

1

BESIII 上粲介子强子衰变绝对分支比的测量

报告人: 葛潘婷

武汉大学 中国科学院高能物理研究所

2022年4月8日

• 粲介子强子衰变的简介

- · 数据样本和分析方法
- · 分支比测量
- · 总结和展望

粲介子强子衰变

- · 检验轻子普适性
- ·研究非微扰 QCD 理论
- ·寻找 CP 破缺
- ·帮助测量CKM 角γ

数据样本和双标记法

D⁺⁽⁰⁾:2.93 fb⁻¹@ E_{cm} =3.773 GeV D_s⁺: 7.31 fb⁻¹@ E_{cm} =4.126 GeV – 4.226 GeV

Double Tag (DT):同时重建两侧的 D_(s) 介子 非常低的本底水平,可以用以不同衰变的研究 来自标记侧的系统误差几乎可以忽略

arXiv:2212.13072

$D_s^+ \rightarrow \pi^+ \pi^+ \pi^- X$ 单举绝对分支比的测量

- > 首次测量
- > 帮助检验 B 介子轻子普适性
- > 独立检验 D_s⁺到 π⁺π⁺π⁻末态遍举衰变绝对分支比的测量

$ \frac{M(\pi^+\pi^+\pi^-) \text{ interva}}{\begin{array}{c}1\\2\\3\\4\end{array}} $	$ \frac{1 \Delta \mathcal{B}_{3\pi X,i} \ (\%)}{4.63 \pm 0.14 \pm 0.12} \\ 4.92 \pm 0.16 \pm 0.19 \\ 3.79 \pm 0.13 \pm 0.11 \\ 3.55 \pm 0.12 \pm 0.11 $		$D_{\pi}(D + \lambda \pi^+ \pi^+ \pi^- V)$
6 7 8 9 10 11	$2.87 \pm 0.10 \pm 0.09$ $2.87 \pm 0.09 \pm 0.09$ $2.69 \pm 0.09 \pm 0.09$ $2.19 \pm 0.08 \pm 0.07$ $2.32 \pm 0.07 \pm 0.07$ $1.01 \pm 0.04 \pm 0.05$	本分析: PDG :	(32.81±0.35±0.82)% 约 25%

 $D^{0(+)} \rightarrow \pi^+ \pi^+ \pi^- X$ 绝对分支比的测量

首次测量

- > 检验 B 介子轻子普适性的重要的本底输入
- > 独立检验 D⁺⁽⁰⁾ 到 π⁺π⁺π⁻ 末态遍举衰变绝对分支比的测量

D⁰→π⁺π⁺π⁻X 衰变部分分支比

D+→π+π+π-X 衰变部分分支比

$N_{ m prod}$	$d\mathcal{B}_{ ext{sig}}$	$d\mathcal{B}_{\mathrm{sig}}^{\mathrm{corr}}$ (%)	i		$N_{\rm prod}$	$d\mathcal{B}_{sig}$ (%)
1541.3 ± 89.9	0.28 ± 0.02	0.28 ± 0.02	1		1747.1 + 111.1	
0240.1 ± 206.0	1.71 ± 0.04	1.70 ± 0.04	1	l	$1/4/.1 \pm 111.1$	0.22 ± 0.01
9349.1 ± 200.0	1.11 ± 0.04	1.70 ± 0.04	2	2	9683.3 ± 245.1	1.19 ± 0.03
14235.8 ± 271.8	2.60 ± 0.05	2.66 ± 0.05	2	2	17800.2 ± 240.6	2.20 ± 0.04
			5	,	17890.5 ± 349.0	2.20 ± 0.04
22130.5 ± 295.0	4.04 ± 0.05	4.08 ± 0.05	4	1	27671.6 ± 366.3	3.41 ± 0.05
$24638 \ 2 + 264 \ 9$	450 ± 0.05	451 ± 0.05	5	5	33224.6 ± 340.2	4.09 ± 0.04
24000.2 ± 204.5	$+.00 \pm 0.00$	$\pm 0.00 \pm 0.00$	6		20282.0 ± 251.5	251 ± 0.02
16850.4 ± 207.4	3.07 ± 0.04	3.14 ± 0.04	C)	20383.9 ± 251.5	2.51 ± 0.03
1990 6 1 197 5			7	7	5772.7 ± 155.4	0.71 ± 0.02
4228.0 ± 127.5	0.77 ± 0.02	0.80 ± 0.02	0)	2661.9 ± 07.9	0.22 ± 0.01
1720.0 ± 112.7	0.22 ± 0.02	0.21 ± 0.02	c)	2001.8 ± 97.8	0.55 ± 0.01
1730.9 ± 113.7	0.52 ± 0.02	0.51 ± 0.02	9)	2032.0 ± 81.1	0.25 ± 0.01
676.1 ± 69.6	0.12 ± 0.01	0.11 ± 0.01	1	0	2902.0 ± 90.2	0.25 ± 0.01
010.1 ± 05.0	0.12 ± 0.01	0.11 ± 0.01	1	0	2805.0 ± 80.2	0.55 ± 0.01
95381.0 ± 598.9	—	17.60 ± 0.11	Т	Fotal	123870.2 ± 744.7	15.25 ± 0.09
	$\frac{N_{\rm prod}}{1541.3\pm89.9}\\9349.1\pm206.0\\14235.8\pm271.8\\22130.5\pm295.0\\24638.2\pm264.9\\16850.4\pm207.4\\4228.6\pm127.5\\1730.9\pm113.7\\676.1\pm69.6\\95381.0\pm598.9$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccc} N_{\rm prod} & d\mathcal{B}_{\rm sig} & d\mathcal{B}_{\rm sig}^{\rm corr} (\%) \\ \hline 1541.3 \pm 89.9 & 0.28 \pm 0.02 & 0.28 \pm 0.02 \\ 9349.1 \pm 206.0 & 1.71 \pm 0.04 & 1.70 \pm 0.04 \\ 14235.8 \pm 271.8 & 2.60 \pm 0.05 & 2.66 \pm 0.05 \\ 22130.5 \pm 295.0 & 4.04 \pm 0.05 & 4.08 \pm 0.05 \\ 24638.2 \pm 264.9 & 4.50 \pm 0.05 & 4.51 \pm 0.05 \\ 16850.4 \pm 207.4 & 3.07 \pm 0.04 & 3.14 \pm 0.04 \\ 4228.6 \pm 127.5 & 0.77 \pm 0.02 & 0.80 \pm 0.02 \\ 1730.9 \pm 113.7 & 0.32 \pm 0.02 & 0.31 \pm 0.02 \\ 676.1 \pm 69.6 & 0.12 \pm 0.01 & 0.11 \pm 0.01 \\ \hline 95381.0 \pm 598.9 & - & 17.60 \pm 0.11 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

 $Br(D^+ \rightarrow \pi^+ \pi^- X) = (17.60 \pm 0.11 \pm 0.22)\%$

 $Br(D^{0} \rightarrow \pi^{+}\pi^{-}X) = (15.25 \pm 0.09 \pm 0.18)\%$

与已知衰变分支比的和一致

Phys. Rev. D 107, 032002 (2023)

6

$D^{0(+)} \rightarrow \phi X$ 绝对分支比的测量

Phys. Rev. D 100, 072006(2019)

- > 对于含 ← 的 遍 举 衰 变 提 供 了 独 立 的 检 查
- > 精度提升
- > 寻找 CP 破缺

			· ·
	This work	CLEO [2]	BES [1]
$D^+ \to \phi X$	$1.135 \pm 0.034 \pm 0.031$	$1.03 \pm 0.10 \pm 0.07$	< 1.8 (90% C.L.)
$D^0 \to \phi X$	$1.091 \pm 0.027 \pm 0.035$	$1.05 \pm 0.08 \pm 0.07$	$1.71^{+0.76}_{-0.71}\pm 0.17$

与先前的结果一致,同时精度有明显地提升

$$\mathcal{A}_{CP} = \frac{\mathcal{B}(D \to \phi X) - \mathcal{B}(\bar{D} \to \phi X)}{\mathcal{B}(D \to \phi X) + \mathcal{B}(\bar{D} \to \phi X)} \qquad \begin{array}{l} A_{CP} (D^+ \to \phi X): (-0.7 \pm 2.8 \pm 0.7)\% \\ A_{CP} (D^0 \to \phi X): (-0.4 \pm 2.5 \pm 0.7)\% \end{array}$$

沒有发现明显的 CP 破缺

[1]Phys. Rev. D 62, 052001(2000) [2]Phys. Rev. D 74, 112005(2006) D⁰⁽⁺⁾含多个π卡比伯压低衰变

- > 检验B介子轻子普适性的重要的本底输入 20个道
- > 寻找 CP 破缺
- > 间接精确测量CKM 角γ

Phys. Rev. D 106, 092005 (2022)

六个事例数较多的衰变道的 Acp

下面是四个较大分支比:	Decay	$\mathcal{B}_{sig}^+(\times 10^{-4})$	$\mathcal{B}_{\overline{\mathrm{sig}}}^{-}(\times 10^{-4})$	$\mathcal{A}_{CP}^{\mathrm{sig}}$ (%)
$P_{m}(D_{0}) = +0) = -(1, 242 \pm 0, 012 \pm 0, 016)0/$	$\pi^+\pi^-\pi^0$	134.8 ± 1.8	133.3 ± 1.8	$+0.6 \pm 0.9 \pm 0.4$
$Br(D^{\circ} \rightarrow \pi^{+}\pi^{+}\pi^{\circ}) = (1.343 \pm 0.013 \pm 0.016)\%$	$\pi^+\pi^-2\pi^0$	97.6 ± 2.6	102.7 ± 2.7	$-2.5 \pm 1.9 \pm 0.7$
Br(D ⁰ →π ⁺ π ⁻ 2π ⁰) =(1.002±0.019±0.024)%精度更高	$2\pi^+\pi^-$	33.1 ± 1.0	32.3 ± 1.0	$+1.2 \pm 2.2 \pm 0.6$
$Br(D^+ \rightarrow 2\pi^+\pi^-\pi^0) = (1.165 \pm 0.021 \pm 0.021)\%$	$\pi^+ 2\pi^0$	48.3 ± 1.8	43.2 ± 1.7	$+5.6 \pm 2.7 \pm 0.5$
$D_{\alpha}(D_{+}) = (1, 0.74 \pm 0.040 \pm 0.020) 0 \times 200 = 0$	$2\pi^+\pi^-\pi^0$	116.7 ± 3.0	116.0 ± 3.0	$+0.3 \pm 1.8 \pm 0.8$
Br(D'→2π'π'2π')=(1.0/4±0.040±0.030)% ↑ $𝔅 𝔅 𝑘 𝔅$	$2\pi^+\pi^-2\pi^0$	102.7 ± 5.6	111.6 ± 5.8	$-4.2 \pm 3.8 \pm 1.3$

没有发现明显的 CP 破缺

8

 $D^{0(+)} \rightarrow$ 含 η 介子的遍举衰变

- 首次测量
- > 检验B介子轻子普适性的重要的本底输入 14个道
- > 寻找 CP 破缺

Br $_{\mu \neq \psi}$ (D⁰→ηX)=(9.5±0.9)% Br $_{\pi \rightarrow \eta K}$ (D⁰→ηX)=(8.62±0.35)% Br $_{\mu \neq \psi}$ (D⁺→ηX)=(6.5±0.7)% Br $_{\pi \rightarrow \eta K}$ (D⁺→ηX)=(4.68±0.18)% Phys. Rev. Lett. 124. 241803(2020)

0.9σ 范围内一致

2.50 范围内一致

六个事例数较多的衰变道的 Acp

-			
Decay	$\mathcal{B}^+_{\mathrm{sig}}~(\times 10^{-4})$	$\mathcal{B}^{-}_{\overline{\mathrm{sig}}} \ (\times 10^{-4})$	$\mathcal{A}_{CP}^{\mathrm{sig}}$ (%)
$D^0 o K^- \pi^+ \eta$	182.1 ± 3.5	189.1 ± 3.6	$-1.9\pm1.3\pm1.0$
$D^0 \to K^0_S \pi^0 \eta$	98.4 ± 4.8	106.3 ± 5.1	$-3.9\pm3.2\pm0.8$
$D^0 \rightarrow K^- \pi^+ \pi^0 \eta$	41.7 ± 2.7	48.8 ± 3.2	$-7.9\pm4.8\pm2.5$
$D^0 o \pi^+ \pi^- \pi^0 \eta$	29.8 ± 2.2	33.3 ± 2.5	$-5.5 \pm 5.2 \pm 2.4$
$D^+ \rightarrow K^0_S \pi^+ \eta$	129.9 ± 5.3	132.3 ± 5.4	$-0.9 \pm 2.9 \pm 1.0$
$D^+ o \pi^+ \pi^+ \pi^- \eta$	35.4 ± 2.4	33.7 ± 2.4	$+2.5 \pm 5.0 \pm 1.6$
		i	

没有发现明显的 CP 破缺

$D^{0(+)} \rightarrow KK\pi\pi$ 绝对分支比的测量

- > 首次测量: D⁰→K⁺K⁻π⁰π⁰, D⁰→K_s⁰K⁻π⁺π⁰, D⁰→K_s⁰K⁺π⁻π⁰, D⁰→K_s⁰K_s⁰π⁺π⁰, D⁺→K⁺K⁻π⁺π⁰
- > 提升测量精度: D⁰→K_s⁰K_s⁰π⁺π⁻, D⁺→K⁺K⁻π⁺π⁰, D⁺→K_s⁰K⁻π⁺π⁺, D⁺→K_s⁰K⁺π⁺π⁻

	- ,	-		······ · ·				
Signal mode	$\Delta E_{ m sig}$	$N_{ m DT}^{ m fit}$	$N_{K^0_S}^{ m sid}$	$N_{ m DT}^{ m net}$	$\epsilon_{\rm sig}~(\%)$	$\mathcal{B}_{sig} \ (\times 10^{-3})$	$\mathcal{B}_{PDG}~(\times 10^{-3})$	
$D^0 \rightarrow K^+ K^- \pi^0 \pi^0$	(-59, 40)	132.1 ± 13.9		132.1 ± 13.9	8.20 ± 0.07	$0.69 \pm 0.07 \pm 0.04$		•
$D^0 \rightarrow K^0_S K^0_S \pi^+ \pi^-$	(-22, 22)	82.1 ± 9.7	37.8 ± 7.5	63.2 ± 10.4	5.14 ± 0.04	$0.53 \pm 0.09 \pm 0.03$	1.22 ± 0.23	2.30 范围内一致
$D^0 \rightarrow K^0_S K^- \pi^+ \pi^0$	(-43, 32)	278.8 ± 18.8	166.1 ± 15.1	195.8 ± 20.3	6.38 ± 0.06	$1.32 \pm 0.14 \pm 0.07$		
$D^0 \rightarrow K_S^0 K^+ \pi^- \pi^0$	(-44, 33)	124.0 ± 12.8	$9.5^{+3.7}_{-3.1}$	119.3 ± 12.9	7.94 ± 0.06	$0.65 \pm 0.07 \pm 0.02$		
$D^+ \rightarrow K^+ K^- \pi^+ \pi^0$	(-39, 30)	1311.7 ± 40.4	-5.1	1311.7 ± 40.4	12.72 ± 0.08	$6.62 \pm 0.20 \pm 0.25$	26^{+9}_{-8}	2.8页 范围内一致
$D^+ \rightarrow K^0_S K^+ \pi^0 \pi^0$	(-61, 44)	35.9 ± 7.1	$3.8^{+2.8}_{-2.0}$	34.0 ± 7.2	3.77 ± 0.02	$0.58 \pm 0.12 \pm 0.04$		
$D^+ \rightarrow K_S^0 K^- \pi^+ \pi^+$	(-22, 21)	505.0 ± 24.5	74.2 ± 10.3	467.9 ± 25.0	13.24 ± 0.08	$2.27 \pm 0.12 \pm 0.06$	2.38 ± 0.17	10-廿国山 际
$D^+ \rightarrow K_{S}^{0}K^+\pi^+\pi^-$	(-21, 20)	284.6 ± 18.0	$15.3^{+4.9}_{-4.2}$	277.0 ± 18.2	9.39 ± 0.06	$1.89 \pm 0.12 \pm 0.05$	1.74 ± 0.18	1.00 氾固闪一致
$D^+ \rightarrow K^{\vec{0}}_S K^0_S \pi^+ \pi^0$	(-46, 37)	101.1 ± 11.3	42.0 ± 8.1	80.1 ± 12.0	3.84 ± 0.03	$1.34 \pm 0.20 \pm 0.06$		

 $D^{0(+)} \rightarrow \omega \pi^+ \pi^{-(0)}$ 绝对分支比的测量

Phys. Rev. D 105, 032009 (2022)

- [▶] 首次测量: D⁺→ $ωπ^+π^0$;提升测量精度: D⁰→ $ωπ^+π^-$
- 单卡比伯压低

> 检验 B 介子轻子普适性的重要的本底输入

Br(D⁰→ωπ⁺π⁻)=(1.33±0.16±0.12)×10⁻³ 精度更高 统计显著性: 12.9σ Br(D⁺→ωπ⁺π⁰)=(3.87±0.83±0.25)×10⁻³ 首次测量 统计显著性: 7.7σ

 $D^0 \rightarrow K^-\pi^+\omega \rightarrow D^{0(+)} \rightarrow K_{c}{}^0\pi^{0(+)}\omega$ 绝对分支比的测量 Ph

- ▶ 首次观测: $D^{0(+)} \rightarrow K_s^0 \pi^{0(+)} \omega$;提升测量精度: $D^0 \rightarrow K^- \pi^+ \omega$
- » 理论上通过统计同位旋模型暗示 D⁰⁽⁺⁾→K_c⁰π⁰⁽⁺⁾ω 具有大的分支比
- > 检验 B 介子轻子普适性的重要的本底输入

Br(D⁰→K⁻π⁺ω)=(3.392±0.044±0.085)% Br(D⁰→K_s⁰π⁰ω)=(0.848±0.046±0.031)% Br(D⁺→K_s⁰π⁺ω)=(0.707±0.041±0.029)%

与先前的结果一致但是精度更高

首次测量

$D_s^+ \rightarrow \omega \pi^+ \eta$ 衰变

- > 首次观测 D_s⁺→ωπ⁺η
- > 检验 B 介子轻子普适性的重要的本底输入
- > 寻找可能的中间态 a₀(980)⁺和 b₁(1235)⁺

总结与展望

- · 有效控制 R(D*) 的系统误差
- · 没有发现明显的 CP 破缺
- · 首次测量多个衰变道
- · 显著提高多个衰变道测量精度

基于 BESIII 正在 3.773 GeV 处采集的 20 fb⁻¹ 的世界上最大的 粲介子数据样本,计划开展更多的粲物理研究。

backup

D⁰⁽⁺⁾到同时含K介子和π介子衰变

> 首次测量

0.0

 $M_{\rm BC}^{\rm sig}$ (GeV/c²)

- > 寻找 CP 破缺
- > 间接精确测量CKM 角γ

$$\begin{split} & \operatorname{Br}(D^0 \to \operatorname{K_S}{}^0 \pi^0 \pi^0 \pi^0) = (7.64 \pm 0.30 \pm 0.29) \times 10^{-3} \\ & \operatorname{Br}(D^+ \to \operatorname{K^-}\pi^+ \pi^0 \pi^0 \pi^0) = (9.54 \pm 0.30 \pm 0.31) \times 10^{-3} \\ & \operatorname{Br}(D^0 \to \operatorname{K_S}{}^0 \pi^+ \pi^0 \pi^0) = (29.04 \pm 0.62 \pm 0.87) \times 10^{-3} \\ & \operatorname{Br}(D^+ \to \operatorname{K_S}{}^0 \pi^+ \pi^+ \pi^- \pi^0) = (15.28 \pm 0.57 \pm 0.60) \times 10^{-3} \\ & \operatorname{Br}(D^0 \to \operatorname{K_S}{}^0 \pi^+ \pi^0 \pi^0 \pi^0) = (5.54 \pm 0.44 \pm 0.32) \times 10^{-3} \\ & \operatorname{Br}(D^+ \to \operatorname{K^-}\pi^+ \pi^- \pi^0 \pi^0) = (4.95 \pm 0.26 \pm 0.19) \times 10^{-3} \\ & \operatorname{Br}(D^+ \to \operatorname{K_S}{}^0 \pi^0) < 1.57 \times 10^{-4} \text{ \pounds 90\%$ $\%$ Ξ \mathbb{E} \mathbb{E} Γ} \end{split}$$

7个道

Phys. Rev. D 106, 032002 (2022)