of Tab. II applies. The

contribution to D0� D̄0 mixing amplitude is matched onto the e↵ective Hamiltonian H = C6(ūR�
µcR)(ūR�µcR) with

the e↵ective coe�cient at scale m�

C6(m�) = �
�
Y R⇤
cµ Y R

uµ

�2

64⇡2m2
�

= � (GF↵)2

32⇡4
m2

�(C̃
0
10)

2 . (25)

We have assumed that leptoquark does not couple to electrons or tau leptons. Hadronic matrix element of the above
operator in mixing is customarily expressed as
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D̄0

�� (ūR�µcR)(ūR�
µcR)

��D0
↵
= 2

3m
2
Df2

DB, where the bag parameter

in the MS scheme BD(3 GeV) = 0.757(27)(4) has been computed on the lattice by the ETM Collaboration with
2 + 1 + 1 dynamical fermions [39]. The SM part of the mixing amplitude is poorly known due to its nonperturbative
nature and the only robust bound on the LQ couplings is obtained by requirement that the mixing frequency (in the
absence of CP violation) has to be smaller than the world average x = 2|M12|/� = (0.49+0.14

�0.15)% as quoted by the
HFAG [24],
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where r = 0.76 is a renormalization factor due to running of C6 from scale m� = 1 TeV down to 3 GeV [3]. Finally
we find a bound on C 0

9 slightly stronger but comparable to the one obtained from D0 ! µ+µ�:

|C6(m�)| < 2.5⇥ 10�13 GeV�2 =) |C̃ 0
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10| < 0.34 . (27)

One can imagine an extension of this scenario which would include also scalar and tensor operators. Namely, we
consider a numerically tuned example with m� = 1 TeV and large Y R

cµ = 3. The bound on C 0
10 from D0 ! µ+µ�

would then impose the smallness of coupling Y R
uµ, Y
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uµ < 0.007. Bounds of similar strength are expected from D0�D̄0

mixing. Now one can introduce a nonzero coupling to left-handed quark doublet Y L
µu that would, together with large

Y R
cµ contribute to the Wilson coe�cients CS,P and CT,T5. However, a very strong bound on CS now emerges from

D0 ! µ+µ� and limits the left-handed coupling, Y L
µu < 1.2⇥ 10�3. Thus we can realize

� C̃ 0
10 = C̃ 0

9 = 0.63 , 4C̃T = 4C̃T5 = C̃P = C̃S = �0.049 , (28)

together with small enough Y L
µu = 1.2 ⇥ 10�3 to comply with the constraints from B, K physics and four fermion

operator constraints [40].
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In the minimal numerical scenario, strict bounds in the down-type quark sector can be evaded completely by putting
to zero the couplings to the left-handed quarks. In this case we are allowed to have significant contributions to
rare charm decays via the C 0

9 = �C 0
10 contributions for which the bound from the last line of Tab. II applies. The

contribution to D0� D̄0 mixing amplitude is matched onto the e↵ective Hamiltonian H = C6(ūR�
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We have assumed that leptoquark does not couple to electrons or tau leptons. Hadronic matrix element of the above
operator in mixing is customarily expressed as
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D̄0
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↵
= 2
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DB, where the bag parameter

in the MS scheme BD(3 GeV) = 0.757(27)(4) has been computed on the lattice by the ETM Collaboration with
2 + 1 + 1 dynamical fermions [39]. The SM part of the mixing amplitude is poorly known due to its nonperturbative
nature and the only robust bound on the LQ couplings is obtained by requirement that the mixing frequency (in the
absence of CP violation) has to be smaller than the world average x = 2|M12|/� = (0.49+0.14

�0.15)% as quoted by the
HFAG [24],

|rC6(m�)|
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where r = 0.76 is a renormalization factor due to running of C6 from scale m� = 1 TeV down to 3 GeV [3]. Finally
we find a bound on C 0

9 slightly stronger but comparable to the one obtained from D0 ! µ+µ�:

|C6(m�)| < 2.5⇥ 10�13 GeV�2 =) |C̃ 0
9, C̃

0
10| < 0.34 . (27)

One can imagine an extension of this scenario which would include also scalar and tensor operators. Namely, we
consider a numerically tuned example with m� = 1 TeV and large Y R

cµ = 3. The bound on C 0
10 from D0 ! µ+µ�

would then impose the smallness of coupling Y R
uµ, Y
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uµ < 0.007. Bounds of similar strength are expected from D0�D̄0

mixing. Now one can introduce a nonzero coupling to left-handed quark doublet Y L
µu that would, together with large
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cµ contribute to the Wilson coe�cients CS,P and CT,T5. However, a very strong bound on CS now emerges from

D0 ! µ+µ� and limits the left-handed coupling, Y L
µu < 1.2⇥ 10�3. Thus we can realize

� C̃ 0
10 = C̃ 0
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together with small enough Y L
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(5/3)⇤ � (ūRYR`L)�
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In the minimal numerical scenario, strict bounds in the down-type quark sector can be evaded completely by putting
to zero the couplings to the left-handed quarks. In this case we are allowed to have significant contributions to
rare charm decays via the C 0

9 = �C 0
10 contributions for which the bound from the last line of Tab. II applies. The

contribution to D0� D̄0 mixing amplitude is matched onto the e↵ective Hamiltonian H = C6(ūR�
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We have assumed that leptoquark does not couple to electrons or tau leptons. Hadronic matrix element of the above
operator in mixing is customarily expressed as
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�� (ūR�µcR)(ūR�
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↵
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3m
2
Df2

DB, where the bag parameter

in the MS scheme BD(3 GeV) = 0.757(27)(4) has been computed on the lattice by the ETM Collaboration with
2 + 1 + 1 dynamical fermions [39]. The SM part of the mixing amplitude is poorly known due to its nonperturbative
nature and the only robust bound on the LQ couplings is obtained by requirement that the mixing frequency (in the
absence of CP violation) has to be smaller than the world average x = 2|M12|/� = (0.49+0.14

�0.15)% as quoted by the
HFAG [24],

|rC6(m�)|
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where r = 0.76 is a renormalization factor due to running of C6 from scale m� = 1 TeV down to 3 GeV [3]. Finally
we find a bound on C 0

9 slightly stronger but comparable to the one obtained from D0 ! µ+µ�:

|C6(m�)| < 2.5⇥ 10�13 GeV�2 =) |C̃ 0
9, C̃

0
10| < 0.34 . (27)

One can imagine an extension of this scenario which would include also scalar and tensor operators. Namely, we
consider a numerically tuned example with m� = 1 TeV and large Y R

cµ = 3. The bound on C 0
10 from D0 ! µ+µ�

would then impose the smallness of coupling Y R
uµ, Y

R
uµ < 0.007. Bounds of similar strength are expected from D0�D̄0

mixing. Now one can introduce a nonzero coupling to left-handed quark doublet Y L
µu that would, together with large

Y R
cµ contribute to the Wilson coe�cients CS,P and CT,T5. However, a very strong bound on CS now emerges from

D0 ! µ+µ� and limits the left-handed coupling, Y L
µu < 1.2⇥ 10�3. Thus we can realize

� C̃ 0
10 = C̃ 0

9 = 0.63 , 4C̃T = 4C̃T5 = C̃P = C̃S = �0.049 , (28)

together with small enough Y L
µu = 1.2 ⇥ 10�3 to comply with the constraints from B, K physics and four fermion

operator constraints [40].
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In the minimal numerical scenario, strict bounds in the down-type quark sector can be evaded completely by putting
to zero the couplings to the left-handed quarks. In this case we are allowed to have significant contributions to
rare charm decays via the C 0

9 = �C 0
10 contributions for which the bound from the last line of Tab. II applies. The
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We have assumed that leptoquark does not couple to electrons or tau leptons. Hadronic matrix element of the above
operator in mixing is customarily expressed as

⌦
D̄0
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↵
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2
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DB, where the bag parameter

in the MS scheme BD(3 GeV) = 0.757(27)(4) has been computed on the lattice by the ETM Collaboration with
2 + 1 + 1 dynamical fermions [39]. The SM part of the mixing amplitude is poorly known due to its nonperturbative
nature and the only robust bound on the LQ couplings is obtained by requirement that the mixing frequency (in the
absence of CP violation) has to be smaller than the world average x = 2|M12|/� = (0.49+0.14

�0.15)% as quoted by the
HFAG [24],
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where r = 0.76 is a renormalization factor due to running of C6 from scale m� = 1 TeV down to 3 GeV [3]. Finally
we find a bound on C 0

9 slightly stronger but comparable to the one obtained from D0 ! µ+µ�:

|C6(m�)| < 2.5⇥ 10�13 GeV�2 =) |C̃ 0
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0
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One can imagine an extension of this scenario which would include also scalar and tensor operators. Namely, we
consider a numerically tuned example with m� = 1 TeV and large Y R

cµ = 3. The bound on C 0
10 from D0 ! µ+µ�

would then impose the smallness of coupling Y R
uµ, Y
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uµ < 0.007. Bounds of similar strength are expected from D0�D̄0

mixing. Now one can introduce a nonzero coupling to left-handed quark doublet Y L
µu that would, together with large

Y R
cµ contribute to the Wilson coe�cients CS,P and CT,T5. However, a very strong bound on CS now emerges from

D0 ! µ+µ� and limits the left-handed coupling, Y L
µu < 1.2⇥ 10�3. Thus we can realize

� C̃ 0
10 = C̃ 0
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together with small enough Y L
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D0 ! µ+µ�

Scalar	Leptoquaks	(3,2,7/6)	contributes	to	FCNC	decay	

R2		(3,2,7/6)	can	explain		
RD(*)	and	RK(*)	within		certain	setups	!	
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second bracket. The SM prediction is then �m

SM

s = (19.6 ± 1.6) ps

�1. For the LQ contributions in Eq. (32) we use
the values of B(i)

Bs
(µ) from Ref. [60]. For the multiplicative renormalization of coefficients C

S3
1

and ˜

C

˜R2
1

we neglect
the running from ⇤ to mt, such that running effect to low scale is the same as in the SM, whereas for C

˜R2S3
4,5 we use

the leading order mixing [62] to find C

˜R2S3
4

(µ) = 0.61C

˜R2S3
5

(⇤), C

˜R2S3
5

(µ) = 0.88C

˜R2S3
5

(⇤). For the ratios of bag
parameters we use central values to find B

(5)

Bs
(µ)/B

(1)

Bs
(µ) = 0.99, B(4)

Bs
(µ)/B

(1)

Bs
(µ) = 1.07 [60]. Note that in this case

the experimental value �m

exp

s = (17.757± 0.021) ps

�1 has negligible uncertainty [48].

6. B ! K(⇤)⌫⌫̄

The B ! K

(⇤)

⌫⌫̄ decay offers an excellent probe of the lepton flavor conserving as well as lepton flavor violating
combination of the LQ couplings. Following [39] and with the help of notation in Refs. [43, 63, 64], we write the
effective Lagrangian:

Lb!s⌫̄⌫
e↵

=

GF↵

⇡

p
2

VtbV
⇤

ts

⇣

s̄�µ[C
ij
L PL + C

ij
RPR]b

⌘

(⌫̄i�
µ
(1� �

5

)⌫j). (34)

In the SM we have a contribution for each pair of neutrinos and therefore C

SM,ij
L = C

SM

L �ij where C

SM

L = �6.38 ±
0.06 [63]. The respective contributions of S

3

and ˜

R

2

to the left- and right-handed operators are [41]:

C

S3,ij
L =

⇡v

2

2↵VtbV
⇤

tsm
2

S3

ybjy
⇤

si, C

˜R2,ij
R = � ⇡v

2

2↵VtbV
⇤

tsm
2

˜R2

ỹsj ỹ
⇤

bi. (35)

As discussed in [39] the SM branching ratio for both processes B ! K

(⇤)

⌫⌫̄ is modified by the same factor R⌫⌫ [64, 65],

R⌫⌫ � 1 =

⇡v

2

3↵VtbV
⇤

tsC
SM

L

Re

"

(yy

†

)bs

m

2

S3

� (ỹỹ

†

)sb

m

2

˜R2

#

+

(⇡v

2

)

2

12(↵VtbV
⇤

ts|CSM

L |)2

"

(yy

†

)bb(yy
†

)ss

m

4

S3

+

(ỹỹ

†

)bb(ỹỹ
†

)ss

m

4

˜R2

� 2Re[(yỹ

†

)bs(ỹy
†

)bs]

m

2

S3
m

2

˜R2

#

.

(36)

Among the possible final states, the strongest bound on R⌫⌫ is due to determination of Belle experiment of the upper
bound B(B ! K

⇤

⌫⌫̄) < 2.7⇥ 10

�5 which translates to R⌫⌫ < 2.7, both at 90% C.L. [66].

7. Rare D decays

Due to the weak triplet nature S
3

couples only to the weak doublets of quarks and leptons, the corrections to charged
current processes only rescale the SM charged current contributions. The relevant modification of the charged current
Lagrangian, following Ref. [41] is given by:

Lūidj
¯`⌫k

= �4GFp
2

"

(VijU`k + g

L
ij;`k)(ū

i
L�

µ
d

j
L)(

¯

`L�µ⌫
k
L)

#

, (37)

with the coefficient determined by the S

3

contribution as

g

L
ij,lk = �1

4

(y

†

3

V

T
)li(y3)jk

v

2

m

2

LQ

. (38)

Following [41] one can determine easily the leptoquark correction to the FCNC transition c ! uµ

+

µ

� by using the
effective Lagrangian:

Lc̄u¯`` = �4GFp
2

"

c

LL
cu (c̄L�

µ
uL)(

¯

`L�µ`L)

#

+ h.c., (39)

with

c

LL
cu = � v

2

2m

2

S3

(V

⇤

csgsµ + V

⇤

cbgbµ)(V
⇤

us + Vubgbµ) (40)
CLL

cu = � v2

2m2
S3

(V ⇤
csgsµ + V ⇤

cbbbµ)(Vusgsµ + Vubbbµ)

100	&mes	smaller	than	current	LHCb	bound!	CLL
cu

(3,1,-1/3)	introduced	by	Bauer	and	Neubert	in	1511.01900		
to	explain	both	B	anomalies.	In	1608.07583	(Becirevic	et	al,		showed	that	model		
cannot	survive	flavor	constraints:	
	

K ! µ⌫, B ! ⌧⌫, ⌧ ! µ� Ds ! ⌧⌫, D ! µ+µ�

(3,1,-1/3)	
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⇤

tsm
2

˜R2

ỹsj ỹ
⇤

bi. (35)

As discussed in [39] the SM branching ratio for both processes B ! K

(⇤)

⌫⌫̄ is modified by the same factor R⌫⌫ [64, 65],

R⌫⌫ � 1 =

⇡v

2

3↵VtbV
⇤

tsC
SM

L

Re

"

(yy

†

)bs

m

2

S3

� (ỹỹ

†

)sb

m

2

˜R2

#

+

(⇡v

2

)

2

12(↵VtbV
⇤

ts|CSM

L |)2

"

(yy

†

)bb(yy
†

)ss

m

4

S3

+

(ỹỹ

†

)bb(ỹỹ
†

)ss

m

4

˜R2

� 2Re[(yỹ

†

)bs(ỹy
†

)bs]

m

2

S3
m

2

˜R2

#

.

(36)

Among the possible final states, the strongest bound on R⌫⌫ is due to determination of Belle experiment of the upper
bound B(B ! K

⇤

⌫⌫̄) < 2.7⇥ 10

�5 which translates to R⌫⌫ < 2.7, both at 90% C.L. [66].

7. Rare D decays

Due to the weak triplet nature S
3

couples only to the weak doublets of quarks and leptons, the corrections to charged
current processes only rescale the SM charged current contributions. The relevant modification of the charged current
Lagrangian, following Ref. [41] is given by:

Lūidj
¯`⌫k

= �4GFp
2

"

(VijU`k + g

L
ij;`k)(ū

i
L�

µ
d

j
L)(

¯

`L�µ⌫
k
L)

#

, (37)

with the coefficient determined by the S

3

contribution as

g

L
ij,lk = �1

4

(y

†

3

V

T
)li(y3)jk

v

2

m

2

LQ

. (38)

Following [41] one can determine easily the leptoquark correction to the FCNC transition c ! uµ

+

µ

� by using the
effective Lagrangian:

Lc̄u¯`` = �4GFp
2

"

c

LL
cu (c̄L�

µ
uL)(

¯

`L�µ`L)

#

+ h.c., (39)

with

c

LL
cu = � v

2

2m

2

S3

(V

⇤

csgsµ + V

⇤

cbgbµ)(V
⇤

us + Vubgbµ) (40)

Test	of	lepton	flavour	universality	(LFU)	
Rc

⌧,µ =
�(Ds ! ⌧⌫)

�(Ds ! µ⌫)

Doršner,	SF,	Greljo,	Kamenik		Košnik,	
1603.04993	

Confron&ng	charm	charged	current	and	FCNC	processes:	

Triplet	LQ	S3	in	charm	leptonic	decays	decay	

gLcs,⌧⌧ = � v2

4m2
S3

((y3)
†V T )⌧s(y3)c⌧Rc

⌧,µ,LQ

Rc
⌧,µ,SM

= [1� v2

2m2
S3

((V y⇤3)s⌧ (y
⇤
3)s⌧ � V y⇤3)sµ(y

⇤
3)sµ)]

mS3	[TeV]	

1.0																																	3.2%																																				
1.2																																	2.4%																																				
1.5																																	1.5%																																				

1�Rc
⌧,µ,LQ/R

c
⌧,µ,SM
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2. Vector leptoquark (3, 1, 5/3)

The interactions of the vector LQ state V (5/3)(3, 1, 5/3) with the SM fermions are contained in a single term at the
renormalizable level:

L = Yij (¯̀i�µPRuj)V
(5/3)µ + h.c. . (29)

Generation indices are denoted by i, j. Integrating out V (5/3) results in the right-handed current operators:

C 0
9 = C 0

10 =
⇡p

2GF�b↵

YµcY
⇤
µu

m2
V

. (30)

On the other hand, the same combination of couplings enters the D0 � D̄0 mixing. We employ the same type of
Hamiltonian as in the preceding Section this time the Wilson coe�cient:

C6(mV ) =
(YµuY

⇤
µc)

2

32⇡2m2
V

=
(GF↵)2

16⇡4
m2

V (C̃
0
10)

2 . (31)

Consequence of the bound (27) is that the rare decay Wilson coe�cients are limited:

|C̃ 0
9, C̃

0
10| < 0.24 . (32)

The above knowledge of C 0
9,10 implies that the branching ratio of D ! ⇡µ+µ� in the high-q2 bin is at most 1.4⇥10�8,

where the long-distance uncertainties have been taken into account. The e↵ect is twice smaller than the existing
experimental bound.

C. Two Higgs doublet model type III

In the Two Higgs Doublet Model of type III (THDM III) the neutral Higgses have flavor changing couplings to the
fermions. The spectrum includes two neutral scalars, h and H, one pseudoscalar, A, and two charged scalars, H±. In
the scenario with MSSM-like scalar potential their masses and mixing angles are related [41],

tan� =
vu
vd

, tan 2↵ = tan 2�
m2

A +m2
Z

m2
A �m2

Z

,

m2
H± = m2

A +m2
W m2

H = m2
A +m2

Z �m2
h ,

(33)

where �, tan� = vu/vd, is the angle that diagonalizes the mass matrix of the charged states, ↵ is the mixing angle
of neutral scalars. The vacuum expectation values are normalized to the electroweak vacuum expectation value,
v/

p
2 =

p
v2u + v2d = 174 GeV. The part of the interaction Lagrangian responsible for FCNCs in the up-type quarks

and charged leptons is [41]

L =
y
(`)Hk

ijp
2

Hk
¯̀
L,i`R,j +

y
(u)Hk

ijp
2

HkūL,iuR,j + h.c. , Hk = (H,h,A) , (34)

and the neutral Yukawa couplings for the charged leptons and up-type quarks are

y
(`)Hk

ij = xk
d

m`i

vd
�ij � ✏`ij

�
xk
d tan� � xk⇤

u

�
,

y
(u)Hk

ij = xk
u

mui

vu
�ij � ✏uij

�
xk
u cot� � xk⇤

d

�
,

(35)

respectively. The flavor o↵-diagonal terms ✏`fi, ✏
u
fi are free parameters of the model. The coe�cients xk

q for Hk =
(H,h,A) are determined by the mixing angles of the neutral scalars and the VEVs [41]

xk
u = (� sin↵,� cos↵, i cos�) ,

xk
d = (� cos↵, sin↵, i sin�) .

(36)
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2. Vector leptoquark (3, 1, 5/3)

The interactions of the vector LQ state V (5/3)(3, 1, 5/3) with the SM fermions are contained in a single term at the
renormalizable level:

L = Yij (¯̀i�µPRuj)V
(5/3)µ + h.c. . (29)

Generation indices are denoted by i, j. Integrating out V (5/3) results in the right-handed current operators:

C 0
9 = C 0

10 =
⇡p

2GF�b↵

YµcY
⇤
µu

m2
V

. (30)

On the other hand, the same combination of couplings enters the D0 � D̄0 mixing. We employ the same type of
Hamiltonian as in the preceding Section this time the Wilson coe�cient:

C6(mV ) =
(YµuY

⇤
µc)

2

32⇡2m2
V

=
(GF↵)2

16⇡4
m2

V (C̃
0
10)

2 . (31)

Consequence of the bound (27) is that the rare decay Wilson coe�cients are limited:

|C̃ 0
9, C̃

0
10| < 0.24 . (32)

The above knowledge of C 0
9,10 implies that the branching ratio of D ! ⇡µ+µ� in the high-q2 bin is at most 1.4⇥10�8,

where the long-distance uncertainties have been taken into account. The e↵ect is twice smaller than the existing
experimental bound.

C. Two Higgs doublet model type III

In the Two Higgs Doublet Model of type III (THDM III) the neutral Higgses have flavor changing couplings to the
fermions. The spectrum includes two neutral scalars, h and H, one pseudoscalar, A, and two charged scalars, H±. In
the scenario with MSSM-like scalar potential their masses and mixing angles are related [41],

tan� =
vu
vd

, tan 2↵ = tan 2�
m2

A +m2
Z

m2
A �m2

Z

,

m2
H± = m2

A +m2
W m2

H = m2
A +m2

Z �m2
h ,

(33)

where �, tan� = vu/vd, is the angle that diagonalizes the mass matrix of the charged states, ↵ is the mixing angle
of neutral scalars. The vacuum expectation values are normalized to the electroweak vacuum expectation value,
v/

p
2 =

p
v2u + v2d = 174 GeV. The part of the interaction Lagrangian responsible for FCNCs in the up-type quarks

and charged leptons is [41]

L =
y
(`)Hk

ijp
2

Hk
¯̀
L,i`R,j +

y
(u)Hk

ijp
2

HkūL,iuR,j + h.c. , Hk = (H,h,A) , (34)

and the neutral Yukawa couplings for the charged leptons and up-type quarks are

y
(`)Hk

ij = xk
d

m`i

vd
�ij � ✏`ij

�
xk
d tan� � xk⇤

u

�
,

y
(u)Hk

ij = xk
u

mui

vu
�ij � ✏uij

�
xk
u cot� � xk⇤

d

�
,

(35)

respectively. The flavor o↵-diagonal terms ✏`fi, ✏
u
fi are free parameters of the model. The coe�cients xk

q for Hk =
(H,h,A) are determined by the mixing angles of the neutral scalars and the VEVs [41]

xk
u = (� sin↵,� cos↵, i cos�) ,

xk
d = (� cos↵, sin↵, i sin�) .

(36)
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2. Vector leptoquark (3, 1, 5/3)

The interactions of the vector LQ state V (5/3)(3, 1, 5/3) with the SM fermions are contained in a single term at the
renormalizable level:

L = Yij (¯̀i�µPRuj)V
(5/3)µ + h.c. . (29)

Generation indices are denoted by i, j. Integrating out V (5/3) results in the right-handed current operators:

C 0
9 = C 0

10 =
⇡p

2GF�b↵

YµcY
⇤
µu

m2
V

. (30)

On the other hand, the same combination of couplings enters the D0 � D̄0 mixing. We employ the same type of
Hamiltonian as in the preceding Section this time the Wilson coe�cient:

C6(mV ) =
(YµuY

⇤
µc)

2

32⇡2m2
V

=
(GF↵)2

16⇡4
m2

V (C̃
0
10)

2 . (31)

Consequence of the bound (27) is that the rare decay Wilson coe�cients are limited:

|C̃ 0
9, C̃

0
10| < 0.24 . (32)

The above knowledge of C 0
9,10 implies that the branching ratio of D ! ⇡µ+µ� in the high-q2 bin is at most 1.4⇥10�8,

where the long-distance uncertainties have been taken into account. The e↵ect is twice smaller than the existing
experimental bound.

C. Two Higgs doublet model type III

In the Two Higgs Doublet Model of type III (THDM III) the neutral Higgses have flavor changing couplings to the
fermions. The spectrum includes two neutral scalars, h and H, one pseudoscalar, A, and two charged scalars, H±. In
the scenario with MSSM-like scalar potential their masses and mixing angles are related [41],

tan� =
vu
vd

, tan 2↵ = tan 2�
m2

A +m2
Z

m2
A �m2

Z

,

m2
H± = m2

A +m2
W m2

H = m2
A +m2

Z �m2
h ,

(33)

where �, tan� = vu/vd, is the angle that diagonalizes the mass matrix of the charged states, ↵ is the mixing angle
of neutral scalars. The vacuum expectation values are normalized to the electroweak vacuum expectation value,
v/

p
2 =

p
v2u + v2d = 174 GeV. The part of the interaction Lagrangian responsible for FCNCs in the up-type quarks

and charged leptons is [41]

L =
y
(`)Hk

ijp
2

Hk
¯̀
L,i`R,j +

y
(u)Hk

ijp
2

HkūL,iuR,j + h.c. , Hk = (H,h,A) , (34)

and the neutral Yukawa couplings for the charged leptons and up-type quarks are

y
(`)Hk

ij = xk
d

m`i

vd
�ij � ✏`ij

�
xk
d tan� � xk⇤

u

�
,

y
(u)Hk

ij = xk
u

mui

vu
�ij � ✏uij

�
xk
u cot� � xk⇤

d

�
,

(35)

respectively. The flavor o↵-diagonal terms ✏`fi, ✏
u
fi are free parameters of the model. The coe�cients xk

q for Hk =
(H,h,A) are determined by the mixing angles of the neutral scalars and the VEVs [41]

xk
u = (� sin↵,� cos↵, i cos�) ,

xk
d = (� cos↵, sin↵, i sin�) .

(36)
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2. Vector leptoquark (3, 1, 5/3)

The interactions of the vector LQ state V (5/3)(3, 1, 5/3) with the SM fermions are contained in a single term at the
renormalizable level:

L = Yij (¯̀i�µPRuj)V
(5/3)µ + h.c. . (29)

Generation indices are denoted by i, j. Integrating out V (5/3) results in the right-handed current operators:

C 0
9 = C 0

10 =
⇡p

2GF�b↵

YµcY
⇤
µu

m2
V

. (30)

On the other hand, the same combination of couplings enters the D0 � D̄0 mixing. We employ the same type of
Hamiltonian as in the preceding Section this time the Wilson coe�cient:

C6(mV ) =
(YµuY

⇤
µc)

2

32⇡2m2
V

=
(GF↵)2

16⇡4
m2

V (C̃
0
10)

2 . (31)

Consequence of the bound (27) is that the rare decay Wilson coe�cients are limited:

|C̃ 0
9, C̃

0
10| < 0.24 . (32)

The above knowledge of C 0
9,10 implies that the branching ratio of D ! ⇡µ+µ� in the high-q2 bin is at most 1.4⇥10�8,

where the long-distance uncertainties have been taken into account. The e↵ect is twice smaller than the existing
experimental bound.

C. Two Higgs doublet model type III

In the Two Higgs Doublet Model of type III (THDM III) the neutral Higgses have flavor changing couplings to the
fermions. The spectrum includes two neutral scalars, h and H, one pseudoscalar, A, and two charged scalars, H±. In
the scenario with MSSM-like scalar potential their masses and mixing angles are related [41],

tan� =
vu
vd

, tan 2↵ = tan 2�
m2

A +m2
Z

m2
A �m2

Z

,

m2
H± = m2

A +m2
W m2

H = m2
A +m2

Z �m2
h ,

(33)

where �, tan� = vu/vd, is the angle that diagonalizes the mass matrix of the charged states, ↵ is the mixing angle
of neutral scalars. The vacuum expectation values are normalized to the electroweak vacuum expectation value,
v/

p
2 =

p
v2u + v2d = 174 GeV. The part of the interaction Lagrangian responsible for FCNCs in the up-type quarks

and charged leptons is [41]

L =
y
(`)Hk

ijp
2

Hk
¯̀
L,i`R,j +

y
(u)Hk

ijp
2

HkūL,iuR,j + h.c. , Hk = (H,h,A) , (34)

and the neutral Yukawa couplings for the charged leptons and up-type quarks are

y
(`)Hk

ij = xk
d

m`i

vd
�ij � ✏`ij

�
xk
d tan� � xk⇤

u

�
,

y
(u)Hk

ij = xk
u

mui

vu
�ij � ✏uij

�
xk
u cot� � xk⇤

d

�
,

(35)

respectively. The flavor o↵-diagonal terms ✏`fi, ✏
u
fi are free parameters of the model. The coe�cients xk

q for Hk =
(H,h,A) are determined by the mixing angles of the neutral scalars and the VEVs [41]

xk
u = (� sin↵,� cos↵, i cos�) ,

xk
d = (� cos↵, sin↵, i sin�) .

(36)
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2. Vector leptoquark (3, 1, 5/3)

The interactions of the vector LQ state V (5/3)(3, 1, 5/3) with the SM fermions are contained in a single term at the
renormalizable level:

L = Yij (¯̀i�µPRuj)V
(5/3)µ + h.c. . (29)

Generation indices are denoted by i, j. Integrating out V (5/3) results in the right-handed current operators:

C 0
9 = C 0

10 =
⇡p

2GF�b↵

YµcY
⇤
µu

m2
V

. (30)

On the other hand, the same combination of couplings enters the D0 � D̄0 mixing. We employ the same type of
Hamiltonian as in the preceding Section this time the Wilson coe�cient:

C6(mV ) =
(YµuY

⇤
µc)

2

32⇡2m2
V

=
(GF↵)2

16⇡4
m2

V (C̃
0
10)

2 . (31)

Consequence of the bound (27) is that the rare decay Wilson coe�cients are limited:

|C̃ 0
9, C̃

0
10| < 0.24 . (32)

The above knowledge of C 0
9,10 implies that the branching ratio of D ! ⇡µ+µ� in the high-q2 bin is at most 1.4⇥10�8,

where the long-distance uncertainties have been taken into account. The e↵ect is twice smaller than the existing
experimental bound.

C. Two Higgs doublet model type III

In the Two Higgs Doublet Model of type III (THDM III) the neutral Higgses have flavor changing couplings to the
fermions. The spectrum includes two neutral scalars, h and H, one pseudoscalar, A, and two charged scalars, H±. In
the scenario with MSSM-like scalar potential their masses and mixing angles are related [41],

tan� =
vu
vd

, tan 2↵ = tan 2�
m2

A +m2
Z

m2
A �m2

Z

,

m2
H± = m2

A +m2
W m2

H = m2
A +m2

Z �m2
h ,

(33)

where �, tan� = vu/vd, is the angle that diagonalizes the mass matrix of the charged states, ↵ is the mixing angle
of neutral scalars. The vacuum expectation values are normalized to the electroweak vacuum expectation value,
v/

p
2 =

p
v2u + v2d = 174 GeV. The part of the interaction Lagrangian responsible for FCNCs in the up-type quarks

and charged leptons is [41]

L =
y
(`)Hk

ijp
2

Hk
¯̀
L,i`R,j +

y
(u)Hk

ijp
2

HkūL,iuR,j + h.c. , Hk = (H,h,A) , (34)

and the neutral Yukawa couplings for the charged leptons and up-type quarks are

y
(`)Hk

ij = xk
d

m`i

vd
�ij � ✏`ij

�
xk
d tan� � xk⇤

u

�
,

y
(u)Hk

ij = xk
u

mui

vu
�ij � ✏uij

�
xk
u cot� � xk⇤

d

�
,

(35)

respectively. The flavor o↵-diagonal terms ✏`fi, ✏
u
fi are free parameters of the model. The coe�cients xk

q for Hk =
(H,h,A) are determined by the mixing angles of the neutral scalars and the VEVs [41]

xk
u = (� sin↵,� cos↵, i cos�) ,

xk
d = (� cos↵, sin↵, i sin�) .

(36)

In	the	high	q2	region	branching	ra&o	is		
	two	&mes	smaller	then	the	experimental	bound			

1.4⇥ 10�8

not	present	in	B	physics!	
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The LQ Yukawa matrices YL and YR are written in the mass basis of up-type quarks and charged leptons with the
CKM and PMNS rotations present in the down-type quarks and neutrinos. Thus, the couplings of LQ component
with charge 5/3 are

L(5/3) = (¯̀RYLuL)�
(5/3)⇤ � (ūRYR`L)�

(5/3) + h.c. . (23)

The tree level amplitude induced by a nonchiral LQ state �(5/3) involves both chiralities of fermions and is matched
onto the set of (axial)vector, (pseudo)scalar, and (pseudo)tensor operators:

CP = CS = � ⇡

2
p
2GF↵�b

Y L⇤
µu Y R⇤

cµ

m2
�

,

�C 0
P = C 0

S = � ⇡

2
p
2GF↵�b

Y L
µcY

R
uµ

m2
�

,

CT = � ⇡

8
p
2GF↵�b

Y R
uµY

L
µc + Y R⇤

cµ Y L⇤
µu

m2
�

,

CT5 = � ⇡

8
p
2GF↵�b

�Y R
uµY

L
µc + Y R⇤

cµ Y L⇤
µu

m2
�

,

C10 = C9 =
⇡p

2GF↵�b

Y L
µcY

L⇤
µu

m2
�

�C 0
10 = C 0

9 =
⇡p

2GF↵�b

Y R⇤
cµ Y R

uµ

m2
�

.

(24)

In the minimal numerical scenario, strict bounds in the down-type quark sector can be evaded completely by putting
to zero the couplings to the left-handed quarks. In this case we are allowed to have significant contributions to
rare charm decays via the C 0

9 = �C 0
10 contributions for which the bound from the last line of Tab. II applies. The

contribution to D0� D̄0 mixing amplitude is matched onto the e↵ective Hamiltonian H = C6(ūR�
µcR)(ūR�µcR) with

the e↵ective coe�cient at scale m�

C6(m�) = �
�
Y R⇤
cµ Y R

uµ

�2

64⇡2m2
�

= � (GF↵)2

32⇡4
m2

�(C̃
0
10)

2 . (25)

We have assumed that leptoquark does not couple to electrons or tau leptons. Hadronic matrix element of the above
operator in mixing is customarily expressed as

⌦
D̄0

�� (ūR�µcR)(ūR�
µcR)

��D0
↵
= 2

3m
2
Df2

DB, where the bag parameter

in the MS scheme BD(3 GeV) = 0.757(27)(4) has been computed on the lattice by the ETM Collaboration with
2 + 1 + 1 dynamical fermions [39]. The SM part of the mixing amplitude is poorly known due to its nonperturbative
nature and the only robust bound on the LQ couplings is obtained by requirement that the mixing frequency (in the
absence of CP violation) has to be smaller than the world average x = 2|M12|/� = (0.49+0.14

�0.15)% as quoted by the
HFAG [24],

|rC6(m�)|
2mDf2

DBD

3�D
< x , (26)

where r = 0.76 is a renormalization factor due to running of C6 from scale m� = 1 TeV down to 3 GeV [3]. Finally
we find a bound on C 0

9 slightly stronger but comparable to the one obtained from D0 ! µ+µ�:

|C6(m�)| < 2.5⇥ 10�13 GeV�2 =) |C̃ 0
9, C̃

0
10| < 0.34 . (27)

One can imagine an extension of this scenario which would include also scalar and tensor operators. Namely, we
consider a numerically tuned example with m� = 1 TeV and large Y R

cµ = 3. The bound on C 0
10 from D0 ! µ+µ�

would then impose the smallness of coupling Y R
uµ, Y

R
uµ < 0.007. Bounds of similar strength are expected from D0�D̄0

mixing. Now one can introduce a nonzero coupling to left-handed quark doublet Y L
µu that would, together with large

Y R
cµ contribute to the Wilson coe�cients CS,P and CT,T5. However, a very strong bound on CS now emerges from

D0 ! µ+µ� and limits the left-handed coupling, Y L
µu < 1.2⇥ 10�3. Thus we can realize

� C̃ 0
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2. Vector leptoquark (3, 1, 5/3)

The interactions of the vector LQ state V (5/3)(3, 1, 5/3) with the SM fermions are contained in a single term at the
renormalizable level:

L = Yij (¯̀i�µPRuj)V
(5/3)µ + h.c. . (29)

Generation indices are denoted by i, j. Integrating out V (5/3) results in the right-handed current operators:

C 0
9 = C 0

10 =
⇡p

2GF�b↵

YµcY
⇤
µu

m2
V

. (30)

On the other hand, the same combination of couplings enters the D0 � D̄0 mixing. We employ the same type of
Hamiltonian as in the preceding Section this time the Wilson coe�cient:

C6(mV ) =
(YµuY

⇤
µc)

2

32⇡2m2
V

=
(GF↵)2

16⇡4
m2

V (C̃
0
10)

2 . (31)

Consequence of the bound (27) is that the rare decay Wilson coe�cients are limited:

|C̃ 0
9, C̃

0
10| < 0.24 . (32)

The above knowledge of C 0
9,10 implies that the branching ratio of D ! ⇡µ+µ� in the high-q2 bin is at most 1.4⇥10�8,

where the long-distance uncertainties have been taken into account. The e↵ect is twice smaller than the existing
experimental bound.

C. Two Higgs doublet model type III

In the Two Higgs Doublet Model of type III (THDM III) the neutral Higgses have flavor changing couplings to the
fermions. The spectrum includes two neutral scalars, h and H, one pseudoscalar, A, and two charged scalars, H±. In
the scenario with MSSM-like scalar potential their masses and mixing angles are related [41],

tan� =
vu
vd

, tan 2↵ = tan 2�
m2

A +m2
Z

m2
A �m2

Z

,

m2
H± = m2

A +m2
W m2

H = m2
A +m2

Z �m2
h ,

(33)

where �, tan� = vu/vd, is the angle that diagonalizes the mass matrix of the charged states, ↵ is the mixing angle
of neutral scalars. The vacuum expectation values are normalized to the electroweak vacuum expectation value,
v/

p
2 =

p
v2u + v2d = 174 GeV. The part of the interaction Lagrangian responsible for FCNCs in the up-type quarks

and charged leptons is [41]

L =
y
(`)Hk

ijp
2

Hk
¯̀
L,i`R,j +

y
(u)Hk

ijp
2

HkūL,iuR,j + h.c. , Hk = (H,h,A) , (34)

and the neutral Yukawa couplings for the charged leptons and up-type quarks are

y
(`)Hk

ij = xk
d

m`i

vd
�ij � ✏`ij

�
xk
d tan� � xk⇤

u

�
,

y
(u)Hk

ij = xk
u

mui

vu
�ij � ✏uij

�
xk
u cot� � xk⇤

d

�
,

(35)

respectively. The flavor o↵-diagonal terms ✏`fi, ✏
u
fi are free parameters of the model. The coe�cients xk

q for Hk =
(H,h,A) are determined by the mixing angles of the neutral scalars and the VEVs [41]

xk
u = (� sin↵,� cos↵, i cos�) ,

xk
d = (� cos↵, sin↵, i sin�) .

(36)
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respectively. The flavor o↵-diagonal terms ✏`fi, ✏
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For the transitions c ! u`+`� the driving flavor changing parameter is ✏u12 that induces scalar and pseudoscalar
Wilson coe�cients, while we assume that ✏`22 is negligible [41]:

�CP = CS =
⇡

4
p
2GF↵�b

mµ

v

✏u⇤12 tan�

m2
H

, (37)

C 0
P = C 0

S =
⇡

4
p
2GF↵�b

mµ

v

✏u21 tan�

m2
H

. (38)

The best upper bounds on CP , CS , or C 0
P , C

0
S pairs are obtained from BR(D0 ! µ+µ�) and read |C̃S � C̃ 0

S |  0.05
and |C̃P � C̃ 0

P |  0.05 which makes them very di�cult to probe in D ! ⇡µ+µ� decay, unless the cancellation between
CS (CP ) and C 0

S (C 0
P ) in D0 ! µ+µ� is arranged by fine-tuning.

D. Flavor specific Z0 extension

An additional neutral gauge boson appears in many extensions of the SM. Current searches for Z 0 at the LHC are
well motivated by many extensions of the SM, see e.g. [42, 43]. Even more, a Z 0 boson can explain B ! K⇤µ+µ�

angular asymmetries puzzle, as presented in e.g. [44, 45]. Assuming as in [43] flavor nonuniversal couplings of Z 0 to
fermions, we allow Z 0 to couple only to the pair c̄u and cū. Such model in the most general way has been considered by
the authors of [3]. In order to avoid constraints coming from the down-type quark sector which will a↵ect left-handed
quark couplings, we allow only right-handed couplings of Lq

Z0 = Cu(ū�µPRc)Z 0
µ. This assumption leads to the same

e↵ective operator He↵ = C6(ū�µPRc)(ū�µPRc) as already discussed in the case of leptoquarks. The e↵ective Wilson
coe�cient describing D0 � D̄0 transition is now:

C6(mZ0) =
|Cu|2
2m2

Z0
. (39)

The bound on C6 (27) leads to |Cu| < 7.1 ⇥ 10�4(mZ0/1 TeV). Allowing Z 0 to couple to muons as in the SM with
g`L = (g/ cos ✓W )(�1/2 + sin2 ✓W ) and g`R = g sin2 ✓W / cos ✓W , we obtain

C 0
9 =

4⇡p
2GF�b↵

(g`L + g`R)C
u

2m2
Z0

(40)

and

C 0
10 =

4⇡p
2GF�b↵

(�g`L + g`R)C
u

2m2
Z0

. (41)

For mZ0 ⇠ 1 TeV this amounts to |C9| . 8 and |C10| . 100, (|C̃9| < 10�3 and |C̃10| < 0.014), and induces negligible
e↵ects in D ! ⇡µ+µ� and D ! µ+µ� decays.

V. LEPTON FLAVOR UNIVERSALITY VIOLATION

Lepton flavor universality was checked in the case of B ! K`+`� with ` = e, µ by the LHCb experiment [15] in
the low dilepton invariant mass region, q2 2 [1, 6] GeV2. The disagreement between the measurement and the value
predicted within the SM is 2.6 � [46]. This disagreement might be result of NP as first pointed out in Ref. [46]. Many
subsequent studies found a number of models which can account for the observed discrepancy. In the following we
assume that the amplitude for D+ ! ⇡+e+e� receives SM contributions only, while in the case of ⇡+µ+µ� mode,
there can be NP contributions, similarly to what was assumed for RK in Ref. [47]. We define LFU ratios in the low-
and high-q2 regions as

RI
⇡ =

BR(D+ ! ⇡+µ+µ�)q22[0.252,0.5252]GeV2

BR(D+ ! ⇡+e+e�)q22[0.252,0.5252]GeV2

, (42)

and

RII
⇡ =

BR(D+ ! ⇡+µ+µ�)q22[1.252,1.732]GeV2

BR(D+ ! ⇡+e+e�)q22[1.252,1.732]GeV2
. (43)
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For the transitions c ! u`+`� the driving flavor changing parameter is ✏u12 that induces scalar and pseudoscalar
Wilson coe�cients, while we assume that ✏`22 is negligible [41]:

�CP = CS =
⇡

4
p
2GF↵�b

mµ

v

✏u⇤12 tan�

m2
H

, (37)

C 0
P = C 0

S =
⇡

4
p
2GF↵�b

mµ

v

✏u21 tan�

m2
H

. (38)

The best upper bounds on CP , CS , or C 0
P , C

0
S pairs are obtained from BR(D0 ! µ+µ�) and read |C̃S � C̃ 0

S |  0.05
and |C̃P � C̃ 0

P |  0.05 which makes them very di�cult to probe in D ! ⇡µ+µ� decay, unless the cancellation between
CS (CP ) and C 0

S (C 0
P ) in D0 ! µ+µ� is arranged by fine-tuning.

D. Flavor specific Z0 extension

An additional neutral gauge boson appears in many extensions of the SM. Current searches for Z 0 at the LHC are
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µ. This assumption leads to the same

e↵ective operator He↵ = C6(ū�µPRc)(ū�µPRc) as already discussed in the case of leptoquarks. The e↵ective Wilson
coe�cient describing D0 � D̄0 transition is now:

C6(mZ0) =
|Cu|2
2m2

Z0
. (39)

The bound on C6 (27) leads to |Cu| < 7.1 ⇥ 10�4(mZ0/1 TeV). Allowing Z 0 to couple to muons as in the SM with
g`L = (g/ cos ✓W )(�1/2 + sin2 ✓W ) and g`R = g sin2 ✓W / cos ✓W , we obtain

C 0
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4⇡p
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u

2m2
Z0

(40)
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4⇡p
2GF�b↵
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u

2m2
Z0

. (41)
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Scalar	leptoquark			
(3,2,7/6)		

CS,CP,	CS’,CP‘,CT,CT5,		
C9,C!0,C9’,C10’	

VcbVub|C9,	C10|<	0.34		

Vector	leptoquark			
(3,1,5/3)		

C9’	=	C10’	 VcbVub|C9’,	C10’|<	0.24		

Two	Higgs	doublet		
Model	type	III		 CS,CP,	CS’,CP‘	

VcbVub|CS	–	CS’|<	0.005		

VcbVub|CP	–	CP’|<	0.005		

Z’	model		 C9’,C10’	
	

VcbVub|C9’,|<	0.001	
VcbVub|C10’|	<	0.014	



1510.0311	(de	Beor	and	Hiller)	
1705.02251	(Sahoo	and	Mohanta)	
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FIG. 3: The differential branching fraction dB(D+ ! ⇡+µ+µ�
)/dq2 at high q2. The solid blue curve is the

non-resonant SM prediction at µc = mc and the lighter blue band its µc-uncertainty, the dashed black line

denotes the 90% CL experimental upper limit [28] and the orange band shows the resonant contributions.

The additional curves illustrate two viable, sample BSM scenarios, |C9| = |C10| = 0.6 (dot-dashed cyan

curve) and C
(0)
i = 0.05 (dotted purple curve).

To discuss LFV we introduce the following effective Lagrangian

Lweak

eff

(µ ⇠ mc) =
4GFp

2

↵e

4⇡

X

i

⇣
K

(e)
i O

(e)
i +K

(µ)
i O

(µ)
i

⌘
, (c ! ue±µ⌥

) , (33)

where the K
(l)
i denote Wilson coefficients and the operators O

(l)
i read

O
(e)
9 = (ū�µPLc) (e�

µµ) , O
(µ)
9 = (ū�µPLc) (µ�

µe) , (34)

and all others in analogous notation to Eq. (28). The LFV Wilson coefficients are constrained by

B(D0 ! e+µ�
+ e�µ+

) < 2.6 · 10�7, B(D+ ! ⇡+e+µ�
) < 2.9 · 10�6 and B(D+ ! ⇡+e�µ+

) <

3.6 · 10�6 at CL=90% [29] as
���K(l)

S,P �K
(l)0
S,P

��� . 0.4 ,
���K(l)

9,10 �K
(l)0
9,10

��� . 6 ,
���K(l)

T,T5

��� . 7 , l = e, µ . (35)

The observables in the D ! Pl+l� angular distribution, AFB and FH , Eqs. (D2), (D3) can

be sizable while respecting the model-independent bounds. We find that, upon q2-integration,

|AFB(D
+ ! ⇡+µ+µ�

)| . 0.6, |AFB(D
+ ! ⇡+e+e�)| . 0.8, FH(D+ ! ⇡+µ+µ�

) . 1.5 and

c ! uµ±e⌥
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9 = (ū�µPLc) (e�

µµ) , O
(µ)
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i denote Wilson coefficients and the operators O

(l)
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O
(e)
9 = (ū�µPLc) (e�

µµ) , O
(µ)
9 = (ū�µPLc) (µ�

µe) , (34)

and all others in analogous notation to Eq. (28). The LFV Wilson coefficients are constrained by

B(D0 ! e+µ�
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) < 2.6 · 10�7, B(D+ ! ⇡+e+µ�
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|AFB(D
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FIG. 3: The differential branching fraction dB(D+ ! ⇡+µ+µ�
)/dq2 at high q2. The solid blue curve is the

non-resonant SM prediction at µc = mc and the lighter blue band its µc-uncertainty, the dashed black line

denotes the 90% CL experimental upper limit [28] and the orange band shows the resonant contributions.

The additional curves illustrate two viable, sample BSM scenarios, |C9| = |C10| = 0.6 (dot-dashed cyan

curve) and C
(0)
i = 0.05 (dotted purple curve).
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The observables in the D ! Pl+l� angular distribution, AFB and FH , Eqs. (D2), (D3) can

be sizable while respecting the model-independent bounds. We find that, upon q2-integration,

|AFB(D
+ ! ⇡+µ+µ�

)| . 0.6, |AFB(D
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Dark	Mater	in	charm	decays	

Badin	&	Petrov	1005.1277	suggested		to	search	for	processes	with	missing	energy	̸E	in			
	
D0 ! �E could	be	SM	neutrinos	or	DM!	

Belle	collabora&on	1611.09455	
upper	bound		
BR(D0	→	invisible)	<9.4	×	10−5		
	

SM:BR(D0	→	νν)	=	1.1	×	10−30		

F.	C.	Correia,	SF,	1609.0860,	
Batell	et	al.1103.0721		
			

L = �1

4
V↵�V

↵� + |Dµ�|2 + µ̄RiD · �µR

�

2
V↵�F

↵� � L̄µRHSM
�

⇤
+ h.c.

Model	of	DM:	gauge	boson	+scalar			
	SSB	U(1)d	

V	is	the	gauge	boson,	neutral	under	the	SM	gauge	group	and	charged	under	U(1)d	
κ	is	a	mixing	angle	between	dark	boson	and	photon	
		

New	“dark”	Higgs	with	the	condensate		
h�i = vRp

2

D↵ = @↵ + igRV↵ + ieQEMA↵
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LHC	constraints	on							:		high-mass	ττ	produc&on		

Processes	in	t-channel		
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Figure 1: Leading order Feynman diagrams for t-channel pp ! ⌧+⌧� production at the LHC mediated
by both third-generation LQs.

1 Collider constrains

As shown in ??, direct LHC searches for ⌧⌧ resonances can produce stringent bounds on NP
models for the RD(⇤) anomaly. These models will generate neutral currents with large couplings to
third generation fermions that enhance bb̄ ! ⌧+⌧� production at the LHC. With enough integrated
luminosity, the limits from ⌧⌧ searches are sensitive to couplings of order O(1) in the 1 TeV region. In
the leptoquark model proposed here, the fact that both S

3

and R̃
2

contribute to low-energy processes
implies smaller b� ⌧ Yukawa couplings to each leptoquark. These smaller Yukawas could potentially
evade direct search limits from ?? (the same mechanism has been employed in ??). Nevertheless,
fitting the low-energy anomalies and flavor constrains leeds to non-negligeable s� ⌧ couplings to both
leptoquarks. This will generate a large enhancement of ss̄ ! ⌧+⌧� production at the LHC. Given
that the PDF of the strange quark is enhanced in comparison to the bottom quark by a factor of ⇠ 3,
it is important to reinterpret the limits derived in ?? when both leptoquarks with sizeable s� ⌧ and
b� ⌧ couplings are included. In the following we confront the leptoquark model to existing 13 TeV Z 0

resonance searches in the high-mass tails of inclusive ⌧⌧ production. Besides ⌧⌧ resonance searches,
we have also analyzed direct searches exclusive for third generation leptoquarks, namely leptoquark
pair production from QCD interactions.

Discuss about other constrains such as di-muons and pair production of leptoquarks of second-gen...

1.1 High-mass ⌧⌧ production

Each leptoquark component contributes to pp ! ⌧+⌧� via qq̄ annihilation (q = s, c, b) in a t-channel

exchange of S4/3
3

, S1/3
3

and R̃2/3
2

as depicted in Fig.1. First we calculate the leading-order (LO)
fiducial cross-section of pp ! ⌧+⌧� in the leptoquark model defined by the following high-mass cuts:
pT (⌧) > 150 GeV (50 GeV) for the leading (sub-leading) ⌧ -lepton and an invariant mass cut for the
⌧⌧ pair of m⌧⌧ > 300 GeV. The fiducial cross-section is decomposed in the following way:

�fid

pp!⌧⌧ (ys⌧ , ỹs⌧ ,↵, ↵̃) = �(1)(y2s⌧ , ỹ
2

s⌧ ) + �(2)(↵, ↵̃) + �(3)

⇣ ↵2

y2s⌧
,
↵̃2

ỹ2s⌧

⌘

(1)

where ↵ ⌘ ys⌧yb⌧ and ↵̃ ⌘ ỹs⌧ ỹb⌧ . In order to keep the analysis simple we assume all Yukawa couplings
to be real and the CKM matrix to be V ⇡ 1. Here �(1), �(2) and �(3) correspond to the fiducial cross-
sections of the processes ss̄ (cc̄) ! ⌧+⌧� (Fig.1 a,c), sb̄ (s̄b) ! ⌧+⌧� (Fig.1 b) and bb̄ ! ⌧+⌧� (Fig.1
a), respectively. These can be expressed as the following quartic polynomials in the couplings:

�(1)(y2s⌧ , ỹ
2

s⌧ ) = y4s⌧ A
(1)

1

+ ỹ4s⌧ A
(1)

2

+ y2s⌧ ỹ
2

s⌧ A
(1)

3

(2)

�(2)(↵, ↵̃) = ↵2A(2)

1

+ ↵̃2A(2)

2

+ ↵↵̃A(2)

3

(3)

�(3)

⇣ ↵2

y2s⌧
,
↵̃2

ỹ2s⌧

⌘

=
↵4

y4s⌧
A(3)

1

+
↵̃4

ỹ4s⌧
A(3)

2

+
↵2↵̃2

y2s⌧ ỹ
2

s⌧
A(3)

3

. (4)

1

Flavour	anomalies	generate	s	τ	,	bτ	and	cτ		
	rela&vely	large	couplings.	
s	quark	pdf	func&on	for	protons	are	~	3	&mes	
	lagrer	contribu&on	then	for	b	quark.		
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calculations we use the approximate expression from Ref. [96] for the cross-section at NLO

�pair(m) ⇡ exp

n

2

X

n=�2

Cn

⇣ m

[TeV]

⌘no

[fb] , (A.2)

where (C�2

, C�1

, C
0

, C
1

, C
2

) = (�0.300, 3.318, 2.762,�3.780,�0.299) at NLO in QCD for
LHC collision energies of

p
s = 13TeV. Equating the right hand side of Eq. (A.1) to the

total cross-section derived in the two LQ scenario �pp!⌧⌧bb = (�2

1

+ �2

2

)�pair(mLQ

) and
demanding 0  �eff  1 we find

�eff =

r

�2

1

+ �2

2

2

, meff = ��1

( 2�pair(mLQ) ) , (A.3)

where ��1 is the inverse function of Eq. (A.2). Here we assume negligible interference effects
between the decay products of the LQ

1,2 and simply add two cross-sections together. After
calculating ��1 numerically we can use Eq. (A.3) to map the CMS Collaboration 12.9 fb�1

exclusion limits in the �–m
LQ

plane as reported in Fig. 9 of Ref. [81] into the exclusion
limits for two generic non-interfering third-generation LQs with degenerate mass. These
limits are shown in Fig. 4.

B High-mass ⌧⌧ production cross-sections

We obtain the following fiducial cross-sections in fb for the process pp ! ⌧⌧ for m
LQ

=

1TeV:

�ss̄(ys⌧ ) = 12.042 y4st + 5.126 y2st , (B.1)
�s¯b(ys⌧ , yb⌧ ) = 12.568 y2s⌧y

2

b⌧ , (B.2)
�b¯b(yb⌧ ) = 3.199 y4b⌧ + 1.385 y2b⌧ , (B.3)

�cc̄,uū,uc̄(ys⌧ ) = 3.987 y4s⌧ � 5.189 y2s⌧ . (B.4)

Notice that in each individual production channel the interferences can be large. In particu-
lar, these dominate in cc̄ (uū)(uc̄) ! ⌧⌧ production over the squared LQ terms for Yukawa
couplings of order one, as shown in Eq. (B.4). Only after summing across all channels
the total interference is found to be sub-leading when compared to the total LQ squared
amplitudes in most portions of parameter space. This happens because of an accidental
cancellation between the constructive S

3

–Z interference in ss̄ ! ⌧⌧ given by the second
term in Eq. (B.1) and the destructive S

3

–Z interference in cc̄ (uū)(uc̄) ! ⌧⌧ given by the
second term in Eq. (B.4). The remaining small (constructive) interference after cancella-
tions is mostly given by ⌧⌧ production from bottom fusion and is negligible in high-mass
⌧⌧ searches for the current level of experimental uncertainties.
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Direct	probes	of	flavor-changing	neutral	currents	in	e+e-	collisions	
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D0 ! e+e�Due	to	helicity	suppression	difficult	to	measure	branching	ra&o		

e�

e+

D⇤

D

⇡(�)

FIG. 1: Probing the cū ! e+e� vertex with the D⇤(2007)0 resonance production in e+e� collisions

.

transition experimentally. Assuming time-reversal invariance, it would be equivalent to

measure the corresponding production process e+e� ! D⇤, as shown in Fig. 1. In order

to do so, we propose to run an e+e� collider, such as BEPCII [7], at the center-of-mass

energy corresponding to the mass of the D⇤ meson. Note that BEPCII already scanned this

region of energies, achieving the luminosity of about 5⇥ 1031 cm�2 s�1 around
p
s = 2 GeV

[8]. If produced, the D⇤0 resonance will decay via strong (D⇤0 ! D0⇡0) or electromagnetic

(D⇤0 ! D0�) interactions with branching fractions of (61.9 ± 2.9)% and (38.1 ± 2.9)%

respectively.1

In the setup discussed in this paper, the D⇤ production process is very rare. However, the

identification of even a single charmed-meson final state from the e+e� ! D⇤0 ! D0⇡0 decay

would provide an unambiguous tag for this flavor-changing production process. Naturally,

one also needs an adequate quality of the ⇡0 ! 2� identification and pion-kaon separation

in the D0 decays in order to reject background processes.

Our proposal may also be realized in the b-quark sector by scanning the region of the

B⇤
s,d resonances at an e+e� collider. This will probe the processes e+e� ! B⇤

s,d originating

from the b ! s(d)`+`� quark currents. In fact, studying the transitions involving electrons

could also shed some light on recent hints at lepton non-universality in b ! se+e� versus

b ! sµ+µ� [4].

Note also that tuning an e+e� accelerator to the masses of resonances is not the only

possibility to access their production. Some sensitivity to these processes could be also

1 Note that the charged mode D⇤0 ! D+⇡� is forbidden by the lack of the available phase space.

3

Single	charm	produc&on	can	test		

achieved by studying radiative return events at currently running e+e� machines operating

at their nominal energies.

The rest of this paper is devoted to a more detailed discussion of this proposal and to

the relevant theoretical estimates.

II. e+e� ! D⇤ RESONANT PRODUCTION.

Let us consider a generic scattering amplitude of e+e� ! D⇡, and assess the contribution

of the narrow resonance D⇤ to this process depicted in Fig. 1. Writing this amplitude as a

matrix element of a generic lepton-quark interaction

H =
�0

M2
(c̄�µu)(ē�

µe), (1)

where only the vector currents are kept for simplicity and an e↵ective scale M and dimen-

sionless coupling �0 are introduced, we obtain

M(e+e� ! D0⇡0) = hD0(pD)⇡
0(p⇡)|H|e+(p+)e�(p�)i

=
�0

M2
hD0(pD)⇡

0(p⇡)|c̄�µu|0ih0|ē�µe|e+(p+)e�(p�)i (2)

=
�0

M2

�

2f+
D0⇡0(s)p⇡µ

�

v(p+)�
µu(p�) ,

where the lepton current is factorized out and the hadronic matrix element is expressed via

the D0 ! ⇡0 vector form factor at s = (pD + p⇡)2 � (mD + m⇡)2. Note that
p
s is the

center-of-mass energy of the e+e�-collision. Up to an isospin factor, the same vector form

factor appears in the semileptonic D0 ! ⇡�`+⌫` decay, where s  (mD �m⇡)2.

At first place, it is the e↵ective coupling in Eq. (1) that determines the value of the cross

section calculated from (3). Yet, the presence of a narrow resonance in the form factor is

also crucial. To see that, we isolate the two lowest resonance contributions to the form

factor, that is, D⇤ and D⇤0 = D(2600), where the latter, with the mass mD⇤0 = 2612 ± 6

MeV and total width �D⇤0 = 93 ± 14 MeV [9], is the most suitable candidate for the first

radial excitation of D⇤-meson. In the resulting decomposition

f+
D0⇡0(s) =

fD⇤0gD⇤0D0⇡0mD⇤0

2(m2
D⇤0 � s� imD⇤0�0)

+
fD⇤00gD⇤00D0⇡0mD⇤00

2(m2
D⇤00 � s� imD⇤00�D⇤00)

+
⇥

f+
D0⇡0(s)

⇤

bgr
, (3)

we expressed the residues of both poles via decay constants of vector resonances and their

4

which results in the SD contribution to the branching fraction:

BD⇤!e+e� =
↵2G2

F

96⇡3�0
m3

D⇤f 2
D⇤

 

�

�

�

�

Cc,e↵
9 + 2

mc

mD⇤

fT
D⇤

fD⇤
Cc,e↵

7

�

�

�

�

2

+ |Cc
10|

2

!

. (22)

Adopting mc = 1.3 GeV, we use for the Wilson coe�cient2, Cc
9(µ = mc) = 0.198|V ⇤

ubVcb|,
neglect Cc

10(µ = mc) and employ the results of the two-loop calculation [14] for the remaining

e↵ective coe�cient, Cc,e↵
7 (µ = mc) = �0.0025. We also use the central value of the QCD

sum rule estimate fD⇤ ⇡ 242 MeV [15]. Substituting all input paramaters in Eq. (22), we

find

BSD
D⇤!e+e� ⇡ 2.0⇥ 10�19 . (23)

As expected, this number is extremely small, several orders of magnitude below the lowest

accessible branching fraction Eq. (12) and thus beyond any realistic experimental setup.

Still, it is instructive to remind the reader that the short-distance width of the similar decay

of the pseudoscalar D0 is many orders of magnitude smaller: BSD
D0!e+e+ ⇠ 10�23, whereas

BSD
D0!µ+µ� ⇠ 10�18 (see, e.g., [16]).

IV. LONG-DISTANCE CONTRIBUTIONS

Generally, in rare charm decays, a significant enhancement of the decay rate is expected

in SM due to LD contributions, generated by the four-quark weak interaction combined with

the emission of the e+e�-pair via virtual photon. It is very di�cult to reliably estimate these

contributions in D ! `+`� decay because the two-photon intermediate state overlaps with

long-distance hadronic interactions.

To investigate the case of D⇤ ! e+e� decay, we isolate the relevant �C = 1, single

Cabibbo-suppressed transitions in the e↵ective Hamiltonian Hw of the SM, representing it

in a form of the two four-quark operators:

Hw =
4GFp

2

X

q=d,s

" 

Cc(q)
1 +

Cc(q)
2

Nc

!

(qL�⌫qL)(uL�⌫cL)

+2Cc(q)
2 (qL�⌫T

aqL)(uL�⌫T
acL)

#

, (24)

2 We thank Dirk Seidel for providing us this coe�cient calculated at NLL order.
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Models with Z 0
-mediated gauge interactions. Another interesting and representative

model that we would like to consider here is a model with flavor-changing Z 0-mediated

interactions. In general,

LZ0 = �g0Z01`L�µ`LZ
0µ � g0Z02`R�µ`RZ

0µ

� gcuZ01uL�µcLZ
0µ � gcuZ02uL�µcLZ

0µ. (48)

For mZ0 � mD the Lagrangian in Eq. (48) leads to

LZ0

e↵ = � 1

M2
Z0

h

g0Z01g
cu
Z01

eQ1 + g0Z01g
cu
Z02

eQ2 + g0Z02g
cu
Z02

eQ6 + g0Z02g
cu
Z01

eQ7

i

. (49)

Again, identifying the Wilson coe�cients ci from Eq. (49) and computing A and B leads to

the following branching fraction,

BZ0

D⇤!e+e� =
1

12⇡

m3
D⇤f 2

D⇤

M4
Z0�0

|gcuZ01 + gcuZ02|
2
⇣

|g0Z01|
2 + |g0Z02|

2
⌘

. (50)

As with our previous example, Eq. (50) does not exhibit helicity suppression of the rate.

Most importantly, BZ0

D⇤!e+e� is non-zero for purely vectorial interactions of the Z 0, which

will be realized if, for example, gcuZ01 = gcuZ02. This is contrary to D0 ! `+`� decay rate, where

such vectorial couplings are forbidden by vector current conservation [12]. There are five

parameters that describe generic Z 0 interactions with quarks and leptons, gcuZ01, g
cu
Z02, g

0
Z01,

g0Z02, and MZ0 . To assess the sensitivity of the e+e� ! D⇤ production mechanism to Z 0

models numerically, let us make two simplifying assumptions. First, let us assume that Z 0

only couples to left-handed quarks,4 which would mean that gcuZ02 = 0. Second, let us assume

that the Z 0 has SM-like diagonal couplings to leptons,

g0Z01 =
g

cos ✓W

✓

�1

2
+ sin2 ✓W

◆

, g0Z02 =
g sin2 ✓W
cos ✓W

, (51)

where g is the SM SU(2) gauge coupling. The branching fraction would then only depend

on the combination gcuZ01/M
2
Z0 ,

BZ0

D⇤!e+e� =

p
2GF

3⇡�0
m3

D⇤f 2
D⇤

|gcuZ01|
2

M2
Z0

M2
Z

M2
Z0

✓

1

4
� sin2 ✓W + 2 sin4 ✓W

◆

. (52)

Taking the constraint MZ0/
p

gcuZ01 > 8.7⇥ 102 GeV from D0 ! µ+µ� [12] yields

BZ0

D⇤!e+e� < 2.5⇥ 10�11, (53)

which is far above the SM predictions for this rate.

4 Equivalently, we could have assumed that Z 0 only couples to the right-handed currents. Then gcuZ01 = 0

and constraints would be obtained for gcuZ02.

17

Small	in	SM,	NP	might	increase	it!	



Summary	

Ø  	SM	progress	-	treatment	of		radia&ve		and	semileptonic	D	decays		(NNLO	calcula&on)	
hard	spectator	and	weak	annihila&on	amplitudes	;	

Ø  	NP	proposals	developed;	Leptoquarks	in	radia&ve	and	semileptonic	decays;	

Ø  New	physics	par&cles	explaining	B	anomalies,	give	rather	small	effects;	

Ø  Few	proposals	to	test	DM	in	charm	physics		suggested	to	observe	effects	of	DM;		

Ø  	new	proposal	to	measure	gamma	polariza&on	in	D0	→	ρ0γ	and		Λc→pγ;	

NP	searches	at	LHC:	charm	quark	important.	



Thanks!	


