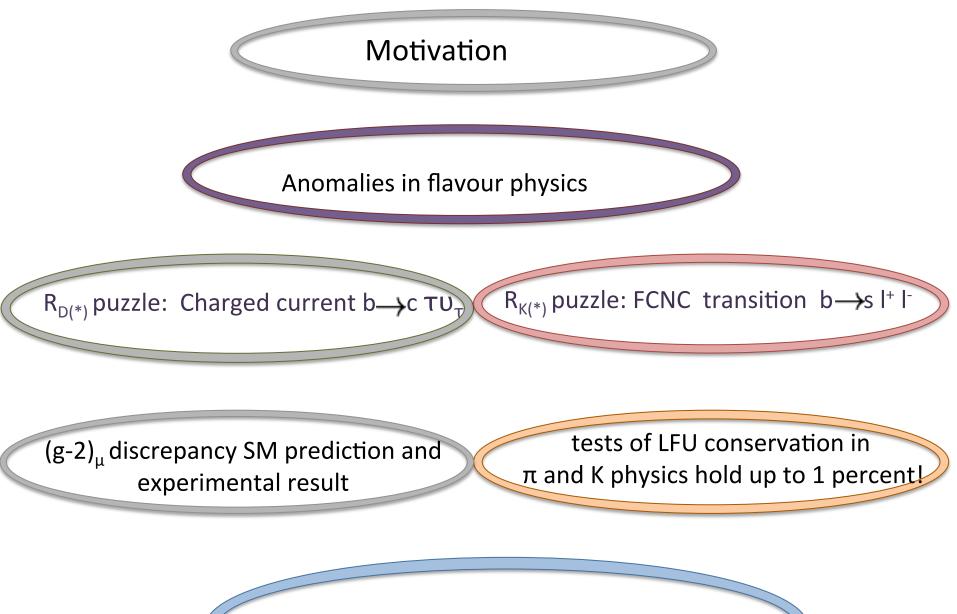
Theoretical overview on rare charm decays

"The 2nd International Workshop on High Intensity Electron-Positron Accelerator (HIEPA) @2-7GeV in China (HIEPA2018)", Beijing, March 19-21 2018

Overview

- Motivation;
- SM rare charm decays: $D \rightarrow V\gamma$; $D \rightarrow \pi II$, $D \rightarrow \mu\mu$;
- Signatures of NP in rare charm decays;
- New proposals to test NP in rare charm decays;
- Charm physics at LHC and e⁺e⁻ colliders;
- Summary.



Impact of NP on RARE CHARM decays?

B physics anomalies: experimental results \neq SM predictions!

charged current SM tree level

$$\begin{split} R_{D^{(*)}} &= \frac{BR(B \to D^{(*)} \tau \nu_{\tau})}{BR(B \to D^{(*)} \mu \nu_{\mu})} & \textbf{3.9}\sigma \\ \frac{BR(B_c \to J/\Psi \tau \nu_{\tau})}{BR(B_c \to J/\Psi \mu \nu_{\mu})} &= 0.71 \pm 0.17 \pm 0.18 & \textbf{LHCb result} \\ \frac{-2 \sigma}{2} \sigma & \textbf{C} \end{split}$$

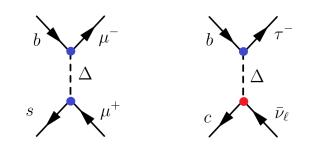
FCNC - SM loop process

Models of NP explaining B anomalies

Spin	Color singlet	Color tripet	
0	2HDM	Scalar LQ P parity - sbottom	
1	W' ,Z'	Vector LQ	
Lept	oquarks?	Dark matter?	

2HDMII cannot explain $R_{D(*)}$

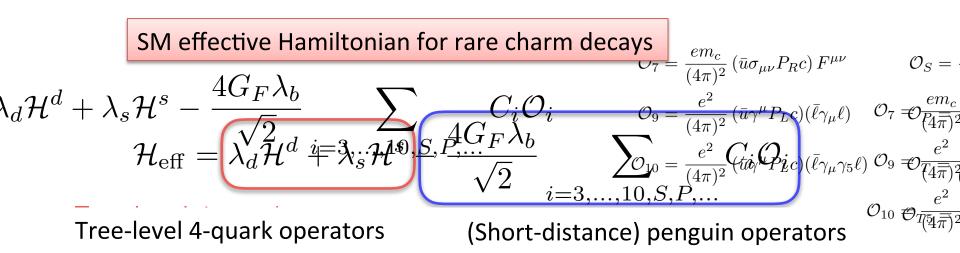
New gauge bosons, W', Z'difficult to construct UV complete theory



Nature of anomaly requires NP in quark and lepton sector! It seems that LQs are ideal candidates to explain all B anomalies at tree level!

Is charm physics sensitive on NP explaining B puzzles ?

Can some NP be present in charm and not in beauty mesons?



1) At scale m_W all penguin contributions vanish due to GIM;

3) SM values at m_c

2) SM contributions to $C_{7...10}$ at scale m_c entirely due to mixing of treelevel operators into penguin ones under QCD

(recent results :de Boer, Hiller, 1510.00311, 1701.06392, De Boer et al, 1606.05521) 1707.00988)

4) All operators' contributions to D $\rightarrow \pi$ ll can be absorbed into q² dependent effective Wilsons C_{7,9eff}(q²)

 $C_7 = 0.12, \qquad C_9 = -0.41$

SM in $c \to u\gamma$ and $c \to ul^+l^-$

Effective Lagrangian

$$\mathcal{L}_{\text{eff}}^{\text{SD}} = \frac{G_F}{\sqrt{2}} V_{cb}^* V_{ub} \sum_{i=7,9,10} C_i Q_i$$

$$Q_7 = \frac{e}{8\pi^2} m_c F_{\mu\nu} \bar{u} \sigma^{\mu\nu} (1+\gamma_5) c,$$
$$Q_9 = \frac{e^2}{16\pi^2} \bar{u}_L \gamma_\mu c_L \bar{\ell} \gamma^\mu \ell,$$
$$Q_{10} = \frac{e^2}{16\pi^2} \bar{u}_L \gamma_\mu c_L \bar{\ell} \gamma^\mu \gamma_5 \ell,$$

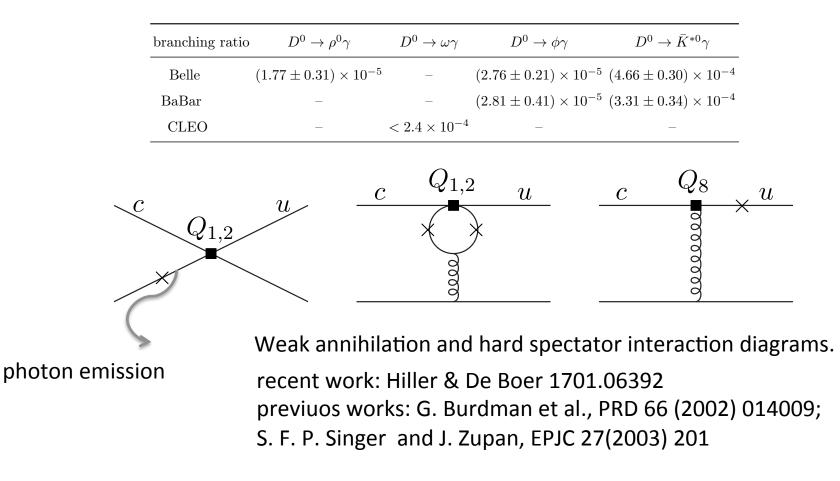
 $\mathbf{Q_7}$ contributes to $c \to u\gamma~$ and $c \to u l^+ l^-$

all three operators contribute to

$$c \to u l^+ l^-$$

C. Greub et al., PLB 382 (1996) 415;

 $BR(D \to X_u \gamma) \sim 10^{-8}$

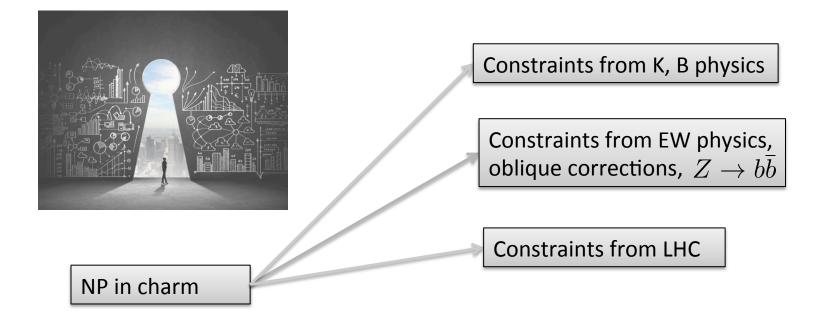


Two approaches:

- 1) Compute leading power corrections (~ Λ_{QCD}/m_c) as in b-physics, QCD factorization (Bosch & Buchalla hep-ph0408231);
- Model resonant amplitudes as a hybrid of factorization, heavy quark effective theory and chiral theory, where SU(3) flavor symmetry is broken via measured parameters (SF, S. Prelovsek and P. Singer, hep-ph/9801279);

branching ratio	$D^0 o ho^0 \gamma$	$D^0\to\omega\gamma$	
two-loop QCD	$(0.14 - 2.0) \cdot 10^{-8}$	$(0.14 - 2.0) \cdot 10^{-8}$	
HSI+WA	$(0.11 - 3.8) \cdot 10^{-6}$	$(0.078 - 5.2) \cdot 10^{-6}$	
hybrid	$(0.041 - 1.17) \cdot 10^{-5}$	$(0.042 - 1.12) \cdot 10^{-5}$	
[5, 6]	$(0.1-1) \cdot 10^{-5}$	$(0.1 - 0.9) \cdot 10^{-5}$	
[8]	$(0.1 - 0.5) \cdot 10^{-5}$	$0.2 \cdot 10^{-5}$	From Hiller& de Boer 1701. 06392
$[9]^{a}$	$3.8 \cdot 10^{-6}$	_	
$data^{\dagger}$	$(1.77 \pm 0.31) \cdot 10^{-5}$	$<2.4\cdot10^{-4}$	[5] SF& Singer, hep-ph/9705327,
			[6] SF, Prelovsek &hep-ph/9801279
branching ratio	$D^0 \to \phi \gamma$	$D^0 \to \bar{K}^{*0} \gamma$	[8] Burdman et al. hep-ph/9502329,
WA	$(0.0074 - 1.2) \cdot 10^{-3}$	$\left (0.011 - 1.6) \cdot 10^{-4} \right $	[9] Khodjamirian et al, hep-ph/9506242
hybrid	$(0.24 - 2.8) \cdot 10^{-5}$	$(0.26 - 4.6) \cdot 10^{-4}$	
[5, 6]	$(0.4 - 1.9) \cdot 10^{-5}$	$(6-36) \cdot 10^{-5}$	
[8]	$(0.1 - 3.4) \cdot 10^{-5}$	$(7-12) \cdot 10^{-5}$	
$[9]^{a}$	_	$1.8 \cdot 10^{-4}$	Note: all SM TH predictions for BR($D^0 \rightarrow \rho^0 \gamma$) smaller than exp. rate!
Belle $[15]^{\dagger}$	$(2.76 \pm 0.21) \cdot 10^{-5}$	$(4.66 \pm 0.30) \cdot 10^{-4}$	$D(D^* \rightarrow p^* \gamma)$ sinaller than exp. rate:
BaBar $[39]^{\dagger b}$	$(2.81 \pm 0.41) \cdot 10^{-5}$	$(3.31 \pm 0.34) \cdot 10^{-4}$	

New Physics in rare charm decays



If there is NP in down- quark sector then effects can be seen in charm if NP mediator is a doublet or triplet of the weak isospin.

Up quark weak doublet "talks" to down quark via CKM!

Effects of NP in charm suppressed by $V_{cb}^* V_{ub}$.

Leptoquarks in $R_{K(*)}$ and $R_{D(*)}$

Suggested by many authors: naturally accommodate LUV and LFV

color SU(3), weak isospin SU(2), weak hypercharge U(1)

Spin	Symbol	Type	3B+L	
0	S_3	$LL(S_1^L)$	-2	
0	R_2	$RL(S_{1/2}^L), LR(S_{1/2}^R)$	0	
0	\tilde{R}_2	′~~-	0	(
0	S_1	$RR(S_0^R)$	-2	
0	S_1	$LL(S_0^L), RR(S_0^R), \overline{RR}$	-2	
0	$ar{S}_1$	\overline{RR}	-2	
1	U_3	$LL\left(V_{1}^{L} ight)$	0	
1	V_2	$RL(V_{1/2}^{L}), LR(V_{1/2}^{R})$	-2	
1	$ ilde{V}_2$	$RL(\tilde{V}_{1/2}^L), \ \overline{LR}$	-2	
1	U_1	$RR\left(V_{0}^{R} ight)$	0	
1	U_1	$LL(V_0^L), RR(V_0^R), \overline{RR}$	0	
1	$ar{U}_1$	\overline{RR}	0	
	0	$\begin{array}{c cccc} 0 & S_3 \\ \hline 0 & R_2 \\ 0 & \tilde{R}_2 \\ \hline 0 & \tilde{S}_1 \\ 0 & S_1 \\ 0 & S_1 \\ \hline 1 & U_3 \\ \hline 1 & V_2 \\ 1 & \tilde{V}_2 \\ \hline 1 & U_1 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

F=3B +L fermion number; F=0 no proton decay at tree level (see Assad et al, 1708.06350)

Doršner, SF, Greljo, Kamenik Košnik, (1603.04993)

 $Q=I_3+Y$

10

New Physics in radiative charm decays

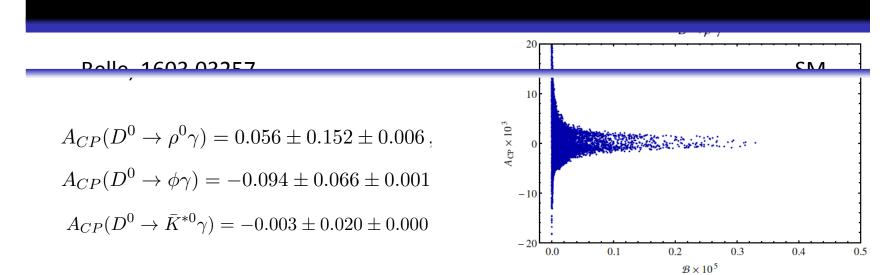
Leptoqaurks in radiative charm deca	ys $_{\rm couplings/mass}$	$\operatorname{constraint}$	observable
Hiller& de Boer 1701. 06392	$ \lambda_{S_3}^{(u\tau)} $	$\sim [0.0, 0.2]$	$\tau^- \to \pi^- \nu_{\tau}$
	$\operatorname{Re}[\lambda_{SR}^{(u\tau)}(\lambda_{SL}^{(u\tau)})^*]$	$\sim [0.00, 0.09]$	
\sim (1)	$\operatorname{Re}[\lambda_{S_1L,S_3}^{(u\tau)}(\lambda_{S_1L,S_3}^{(c\tau)})^*]$	$\sim [-0.2, 0.2]$	$\tau^- \to K^- \nu_{\tau}$
$c O^{(l)} u$	$\operatorname{Re}[\lambda_{SR}^{(u au)}(\lambda_{SL}^{(c au)})^*]$	$\sim [-0.07, 0.04]$	
	$ \mathrm{Im}[\lambda_{SR}^{(u\tau)}(\lambda_{SL}^{(c\tau)})^*] $	$\sim [0.0, 0.7]$	
	$ \text{Re}[\lambda_{SL,SR}^{(u\tau)}(\lambda_{SL,SR}^{(c\tau)})^*] $	$\sim [0, 0.02]$	Δm_{D^0}
ξ	$ \text{Re}[\lambda_{S_3}^{(u\tau)}(\lambda_{S_3}^{(c\tau)})^*] $	$\sim [0, 0.007]$	
<	$\operatorname{Re}[\lambda_{SR}^{(u au)}(\lambda_{SL}^{(c au)})^*]$	$\lesssim 0.3$	$D^+ \to \tau^+ \nu_{\tau}$
	$\operatorname{Re}[\lambda_{SR}^{(c au)}(\lambda_{SL}^{(c au)})^*]$	$\sim [-1, 0.09]$	$D_s \to \tau^+ \nu_{\tau}$
Masses of $m_{LQ} \approx 1$ TeV.	$ \lambda^{(c au)}_{S_3} $	$\sim [0.0, 0.4]$	
	$ \lambda^{(u\tau)}_{S_1L,S_3}\lambda^{(c\tau)}_{S_1L,S_3} $	$\lesssim 4 \cdot 10^{-4}$	$\left((K^+ \to \pi^+ \bar{\nu}\nu)/(K^+ \to \pi^0 \bar{e}\nu)\right)$

Within LQ models the $c \rightarrow u\gamma$ branching ratios are SM-like with CP asymmetries at O(0.01) for S_{1,2} and V₂ and SM-like for S₃. Vector LQ V₁A_{CP} ~ O(10%). The largest effects arise from τ -loops. S₃ can explain

R_{K(*)} !

CP asymmetry in charm radiative decays

$$A_{CP}(D \to V\gamma) = \frac{\Gamma(D \to V\gamma) - \Gamma(\bar{D} \to \bar{V}\gamma)}{\Gamma(D \to V\gamma) + \Gamma(\bar{D} \to \bar{V}\gamma)}$$



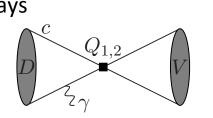
NP contributions

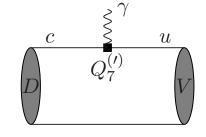
model	branching ratio	CP-asymmetry	constraints
LQ	SM-like	$\lesssim \mathcal{O}(10\%)$	[SdB et al. 2015]
SUSY	$\lesssim 2\cdot 10^{-5}$	$\lesssim 0.2$	$D^0 o ho^0 \gamma$

SUSY:gluino induced contributions within the mass insertion approximation F. Gabbiani, et al., hep-ph/9604387, S. Prelovsek &Wyler, hep-ph/0012116

The photon polarization in radiative D decays

Untagged, time-dependent analysis of D⁰- decays into CP eigenstates can probe the photon polarization by means of the charm mesons' finite width difference



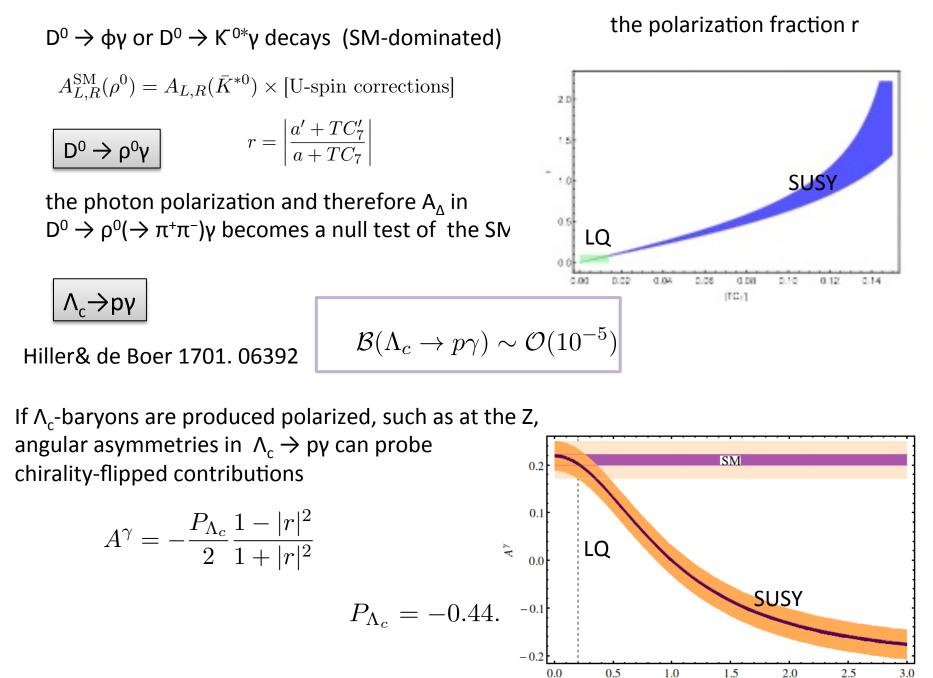


$$\Gamma(D \to V\gamma) = \Gamma(D \to V\gamma_L) + \Gamma(D \to V\gamma_R)$$
$$\mathcal{A}_{L,R} = \mathcal{A}(D \to V\gamma_{L,R}) = \sum_{i} A_{L,R}^{(j)} e^{i\delta_{L,R}^{(j)}} e^{i\phi_{L,R}^{(j)}}$$
$$\Gamma(t) = \mathcal{N}e^{-\Gamma t} \left(\cosh[\Delta\Gamma t/2] + A^{\Delta} \sinh[\Delta\Gamma t/2] + \zeta C \cos[\Delta m t] - \zeta S \sin[\Delta m t] \right)$$
$$\Delta\Gamma = \Gamma_H - \Gamma_L > 0 \quad \Delta m = m_H - m_L \quad \begin{cases} \xi = +1 \ V = \ \rho^0, \phi, \bar{K}^{*0}(K_S^0 \pi^0) \\ \xi = -1 \ V = \bar{K}^{*0}(K_L^0 \pi^0) \end{cases}$$

$$A^{\Delta} \simeq 2\xi \frac{A_L A_R}{|A_L|^2 + |A_R|^2} \cos(\delta_L - \delta_R) \cos(\phi_L - \phi_R)$$

strong and weak phases

De Boer & Hiller 1802.02769, proposal



r

$$Q_7 = \frac{e}{8\pi^2} m_c F_{\mu\nu} \bar{u} \sigma^{\mu\nu} (1+\gamma_5) c,$$

$$Q_9 = \frac{e^2}{16\pi^2} \bar{u}_L \gamma_\mu c_L \bar{\ell} \gamma^\mu \ell,$$

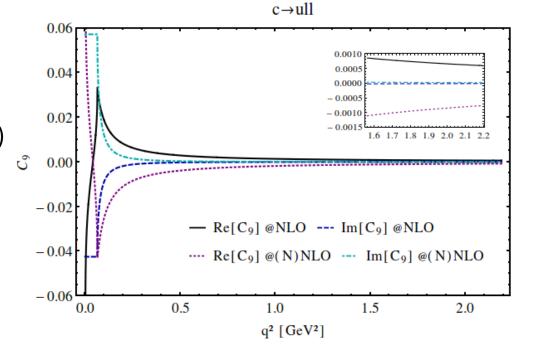
In SM contribute all these operators, but SM $C_{10} \approx 0$

SM in $c \rightarrow u l^+ l^-$

$$Q_{10} = \frac{e^2}{16\pi^2} \bar{u}_L \gamma_\mu c_L \bar{\ell} \gamma^\mu \gamma_5 \ell,$$

$$\tilde{C}_{i}(\mu) = \tilde{C}_{i}^{(0)}(\mu) + \frac{\alpha_{s}(\mu)}{4\pi} \tilde{C}_{i}^{(1)}(\mu) + \left(\frac{\alpha_{s}(\mu)}{4\pi}\right)^{2} \tilde{C}_{i}^{(2)}(\mu) + \mathcal{O}\left(\alpha_{s}^{3}(\mu)\right)$$

de Boer, Hiller, 1510.00311: SM update: (N)NLO QCD SM Wilson coefficients)



$$D^0 o \mu^+ \mu^-$$

Most general dimension 6 effective Lagrangian for $c \rightarrow u l^+ l^ \mathcal{H}^{\text{peng}} = -\frac{4G_F}{\sqrt{2}} \sum_{i=3....,10} C_i \mathcal{O}_i$ $\mathcal{H}_{\text{eff}} = \lambda_d \mathcal{H}^d + \lambda_s \mathcal{H}^s + \lambda_b \mathcal{H}^{\text{peng}}$ $\lambda_q = V_{uq} V_{cq}^*$ $\mathcal{O}_{7} = \frac{em_{c}}{(4\pi)^{2}} \left(\bar{u}\sigma_{\mu\nu}P_{R}c \right) F^{\mu\nu}, \qquad \mathcal{O}_{S} = \frac{e^{2}}{(4\pi)^{2}} \left(\bar{u}P_{R}c \right) (\bar{\ell}\ell),$ $\mathcal{O}_9 = \frac{e^2}{(4\pi)^2} \left(\bar{u} \gamma^\mu P_L c \right) (\bar{\ell} \gamma_\mu \ell) , \qquad \mathcal{O}_P = \frac{e^2}{(4\pi)^2} \left(\bar{u} P_R c \right) (\bar{\ell} \gamma_5 \ell) ,$ $\mathcal{O}_{10} = \frac{e^2}{(4\pi)^2} \left(\bar{u} \gamma^{\mu} P_L c \right) (\bar{\ell} \gamma_{\mu} \gamma_5 \ell) , \qquad \mathcal{O}_T = \frac{e^2}{(4\pi)^2} \left(\bar{u} \sigma_{\mu\nu} c \right) (\bar{\ell} \sigma^{\mu\nu} \ell) ,$ $\mathcal{O}_{T5} = \frac{e^2}{(4\pi)^2} \left(\bar{u}\sigma_{\mu\nu}c \right) (\bar{\ell}\sigma^{\mu\nu}\gamma_5\ell)$

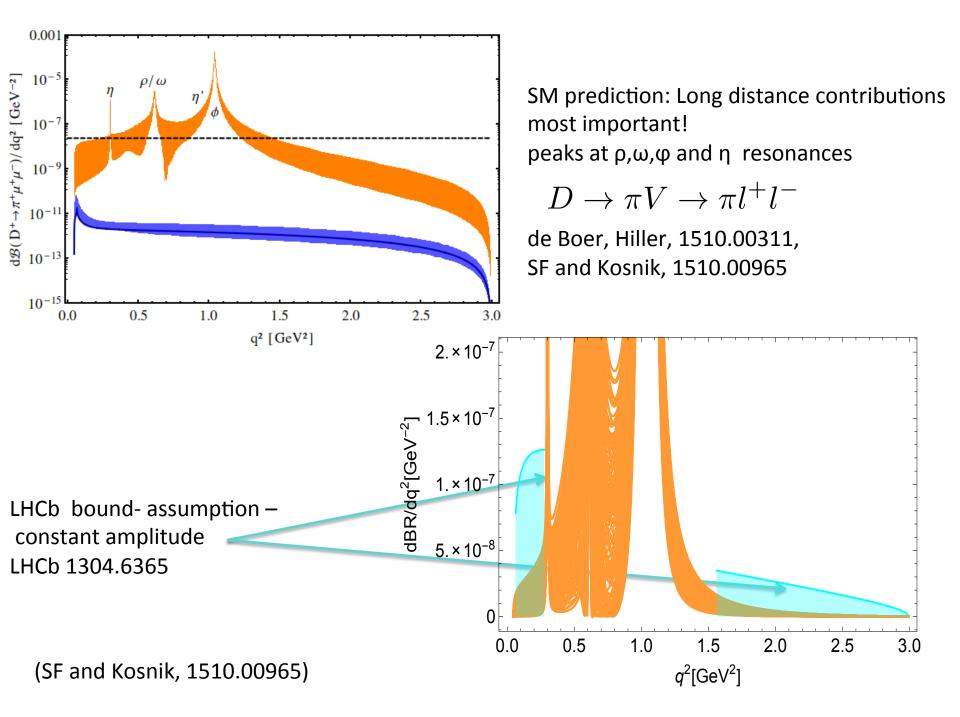
SF, N. Kosnik, 1510.00965

LHCb bound, 1305.5059

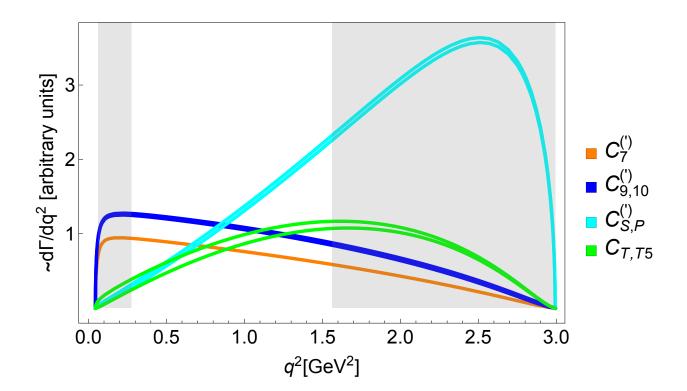
 $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 6.2 \cdot 10^{-9} \text{ at CL}=90\%$

Helicity suppressed decay!

$$|C_S - C'_S|^2 + |C_P - C'_P + 0.1(C_{10} - C'_{10})|^2 \lesssim 0.007$$

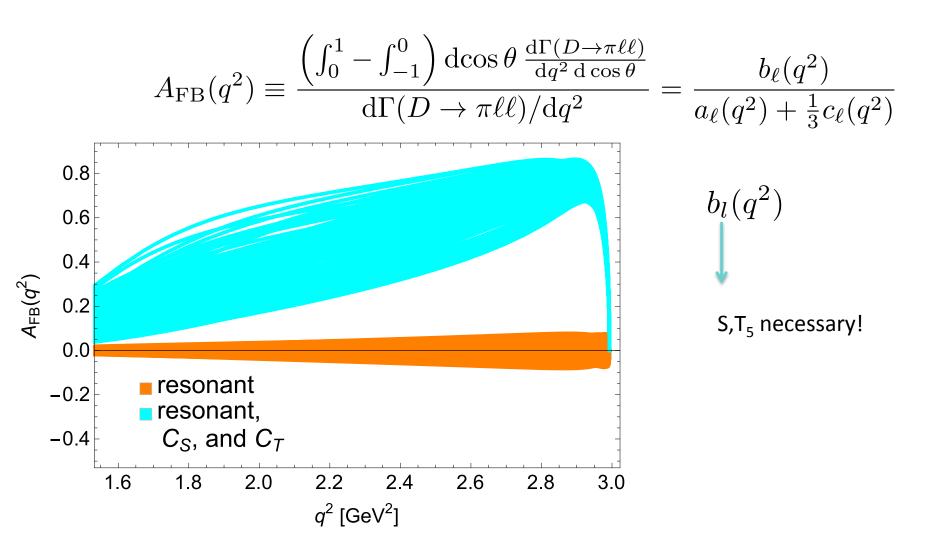


Maximally allowed values of the Wilson coefficients in the low and high energy bins according to LHCb 1304.6365 :



 $BR(\pi^+\mu^+\mu^-)_I \equiv BR(D^+ \to \pi^+\mu^+\mu^-)_{q^2 \in [0.0625, 0.276] \text{ GeV}^2} < 2.5 \times 10^{-8}$

 $BR(\pi^+\mu^+\mu^-)_{II} \equiv BR(D^+ \to \pi^+\mu^+\mu^-)_{q^2 \in [1.56, 4.00] \text{ GeV}^2} < 2.9 \times 10^{-8}$ LHCb 1304.6365



Forward-backward asymmetry for the resonant background itself (orange) and in the scenario $C_S=0.049/\lambda_b$ $C_T=0.2/\lambda_b$

	$ ilde{C}_i _{\max}$		
	$BR(\pi\mu\mu)_{I}$	$BR(\pi\mu\mu)_{II}$	$\left \mathrm{BR}(D^0 \to \mu \mu) \right $
\tilde{C}_7	2.4	1.6	-
$ \begin{array}{c} \tilde{C}_{7} \\ \tilde{C}_{9} \\ \tilde{C}_{10} \\ \tilde{C}_{S} \\ \tilde{C}_{P} \\ \tilde{C}_{T} \\ \tilde{C}_{T5} \end{array} $	2.1	1.3	-
$ ilde{C}_{10}$	1.4	0.92	0.63
$ ilde{C}_S$	4.5	0.38	0.049
$ ilde{C}_P$	3.6	0.37	0.049
$ ilde{C}_T$	4.1	0.76	-
	4.4	0.74	-
$\left\ \tilde{C}_9 = \pm \tilde{C}_{10}\right\ $	1.3	0.81	0.63

$$|\tilde{C}_i| = |V_{ub}V_{cb}^*C_i|$$

region I

region II

 $q^2 \in [0.0625, 0.276] \, GeV^2$

 $q^2 \in [1.56, 4.00] \, GeV^2$

Test of lepton flavour universality violation in charm FCNC decays

In 1510.0311 (de Beor and Hiller) it was pointed out that bounds on electron-positron mode are weaker:

$$BR(D^{+} \to \pi^{+}e^{+}e^{-}) < 1.1 \times 10^{-6}$$
$$BR(D^{0} \to e^{+}e^{-}) < 7.9 \times 10^{-8}$$
$$\begin{vmatrix} |C_{S,P}^{(e)} - C_{S,P}^{(e)\prime}| \lesssim 0.3, \\ |C_{9,10}^{(e)} - C_{9,10}^{(e)\prime}| \lesssim 4, \\ |C_{T,T5}^{(e)}| \lesssim 5, \quad \left| C_{7} \left(C_{9}^{(e)} - C_{9}^{(e)\prime} \right) \right| \lesssim 2 \end{cases}$$

In 1510.0965 (S.F. and N. Košnik) it was suggested, assuming as in the case $B \rightarrow K e^+ e^-$ that NP does not affect electron-positron mode, that tests of LFU can be performed either in I or II bin

$$R_{\pi}^{\mathrm{I}} = \frac{\mathrm{BR}(D^+ \to \pi^+ \mu^+ \mu^-)_{q^2 \in [0.25^2, 0.525^2] \mathrm{GeV}^2}}{\mathrm{BR}(D^+ \to \pi^+ e^+ e^-)_{q^2 \in [0.25^2, 0.525^2] \mathrm{GeV}^2}}$$

$$R_{\pi}^{\mathrm{II}} = \frac{\mathrm{BR}(D^+ \to \pi^+ \mu^+ \mu^-)_{q^2 \in [1.25^2, 1.73^2] \mathrm{GeV}^2}}{\mathrm{BR}(D^+ \to \pi^+ e^+ e^-)_{q^2 \in [1.25^2, 1.73^2] \mathrm{GeV}^2}}$$

$P^{I} = \frac{2\pi i (2 - i - \mu - \mu) q^2 \in [0.25^2, 0.525^2] \text{GeV}^2}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	R^{\cdot}	$B^{11} = \frac{(1 + 1)^{-1}}{(1 + 1)^{-1}}$	
$R_{\pi}^{\mathrm{I}} = \frac{\mathrm{BR}(D^{+} \to \pi^{+} \mu^{+} \mu^{-})_{q^{2} \in [0.25^{2}, 0.525^{2}] \mathrm{GeV}^{2}}}{\mathrm{BR}(D^{+} \to \pi^{+} e^{+} e^{-})_{q^{2} \in [0.25^{2}, 0.525^{2}] \mathrm{GeV}^{2}}}$	- 10,	$R_{\pi} = BR(D^+ \to \pi^+ e^+ e^-)_{q^2 \in [1.25^2, 1.73]}$	$^{2}]$ GeV ²

$R_{\pi}^{I,SM} = 0.87 \pm 0.09$				
$Ic_{\pi} = 0$.01 ± 0.05	$ ilde{C}_i _{ ext{max}}$	R_{π}^{II}	
	SM	-	0.999 ± 0.001	
	$ ilde{C}_7$	1.6	~ 6100	
	$ ilde{C}_9$	1.3	$\sim 6 120$	
	$ ilde{C}_{10}$	0.63	$\sim 3 – 30$	
	$ ilde{C}_S$	0.05	$\sim 1-2$	
	$egin{array}{c} ilde{C}_S \ ilde{C}_P \end{array}$	0.05	$\sim 1-2$	
	$ ilde{C}_T$	0.76	~ 670	
	$ ilde{C}_{T5}$	0.74	~ 660	
	$\tilde{C}_9 = \pm \tilde{C}_{10}$	0.63	$\sim 3-60$	
	$ \begin{bmatrix} \tilde{C}_9 = \pm \tilde{C}_{10} \\ \tilde{C}'_9 = -\tilde{C}'_{10} _{LQ(3,2,7/6)} \end{bmatrix} $	0.34	~ 120	

Assumptions:

- e⁺e⁻ modes are SM-like;
- NP enters in $\mu^+\mu^-$ mode only;
- listed Wilson coefficients are maximally allowed by current LHCb data.

Scalar Leptoquaks (3,2,7/6) contributes to FCNC decay

$$\begin{aligned} \mathcal{L}^{(5/3)} &= \left(\bar{\ell}_R Y_L u_L\right) \Delta^{(5/3)*} - \left(\bar{u}_R Y_R \ell_L\right) \Delta^{(5/3)} + \text{h.c.} \\ \text{generates S, P, T,T_5, V and A} \\ \text{R}_2 (3,2,7/6) \text{ can explain} \\ \text{R}_{D(*)} \text{ and } \text{R}_{K(*)} \text{ within certain setups !} \end{aligned} \\ \text{In the case of } \Delta \text{ C= 2 in } D^0 - \bar{D}^0 \quad \mathcal{H} = C_6 (\bar{u}_R \gamma^\mu c_R) (\bar{u}_R \gamma_\mu c_R) \\ \text{oscillation there is also a LQ contribution} \end{aligned} \\ C_6(m_\Delta) &= -\frac{\left(Y_{c\mu}^{R*} Y_{u\mu}^R\right)^2}{64\pi^2 m_\Delta^2} = -\frac{(G_F \alpha)^2}{32\pi^4} m_\Delta^2 (\tilde{C}'_{10})^2 \\ |C_6(m_\Delta)| < 2.5 \times 10^{-13} \text{ GeV}^{-2} \implies |\tilde{C}'_9, \tilde{C}'_{10}| < 0.34 \end{aligned}$$
 Bound from ΔC =2 slightly stronger, but comparable to the bound coming from $D^0 \to \mu^+ \mu^- \end{aligned}$

 $4\tilde{C}_T = 4\tilde{C}_{T5} = \tilde{C}_P = \tilde{C}_S = -0.049$

Scalar Leptoquaks (3,3,-1/3) in charm FCNC processes

$$\mathcal{L}_{\bar{c}u\bar{\ell}\ell} = -\frac{4G_F}{\sqrt{2}} \left[c_{cu}^{LL} (\bar{c}_L \gamma^{\mu} u_L) (\bar{\ell}_L \gamma_{\mu} \ell_L) \right] + \text{h.c.},$$

$$C_{cu}^{LL} = -\frac{v^2}{2m_{S_3}^2} (V_{cs}^* g_{s\mu} + V_{cb}^* b_{b\mu}) (V_{us} g_{s\mu} + V_{ub} b_{b\mu})$$

$$C_{cu}^{LL} \quad 100 \text{ times smaller than current LHCb bound!}$$

$$(3,1,-1/3)$$

(3,1,-1/3) introduced by Bauer and Neubert in 1511.01900 to explain both B anomalies. In 1608.07583 (Becirevic et al, showed that model cannot survive flavor constraints:

$$K \to \mu\nu, B \to \tau\nu, \tau \to \mu\gamma$$

$$D_s \to \tau \nu, \ D \to \mu^+ \mu^-$$

Confronting charm charged current and FCNC processes:

Triplet LQ S₃ in charm leptonic decays decay

$$\mathcal{L}_{\bar{u}^i d^j \bar{\ell} \nu_k} = -\frac{4G_F}{\sqrt{2}} \begin{bmatrix} (V_{ij} U_{\ell k} + g_{ij;\ell k}^L) (\bar{u}_L^i \gamma^\mu d_L^j) (\bar{\ell}_L \gamma_\mu \nu_L^k) \\ (V_{ij} U_{\ell k} + g_{ij;\ell k}^L) (\bar{u}_L^i \gamma^\mu d_L^j) (\bar{\ell}_L \gamma_\mu \nu_L^k) \end{bmatrix}$$
Test of lepton flavour universality (LFU)

$$R_{\tau,\mu}^c = \frac{\Gamma(D_s \to \tau \nu)}{\Gamma(D_s \to \mu \nu)}$$

$$\frac{R_{\tau,\mu,SM}^c}{R_{\tau,\mu,SM}^c} = [1 - \frac{v^2}{2m_{S3}^2} ((Vy_3^*)_{s\tau}^* (y_3^*)_{s\tau} - Vy_3^*)_{s\mu} (y_3^*)_{s\mu})]$$

Doršner, SF, Greljo, Kamenik Košnik, 1603.04993

m _{s3} [TeV]	$1 - R^c_{\tau,\mu,LQ}/R^c_{\tau,\mu,SM}$
1.0	3.2%
1.2	2.4%
1.5	1.5%

Vector Leptoquark (3,1,5/3)

not present in B physics!

$$\mathcal{L} = Y_{ij} \left(\bar{\ell}_i \gamma_\mu P_R u_j \right) V^{(5/3)\mu} + \text{h.c.} .$$

$$C'_9 = C'_{10} = \frac{\pi}{\sqrt{2}G_F \lambda_b \alpha} \frac{Y_{\mu c} Y^*_{\mu u}}{m_V^2}$$

$$D^0 - \bar{D}^0 \qquad C_6(m_V) = \frac{(Y_{\mu u} Y^*_{\mu c})^2}{32\pi^2 m_V^2} = \frac{(G_F \alpha)^2}{16\pi^4} m_V^2 (\tilde{C}'_{10})^2$$

$$|\tilde{C}_{9}', \tilde{C}_{10}'| < 0.24$$

 $D \to \pi \mu^+ \mu^-$. In the high q² region branching ratio is 1.4×10^{-8} two times smaller then the experimental bound

Two Higgs doublet model type III

Two neutral scalars, h and H, one pseudoscalar A, two charged H[±]; Flavor changing neutral couplings at tree level generated.

 v_{u}

Anomalies in B decays often explained by Z'.

$$\begin{array}{ll} D^0 - \bar{D}^0 \text{ transitions constrain} & C_6(m_{Z'}) = \frac{|C^u|^2}{2m_{Z'}^2} \\ c \to u \mu^+ \mu^- & \\ m_{Z'} \sim 1 \ \text{TeV} & |C_9| \lesssim 8 & |C_{10}| \lesssim 100 \end{array} \quad \text{negligible effects!} \end{array}$$

Model	Effect	Size of the effect
Scalar leptoquark (3,2,7/6)	C _s ,C _P , C _s ',C _P ',C _T ,C _{T5} , C ₉ ,C ₁₀ ,C ₉ ',C ₁₀ '	V _{cb} V _{ub} C _{9,} C ₁₀ < 0.34
Vector leptoquark (3,1,5/3)	C ₉ ' = C ₁₀ '	V _{cb} V _{ub} C ₉ ′, C ₁₀ ′ < 0.24
Two Higgs doublet Model type III	C _S ,C _P , C _S ',C _P '	$V_{cb}V_{ub} C_{s} - C_{s}' < 0.005$ $V_{cb}V_{ub} C_{P} - C_{P}' < 0.005$
Z' model	C ₉ ',C ₁₀ '	V _{cb} V _{ub} C ₉ ', <0.001 V _{cb} V _{ub} C ₁₀ ' <0.014

Lepton flavor violation

 $c \to u \mu^{\pm} e^{\mp}$

1510.0311 (de Beor and Hiller) 1705.02251 (Sahoo and Mohanta)

$$\mathcal{L}_{\text{eff}}^{\text{weak}}(\mu \sim m_c) = \frac{4G_F}{\sqrt{2}} \frac{\alpha_e}{4\pi} \sum_i \left(K_i^{(e)} O_i^{(e)} + K_i^{(\mu)} O_i^{(\mu)} \right)$$
$$O_9^{(e)} = (\bar{u}\gamma_\mu P_L c) (\bar{e}\gamma^\mu \mu) \qquad O_9^{(\mu)} = (\bar{u}\gamma_\mu P_L c) (\bar{\mu}\gamma^\mu e)$$
$$BR(D^0 \to e^+\mu^- + e^-\mu^+) < 2.6 \times 10^{-7} \qquad \left| K_{S,P}^{(l)} - K_{S,P}^{(l)\prime} \right| \lesssim 0.4,$$

 $BR(D^+ \to \pi^+ e^+ \mu^-) < 2.9 \times 10^{-6} \qquad \left| K_{9,10}^{(l)} - K_{9,10}^{(l)'} \right| \lesssim 6, \quad \left| K_{T,T5}^{(l)} \right| \lesssim 7,$ $BR(D^+ \to \pi^+ e^- \mu^+) < 3.6 \times 10^{-6}$

 $l = e, \mu$

$$BR(D^0 \to e^{\pm}\tau^{\mp}) < 7 \times 10^{-15}$$

Dark Matter in charm decays

Badin & Petrov 1005.1277 suggested to search for processes with missing energy/É in

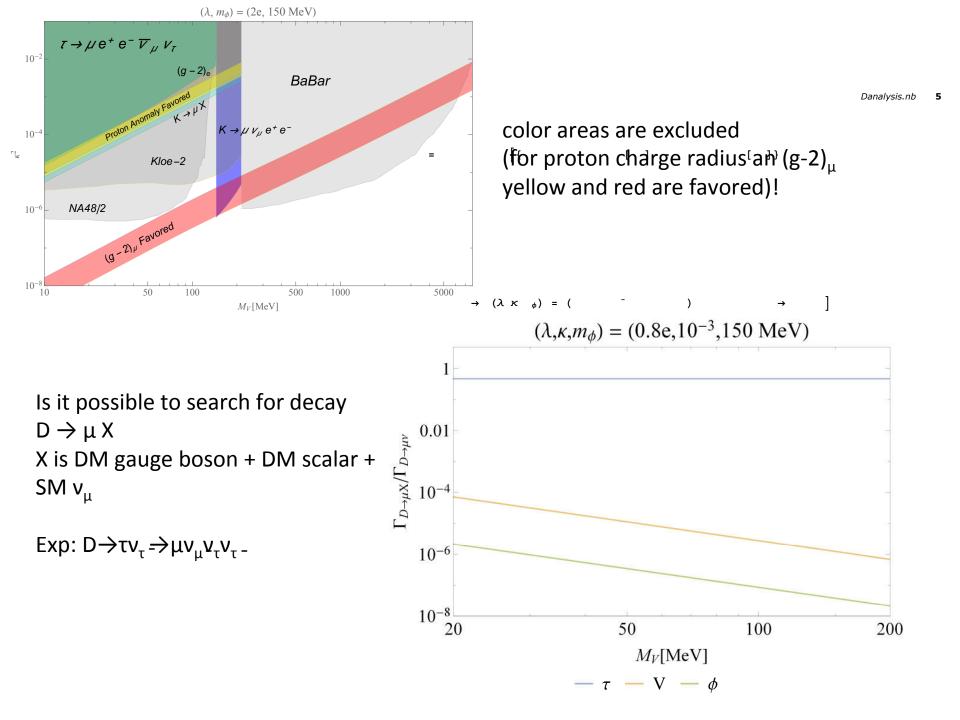
Belle collaboration 1611.09455 upper bound BR(D⁰ \rightarrow invisible) <9.4 × 10⁻⁵

SM:BR($D^0 \rightarrow vv$) = 1.1 × 10⁻³⁰

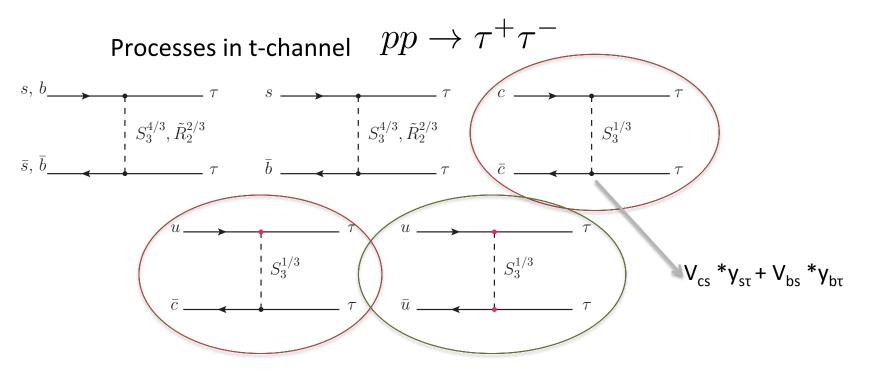
V is the gauge boson, neutral under the SM gauge group and charged under $U(1)_d$ κ is a mixing angle between dark boson and photon

New "dark" Higgs with the condensate $\langle \phi \rangle = \frac{v_R}{\sqrt{2}}$

F. C. Correia, SF, 1609.0860, Batell et al.1103.0721



LHC constraints on S_3 : high-mass au production



Flavour anomalies generate s τ , bτ and cτ relatively large couplings.
s quark pdf function for protons are ~ 3 times lagrer contribution then for b quark.

 $\sigma_{s\bar{s}}(y_{s\tau}) = 12.042 y_{st}^4 + 5.126 y_{st}^2,$ $\sigma_{s\bar{b}}(y_{s\tau}, y_{b\tau}) = 12.568 y_{s\tau}^2 y_{b\tau}^2,$ $\sigma_{b\bar{b}}(y_{b\tau}) = 3.199 y_{b\tau}^4 + 1.385 y_{b\tau}^2,$ $\sigma_{c\bar{c},u\bar{u},u\bar{c}}(y_{s\tau}) = 3.987 y_{s\tau}^4 - 5.189 y_{s\tau}^2.$

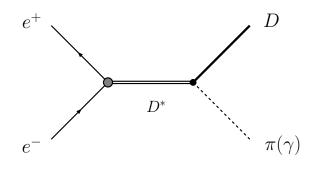
m_{LO}≈ 1 TeV

a

Direct probes of flavor-changing neutral currents in e⁺e⁻ collisions

Khodjamirian, Mannel, A Petrov, 1509.07123

Due to helicity suppression difficult to measure branching ratio $\,D^0
ightarrow e^+e^-$



Single charm production can test

$$\mathcal{H} = \frac{\lambda'}{M^2} (\bar{c}\gamma_{\mu}u) (\bar{e}\gamma^{\mu}e),$$
$$\mathcal{B}_{D^* \to e^+e^-}^{SD} \approx 2.0 \times 10^{-19}$$

Small in SM, NP might increase it!

$$\mathcal{B}_{D^* \to e^+ e^-}^{Z'} < 2.5 \times 10^{-11}$$

SM progress - treatment of radiative and semileptonic D decays (NNLO calculation) hard spectator and weak annihilation amplitudes ;

> new proposal to measure gamma polarization in $D^0 \rightarrow \rho^0 \gamma$ and $\Lambda_c \rightarrow p \gamma$;

NP proposals developed; Leptoquarks in radiative and semileptonic decays;

New physics particles explaining B anomalies, give rather small effects;

Few proposals to test DM in charm physics suggested to observe effects of DM;

NP searches at LHC: charm quark important.

Thanks!

