Theoretical review on charm mixing and decay and physics beyond SM

Alexey A. Petrov Wayne State University Michigan Center for Theoretical Physics

Table of Contents:

Introduction

- Mixing and CP-violation in ∆c = 2 processes
- **CP-violation in** ∆c = 1 processes
- New Physics in $\triangle c = 1$ processes
- Conclusions

★ DD-oscillations:
$$i\frac{d}{dt}|D(t)\rangle = \left(M - \frac{i}{2}\Gamma\right)|D(t)\rangle$$

* "Experimental" mass and lifetime differences of mass eigenstates...

$$x_D = \frac{M_2 - M_1}{\Gamma_D}, \ y_D = \frac{\Gamma_2 - \Gamma_1}{2\Gamma_D}$$

 \star ...can be calculated as real and imaginary parts of a correlation function

$$y_{\rm D} = \frac{1}{2M_{\rm D}\Gamma_{\rm D}} \operatorname{Im} \langle \overline{D^0} | i \int \mathrm{d}^4 x \, T \Big\{ \mathcal{H}_w^{|\Delta C|=1}(x) \, \mathcal{H}_w^{|\Delta C|=1}(0) \Big\} | D^0 \rangle$$

bi-local time-ordered product

$$x_{\rm D} = \frac{1}{2M_{\rm D}\Gamma_{\rm D}} \operatorname{Re} \left[2\langle \overline{D^0} | H^{|\Delta C|=2} | D^0 \rangle + \langle \overline{D^0} | i \int \mathrm{d}^4 x \, T \Big\{ \mathcal{H}_w^{|\Delta C|=1}(x) \, \mathcal{H}_w^{|\Delta C|=1}(0) \Big\} | D^0 \rangle \right]$$

local operator
(b-quark, NP): small?

*CP-violating phases can appear from subleading local SM or NP operators

$\Delta c = 2 \text{ example: mixing}$

* Main goal of the exercise: understand physics at the most fundamental scale

 \star It is important to understand relevant energy scales for the problem at hand

Mixing: short vs long distance

* How can one tell that a process is dominated by long-distance or short-distance?

 \star It is important to remember that the expansion parameter is $1/E_{released}$

$$y_{\rm D} = \frac{1}{2M_{\rm D}\Gamma_{\rm D}} \operatorname{Im} \langle \overline{D^0} | i \int d^4x \, T \Big\{ \mathcal{H}_w^{|\Delta C|=1}(x) \, \mathcal{H}_w^{|\Delta C|=1}(0) \Big\} | D^0 \rangle$$

OPE-leading contribution:

★ In the heavy-quark limit $m_c \rightarrow \infty$ we have $m_c \gg \sum m_{intermediate quarks}$, so $E_{released} \sim m_c$

- the situation is similar to B-physics, where it is "short-distance" dominated
- one can consistently compute pQCD and 1/m corrections

 \star But wait, m_c is NOT infinitely large! What happens for finite m_c???

- how is large momentum routed in the diagrams?
- are there important hadronization (threshold) effects?

Threshold (and related) effects in OPE

* How can one tell that a process is dominated by long-distance or short-distance?

★ Let's look how the momentum is routed in a leading-order diagram

- injected momentum is $p_c \sim m_c$, so
- thus, $p_1 \sim p_2 \sim m_c/2 \sim O(\Lambda_{QCD})$?

★ For a particular example of the lifetime difference, have hadronic intermediate states

- let's use an example of KKK intermediate state
- in this example, $E_{released} \sim m_D 3 m_K \sim O(\Lambda_{QCD})$

p₂

\star Similar threshold effects exist in B-mixing calculations

- but $m_b \gg \sum m_{intermediate \; quarks}$, so $E_{released} \sim m_b$ (almost) always
- quark-hadron duality takes care of the rest!

Maybe a better approach would be to work with hadronic DOF directly?

 $x_D = 0.41^{+0.14}_{-0.15}\%, \quad y_D = 0.63^{+0.07}_{-0.08}\%$

- **★** It seems like $x_D \sim y_D \sim O(1\%)$ consistent with SM?
- \star SM CP-violating phase is arg(V_{cb}V_{ub}) ~ γ
- * SM CP-violating amplitude is always suppressed by $|V_{cb}V_{ub}/V_{cs}V_{us}| \sim O(10^{-3})$

$$x_D = 0.41^{+0.14}_{-0.15}\%, \quad y_D = 0.63^{+0.07}_{-0.08}\%$$

- **★** It seems like $x_D \sim y_D \sim O(1\%)$ consistent with SM?
- \star SM CP-violating phase is arg(V_{cb}V_{ub}) ~ γ
- \star SM CP-violating amplitude is always suppressed by $|V_{cb}V_{ub}/V_{cs}V_{us}| \sim O(10^{-3})$

Generic restrictions on NP from DD-mixing

\star Comparing to experimental value of x, obtain constraints on NP models

- assume x is dominated by the New Physics model
- assume no accidental strong cancellations b/w SM and NP

$$\mathcal{H}_{NP}^{\Delta C=2} = \frac{1}{\Lambda_{NP}^{2}} \sum_{i=1}^{8} z_{i}(\mu)Q_{i}^{\prime} \qquad \begin{array}{c} Q_{1}^{cu} = \bar{u}_{L}^{\alpha}\gamma_{\mu}c_{L}^{\alpha}\bar{u}_{L}^{\beta}\gamma^{\mu}c_{L}^{\beta}, \\ Q_{2}^{cu} = \bar{u}_{R}^{\alpha}c_{L}^{\alpha}\bar{u}_{R}^{\beta}c_{L}^{\beta}, \\ Q_{3}^{cu} = \bar{u}_{R}^{\alpha}c_{L}^{\beta}\bar{u}_{R}^{\beta}c_{L}^{\alpha}, \end{array} + \left\{ \begin{array}{c} L \\ \uparrow \\ R \end{array} \right\} + \begin{array}{c} Q_{4}^{cu} = \bar{u}_{R}^{\alpha}c_{L}^{\alpha}\bar{u}_{L}^{\beta}c_{R}^{\beta}, \\ Q_{5}^{cu} = \bar{u}_{R}^{\alpha}c_{L}^{\beta}\bar{u}_{L}^{\beta}c_{R}^{\alpha}, \end{array}$$

★ ... which are

$$\begin{aligned} |z_1| &\lesssim 5.7 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ |z_2| &\lesssim 1.6 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ |z_3| &\lesssim 5.8 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ |z_4| &\lesssim 5.6 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ |z_5| &\lesssim 1.6 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2. \end{aligned}$$

New Physics is either at a very high scales

tree level:	$\Lambda_{NP} \ge (4 - 10) \times 10^3 \text{ TeV}$
loop level:	$\Lambda_{NP} \ge (1-3) \times 10^2 \text{ TeV}$

or have highly suppressed couplings to charm!

Gedalia, Grossman, Nir, Perez Phys.Rev.D80, 055024, 2009

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

 \star Constraints on particular NP models available

A bit on CP-violation

Fundamental problem: observation of CP-violation in up-quark sector!
 Possible sources of CP violation in charm transitions:

★ CPV in $\Delta c = 1$ decay amplitudes ("direct" CPV) $\Gamma(D \rightarrow f) \neq \Gamma(CP[D] \rightarrow CP[f])$

★ CPV in $D^0 - \overline{D^0}$ mixing matrix ($\Delta c = 2$):

$$\begin{split} \left| D_{1,2} \right\rangle &= p \left| D^0 \right\rangle \pm q \left| \overline{D^0} \right\rangle \ \Rightarrow \left| D_{CP\pm} \right\rangle = \frac{1}{\sqrt{2}} \left(\left| D^0 \right\rangle \pm \left| \overline{D}^0 \right\rangle \right) \\ R_m^2 &= \left| q/p \right|^2 = \left| \frac{2M_{12}^* - i\Gamma_{12}^*}{\Delta m - (i/2)\Delta\Gamma} \right|^2 = 1 + A_m \neq 1 \end{split}$$

 \star CPV in the interference of decays with and without mixing

$$\lambda_f = \frac{q}{p} \frac{A_f}{A_f} = R_m e^{i(\phi+\delta)} \left| \frac{A_f}{A_f} \right|$$

* One can separate various sources of CPV by customizing observables

 \star Indirect CP-violation manifests itself in DD-oscillations

- see time development of a D-system:

$$i\frac{d}{dt}|D(t)\rangle = \left(M - \frac{i}{2}\Gamma\right)|D(t)\rangle$$

$$\langle D^{0}|\mathcal{H}|\overline{D^{0}}\rangle = M_{12} - \frac{i}{2}\Gamma_{12} \qquad \langle \overline{D^{0}}|\mathcal{H}|D^{0}\rangle = M_{12}^{*} - \frac{i}{2}\Gamma_{12}^{*}$$

 \star Define "theoretical" mixing parameters

$$y_{12} \equiv |\Gamma_{12}|/\Gamma, \quad x_{12} \equiv 2|M_{12}|/\Gamma, \quad \phi_{12} \equiv \arg(M_{12}/\Gamma_{12})$$

★ Assume that direct CP-violation is absent (Im $(\Gamma_{12}^*\bar{A}_f/A_f) = 0$, $|\bar{A}_f/A_f| = 1$) - can relate x, y, φ , |q/p| to x_{12} , y_{12} and φ_{12}

"superweak limit"

$$\begin{aligned} xy &= x_{12}y_{12}\cos\phi_{12}, \qquad x^2 - y^2 = x_{12}^2 - y_{12}^2, \\ (x^2 + y^2)|q/p|^2 &= x_{12}^2 + y_{12}^2 + 2x_{12}y_{12}\sin\phi_{12}, \\ x^2\cos^2\phi - y^2\sin^2\phi &= x_{12}^2\cos^2\phi_{12}. \end{aligned}$$

★ Four "experimental" parameters related to three "theoretical" ones
 – a "constraint" equation is possible

★ Relation; data from HFAG's compilation

$$\frac{x}{y} = \frac{1 - |q/p|}{\tan\phi} = -\frac{1}{2} \frac{A_m}{\tan\phi}$$

- it might be experimentally x_D < y_D
 this has implications for NP searches in charm CP-violating asymmetries!
- that is, if |M₁₂| < |Γ₁₂|:

$$x/y = 2 |M_{12}/\Gamma_{12}| \cos \phi_{12},$$

$$A_m = 4 |M_{12}/\Gamma_{12}| \sin \phi_{12},$$

$$\phi \;=\; - \left. 2 \left| M_{12} / \Gamma_{12} \right|^2 \sin 2 \phi_{12}
ight.$$

Note: CPV is suppressed even if M12 is all NP!!!

Bergmann, Grossman, Ligeti, Nir, AAP PL B486 (2000) 418

 \star With available experimental constraints on x, y, and q/p, one can bound WCs of a generic NP Lagrangian -- bound any high-scale model of NP

* Assume that direct CP-violation is absent (Im $(\Gamma_{12}^* \bar{A}_f / A_f) = 0$, $|\bar{A}_f / A_f| = 1$)

- experimental constraints on x, y, φ , |q/p| exist
- can obtain generic constraints on Im parts of Wilson coefficients

$$\mathcal{H}_{NP}^{\Delta C=2} = \frac{1}{\Lambda_{NP}^2} \sum_{i=1}^8 z_i(\mu) Q_i'$$

★ In particular, from $x_{12}^{
m NP} \sin \phi_{12}^{
m NP} \lesssim 0.0022$

$$\begin{split} \mathcal{I}m(z_1) &\lesssim 1.1 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ \mathcal{I}m(z_2) &\lesssim 2.9 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ \mathcal{I}m(z_3) &\lesssim 1.1 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ \mathcal{I}m(z_4) &\lesssim 1.1 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ \mathcal{I}m(z_5) &\lesssim 3.0 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2. \end{split}$$

New Physics is either at a very high scales

tree level:	$\Lambda_{NP} \ge (4-10) \times 10^3 \text{ TeV}$
loop level:	$\Lambda_{NP} \ge (1-3) \times 10^2 \text{ TeV}$
or have highly sup	pressed couplings to charm!

Gedalia, Grossman, Nir, Perez Phys.Rev.D80, 055024, 2009

Bigi, Blanke, Buras, Recksiegel, JHEP 0907:097, 2009

 \star Constraints on particular NP models possible as well

CP-violation I: beyond "superweak"

* Look at parameterization of CPV phases; separate absorptive and dispersive

Grossman, Kagan, Perez, Silvestrini, AAP

$$\lambda_{f}^{2} = \frac{2M_{12}^{*} - i\Gamma_{12}^{*}}{2M_{12} - i\Gamma_{12}} \left(\frac{\overline{A}_{f}}{A_{f}}\right)^{2}$$

– consider f= CP eigenstate, can generalize later: $\lambda_{CP}^2 = R_m^2 e^{2i\phi}$

$$\phi_{12f}^{M} = \frac{1}{2} \arg \left[\frac{M_{12}}{M_{12}^{*}} \left(\frac{A_f}{\overline{A}_f} \right)^2 \right] \qquad \qquad \phi_{12f}^{\Gamma} = \frac{1}{2} \arg \left[\frac{\Gamma_{12}}{\Gamma_{12}^{*}} \left(\frac{A_f}{\overline{A}_f} \right)^2 \right]$$

- CP-violating phase for the final state f is then

$$\phi_{12} = \phi^M_{12\,f} - \phi^\Gamma_{12\,f}$$

 \bigstar Can we put a Standard Model theoretical bound on ϕ^M_{12f} or ϕ^Γ_{12f} ?

CP-violation I: beyond "superweak"

★ Let us define convention-independent universal CPV phases. First note that – for the absorptive part: $\Gamma_{12} = \Gamma_{12}^0 + \delta\Gamma_{12}$ $\Gamma_{12}^0 = -\lambda_s(\Gamma_{ss} + \Gamma_{dd} - 2\Gamma_{sd})$ $\delta\Gamma_{12} = 2\lambda_b\lambda_s(\Gamma_{sd} - \Gamma_{ss}) + O(\lambda_b^2)$

– ... and similarly for the dispersive part: $M_{12}=M_{12}^0+\delta M_{12}$

 \star CP-violating mixing phase can then be written as

$$\phi_{12} = \arg \frac{M_{12}}{\Gamma_{12}} = \operatorname{Im}\left(\frac{\delta M_{12}}{M_{12}^0}\right) - \operatorname{Im}\left(\frac{\delta \Gamma_{12}}{\Gamma_{12}^0}\right) \equiv \phi_{12}^M - \phi_{12}^\Gamma$$

 \star These phases can then be constrained; e.g. the absorptive phase

$$|\phi_{12}^{\Gamma}| = 0.009 \times \frac{|\Gamma_{sd}|}{\Gamma} \times \left|\frac{\Gamma_{sd} - \Gamma_{dd}}{\Gamma_{sd}}\right| < 0.01$$

Grossman, Kagan, Perez, Silvestrini, AAP

* IDEA: consider the DIFFERENCE of decay rate asymmetries: $D \rightarrow \pi\pi \text{ vs } D \rightarrow \text{KK}!$ For each final state the asymmetry D^0 : no neutrals in the final state!

$$a_{f} = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})} \longrightarrow a_{f} = a_{f}^{d} + a_{f}^{m} + a_{f}^{i}$$

direct mixing interference

* A reason: $a^{m}_{KK}=a^{m}_{\pi\pi}$ and $a^{i}_{KK}=a^{i}_{\pi\pi}$ (for CP-eigenstate final states), so, ideally, mixing asymmetries cancel!

$$a_f^d = 2r_f \sin\phi_f \sin\delta_f$$

 \star ... and the resulting DCPV asymmetry is $\Delta a_{CP} = a^d_{KK} - a^d_{\pi\pi} \approx 2a^d_{KK}$ (double!)

$$A_{KK} = \frac{G_F}{\sqrt{2}} \lambda \left[(T + E + P_{sd}) + a\lambda^4 e^{-i\gamma} P_{bd} \right]$$
$$A_{\pi\pi} = \frac{G_F}{\sqrt{2}} \lambda \left[(-(T + E) + P_{sd}) + a\lambda^4 e^{-i\gamma} P_{bd} \right]$$

 \star ... so it is doubled in the limit of SU(3)_F symmetry

SU(3) is badly broken in D-decays e.g. Br(D \rightarrow KK) \sim 3 Br(D \rightarrow $\pi\pi$)

Experiment?

★ Experiment: the difference of CP-asymmetries: $\Delta a_{CP} = a_{CP,KK} - a_{CP,\pi\pi}$

★ Earlier results (before 2013):

Experiment	ΔA_{CP}
LHCb	$(-0.82 \pm 0.21 \pm 0.11)\%$
CDF	$(-0.62\pm0.21\pm0.10)\%$
Belle	$(-0.87 \pm 0.41 \pm 0.06)\%$
BaBar	$(+0.24 \pm 0.62 \pm 0.26)\%$

Looks like CP is broken in charm transitions! Now what?

Is it Standard Model or New Physics??

★ Is it Standard Model or New Physics? Theorists used to say...

Naively, any CP-violating signal in the SM will be small, at most $O(V_{ub}V_{cb}^*/V_{us}V_{cs}^*) \sim 10^{-3}$ Thus, O(1%) CP-violating signal can provide a "smoking gun" signature of New Physics

...what do you say now?

★ assuming SU(3) symmetry, $a_{CP}(\pi\pi) \sim a_{CP}(KK) \sim 0.4\%$. Is it 1% or 0.1%? ★ let us try Standard Model

- need to estimate size of penguin/penguin contractions vs. tree

- unknown penguin enhancement (similar to $\Delta I = 1/2$)
 - SU(3) analysis: some ME are enhanced

Golden & Grinstein PLB 222 (1989) 501;Pirtshalava & Uttayarat 1112.5451

- unusually large 1/mc corrections

Isidori et al PLB 711 (2012) 46; Brod et al 1111.5000

- no assumptions, flavor-flow diagrams

Broad et al 1203.6659; Bhattacharya et al PRD 85 (2012) 054014; Cheng & Chiang 1205.0580

Is it a penguin or a tree?

Without QCD

With QCD

New Physics: operator analysis

★ Factorizing decay amplitudes, e.g.

$$\begin{aligned} \mathcal{H}_{|\Delta c|=1}^{\text{eff}-\text{NP}} &= \frac{G_F}{\sqrt{2}} \sum_{i=1,2,5,6} \sum_q (C_i^q Q_i^q + C_i^{q'} Q_i^{q'}) + \frac{G_F}{\sqrt{2}} \sum_{i=7,8} (C_i Q_i + C_i' Q_i') + \text{H.c.} \\ Q_1^q &= (\bar{u}_q q_\beta)_{V-A} (\bar{q}c)_{V-A} \\ Q_2^q &= (\bar{u}_\alpha q_\beta)_{V-A} (\bar{q}\beta c_\alpha)_{V-A} \\ Q_5^q &= (\bar{u}c)_{V-A} (\bar{q}q)_{V+A} \\ Q_6^q &= (\bar{u}_\alpha c_\beta)_{V-A} (\bar{q}\beta q_\alpha)_{V+A} \\ Q_7 &= -\frac{e}{8\pi^2} m_c \, \bar{u}\sigma_{\mu\nu} (1+\gamma_5) F^{\mu\nu} c \\ Q_8 &= -\frac{g_s}{8\pi^2} m_c \, \bar{u}\sigma_{\mu\nu} (1+\gamma_5) T^a G_a^{\mu\nu} c \end{aligned}$$

\star one can fit to ϵ'/ϵ and mass difference in D-anti-D-mixing

- LL are ruled out
- LR are borderline
- RR and dipoles are possible

Constraints from particular models also available

 $\begin{array}{c|c} \mbox{Allowed} & \mbox{Ajar} & \mbox{Disfavored} \\ \hline Q_{7,8}\,,\,\,Q_{7,8}',\,\,\,& Q_{1,2}^{(c-u,8d,b,0)},\,\,\,Q_{1,2}^{s-d}\,,\,Q_{5,6}^{(s-d)'},\,\,\,\\ \forall f\,\,Q_{1,2}^{f\prime}\,,\,\,Q_{5,6}^{(c-u,b,0)\prime}\,\,\,Q_{5,6}^{(0)}\,,\,Q_{5,6}^{(8d)\prime}\,\,\,Q_{5,6}^{s-d,c-u,8d,b} \end{array}$

Alexey A Petrov (WSU & MCTP)

Gedalia, et al, arXiv:1202.5038

★ Experiment: the difference of CP-asymmetries: $\Delta a_{CP} = a_{CP,KK} - a_{CP,\pi\pi}$

★ Earlier results (before 2013):

Experiment	ΔA_{CP}
LHCb	$(-0.82\pm0.21\pm0.11)\%$
CDF	$(-0.62\pm0.21\pm0.10)\%$
Belle	$(-0.87\pm0.41\pm0.06)\%$
BaBar	$(+0.24\pm0.62\pm0.26)\%$

Looks like CP is broken in charm transitions! Now what?

★ Recent results (after 2013):

$$\Delta a_{CP} = (+0.14 \pm 0.16(\text{stat}) \pm 0.08(\text{syst}))\%$$
$$a_{CP,KK} = (-0.06 \pm 0.15(\text{stat}) \pm 0.10(\text{syst}))\%$$
$$a_{CP,\pi\pi} = (-0.20 \pm 0.19(\text{stat}) \pm 0.10(\text{syst}))\%$$

LHCb arXiv:1405.2797

Is it NP or SM? Doesn't look like NP is needed to explain the result.

Future: lattice to the rescue*?

★ There are methods to compute decays on the lattice (Lellouch-Lüscher)

- calculation of scattering of final state particles in a finite box
- matching resulting discrete energy levels to decaying particle
- reasonably well developed for a single-channel problems (e.g. kaon decays)

★ Can these methods be generalized to D-decays?

- make D-meson slightly lighter, $m_D < 4 m_{\pi}$
- assume G-parity and consider scattering of two pions and two kaons in a box with SM scattering energy

$$2m_{\pi} < 2m_K < E^* < 4m_{\pi}$$

- only four possible scattering events: $\pi\pi \rightarrow \pi\pi$, $\pi\pi \rightarrow KK$, $KK \rightarrow \pi\pi$, $KK \rightarrow KK$
- couple the two by adding weak part to the strong Hamiltonian $\mathcal{H}(x) \rightarrow \mathcal{H}(x) + \lambda \mathcal{H}_W(x)$

* Application of this approach to calculate lifetime difference is not trivial!!!

- need to consider other members of SU(3) octet
- need to consider 4π states that mix with $\pi\pi$ + others
- need to consider 3-body and excited light-quark states

* See "**panacea**": In <u>Greek mythology</u>, **Panacea** (Greek Πανάκεια, **Panakeia**) was a goddess of Universal remedy.

Future: transitions forbidden w/out CP-violation

τ -charm factory

★ Recall that CP of the states in $D^0 \overline{D^0} \to (F_1)(F_2)$ are anti-correlated at $\psi(3770)$: ★ a simple signal of CP violation: $\psi(3770) \to D^0 \overline{D^0} \to (CP_{\pm})(CP_{\pm})$

> I. Bigi, A. Sanda; H. Yamamoto; Z.Z. Xing; D. Atwood, AAP

$$CP[F_{1}] = CP[F_{2}] \qquad \overline{f}_{2} \qquad CP \text{ eigenstate } F_{2} \qquad CP \text{ eigenstate } F_{2} \qquad \int f_{1} \qquad D^{0}\overline{D}^{0} \rangle_{L} = \frac{1}{\sqrt{2}} \left[\left| D^{0}(k_{1})\overline{D}^{0}(k_{2}) \right\rangle + (-1)^{L} \left| D^{0}(k_{2})\overline{D}^{0}(k_{1}) \right\rangle \right]$$

$$\Gamma_{F_1F_2} = \frac{\Gamma_{F_1}\Gamma_{F_2}}{R_m^2} \left[\left(2 + x^2 + y^2 \right) |\lambda_{F_1} - \lambda_{F_2}|^2 + \left(x^2 + y^2 \right) |1 - \lambda_{F_1}\lambda_{F_2}|^2 \right] \right]$$

★ CP-violation in the <u>rate</u> \rightarrow of the second order in CP-violating parameters.

★ Cleanest measurement of CP-violation!

AAP, Nucl. Phys. PS 142 (2005) 333 hep-ph/0409130

 $\lambda_f = \frac{q}{p} \frac{A_f}{A_f}$

Future: Rare D(B)-decays with missing energy

> Let us discuss B and D-decays simultaneously: physics is similar

★ For B(D) $\rightarrow \nu \nu$ decays SM branching ratios are tiny

- SM decay is helicity suppressed

$$\mathcal{B}(B_s \to \nu \bar{\nu}) = \frac{G_F^2 \alpha^2 f_B^2 M_B^3}{16\pi^3 \sin^4 \theta_W \Gamma_{B_s}} |V_{tb} V_{ts}^*|^2 X(x_t)^2 x_{\nu}^2$$

- NP: other ways of flipping helicity?

- add a third particle to the final state?

What would happen if a photon is added to the final state?

Decay	Branching ratio
$B_s \to \nu \bar{\nu}$	3.07×10^{-24}
$B_d \to \nu \bar{\nu}$	1.24×10^{-25}
$D^0 \to \nu \bar{\nu}$	1.1×10^{-30}

Rare D(B)-decays with missing energy

★ For B(D) $\rightarrow \nu \nu \gamma$ decays SM branching ratios are still tiny	Decay	Branching ratio
 need form-factors to describe the transition 		
$\langle \gamma(k) \bar{h}\gamma_{v} q B(k+q)\rangle = e\epsilon \epsilon^{*\nu}q^{\rho}k^{\sigma}\frac{f_{V}^{B}(q^{2})}{k^{\sigma}}$	$B_s \to \nu \bar{\nu} \gamma$	3.68×10^{-8}
$(\gamma(\kappa)) \partial \gamma_{\mu} q D_{q} (\kappa + q)) = \partial c c_{\mu\nu\rho\sigma} c q^{\mu} \kappa M_{B_{q}}$	$B_d o \nu \bar{\nu} \gamma$	1.96×10^{-9}
$\langle \gamma(k) \bar{b} \gamma_{\mu} \gamma_{5} q B_{q}(k+q) \rangle = -ie [\epsilon_{\mu}^{*}(kq) - (\epsilon^{*}q)k_{\mu}]$ $f^{B}(q^{2})$	$D^0 o \nu \bar{\nu} \gamma$	3.96×10^{-14}
$\times \frac{J_A(q_{-})}{M_{B_q}}$,		
$\langle \gamma(k) ar{b}\sigma_{\mu u}q B_q(k+q) angle = rac{e}{M_{B_q}^2}\epsilon_{\mu u\lambda\sigma}[G\epsilon^{*\lambda}k^{\sigma}]$	Can calculate energy distrib	photon utions as well.
$+ H \epsilon^{*\lambda} q^{\sigma} + N(\epsilon^* q) q^{\lambda} k^{\sigma}]$		Badin, AAP (2010)
- helicity suppression is lifted $A(B_q ightarrow u ar{ u} \gamma) = rac{2eC_1^{ m SM}(x_t)}{M_{B_q}} [\epsilon]$	$\mu_{\mu\nu ho\sigma}\epsilon^{* u}q^{ ho}k^{\sigma}$	$f_V^B(q^2)$
$+ i[\epsilon^*_{\mu}(kq) -$	$-(\epsilon^* q)k_{\mu}]f^B_A($	$[(q^2)] \bar{\nu}_L \gamma^\mu \nu_L,$

★ BUT: missing energy does not always mean neutrinos

- nice constraints on light Dark Matter properties !!!

Alexey A Petrov (WSU & MCTP)

HIEPA-2015, Hefei 14-17 January 2015

Rare D(B)-decays: scalar DM

> Let us discuss B and D-decays simultaneously: physics is similar

Badin, AAP (2010)

★ Generic interaction Lagrangian: $\mathcal{H}_{eff} = \sum_{i} \frac{2C_{i}^{(s)}}{\Lambda^{2}} O_{i}$ $O_{1} = m_{Q} (J_{Qq})_{RL} (\chi_{0}^{*}\chi_{0})$ $O_{2} = m_{Q} (J_{Qq})_{LR} (\chi_{0}^{*}\chi_{0})$

- respective neutral currents for B-and D-decays

★ Scalar DM does not exhibit helicity suppression - B(D) → E_{mis} is more powerful than B(D) → $E_{mis \gamma}$

 $\mathcal{B}(B_q \to \chi_0 \chi_0) = \frac{(C_1^{(s)} - C_2^{(s)})^2}{4\pi M_{B_a} \Gamma_{B_a}} \left(\frac{f_{B_q} M_{B_q}^2 m_b}{\Lambda^2 (m_b + m_a)}\right)^2$

 $\times \sqrt{1-4x_{\chi}^2}$

$$\left(\frac{C_1^{(s)} - C_2^{(s)}}{\Lambda^2} \right)^2 \le 2.07 \times 10^{-16} \text{ GeV}^{-4}$$
 for $m_{\chi} = 0.1 \times M_{B_d}$,

 $O_3 = \left(J_{Qq}^{\mu}\right)_{II} \left(\chi_0^* \overleftrightarrow{\partial}_{\mu} \chi_0\right)$

 $O_4 = \left(J_{Qq}^{\mu}\right)_{\text{RP}} \left(\chi_0^* \overleftrightarrow{\partial}_{\mu} \chi_0\right)$

$$\begin{aligned} \mathcal{B}(B_q \to \chi_0^* \chi_0 \gamma) &= \frac{f_{B_q}^2 \alpha C_3^{(s)} C_4^{(s)} M_{B_q}^5}{6\Lambda^4 \Gamma_{B_q}} \left(\frac{F_{B_q}}{4\pi}\right)^2 \\ &\times \left(\frac{1}{6}\sqrt{1-4x_\chi^2}(1-16x_\chi^2-12x_\chi^4)\right) \\ &- 12x_\chi^4 \log \frac{2x_\chi}{1+\sqrt{1-4x_\chi^2}}\right). \end{aligned} \qquad \begin{pmatrix} C_3^{(s)} \frac{C_4^{(s)}}{\Lambda^2} \leq 1.55 \times 10^{-12} \text{ GeV}^{-4} & \text{for } m = 0, \\ \frac{C_3^{(s)}}{\Lambda^2} \frac{C_4^{(s)}}{\Lambda^2} \leq 7.44 \times 10^{-11} \text{ GeV}^{-4} & \text{for } m = 0.4 \times M_{B_d}. \end{aligned}$$

These general bounds translate into constraints onto constraints for particular models

Example of a particular model of scalar DM

★ Several different models of light scalar DM

- simplest: singlet scalar DM
- more sophisticated less restrictive

$$\begin{split} \mathcal{L}_{S} &= \frac{\lambda_{S}}{4} S^{4} + \frac{m_{0}^{2}}{2} S^{2} + \lambda S^{2} H^{\dagger} H \\ &= \frac{\lambda_{S}}{4} S^{4} + \frac{1}{2} (m_{0}^{2} + \lambda v_{\text{EW}}^{2}) S^{2} + \lambda v_{\text{EW}} S^{2} h \\ &+ \frac{\lambda}{2} S^{2} h^{2}, \end{split}$$

 \star B(D) decays rate in this model

These results are complimentary to constraints from quarkonium decays with missing energy

Rare D(B)-decays: fermionic DM

★ Generic interaction Lagrangian: $\mathcal{H}_{eff} = \sum_{i} \frac{4C_i}{\Lambda^2} O_i$

- respective neutral currents for B-and D-decays

$$O_{1} = \left(J_{Qq}^{\mu}\right)_{LL} (\bar{\chi}_{1/2L}\gamma_{\mu}\chi_{1/2L})$$

$$O_{2} = \left(J_{Qq}^{\mu}\right)_{LL} (\bar{\chi}_{1/2R}\gamma_{\mu}\chi_{1/2R})$$

$$O_{3} = O_{1(L\leftrightarrow R)}, \quad O_{4} = O_{2(L\leftrightarrow R)}$$

$$O_{5} = (J_{Qq})_{LR} (\bar{\chi}_{1/2L}\chi_{1/2R})$$

$$O_{6} = (J_{Qq})_{LR} (\bar{\chi}_{1/2R}\chi_{1/2L})$$

$$O_{7} = O_{5(L\leftrightarrow R)}, \quad O_{8} = O_{6(L\leftrightarrow R)}$$

+ tensor operators

Badin. AAP

- \star Scalar DM does exhibit helicity suppression
 - B(D) \rightarrow E_{mis} maybe less powerful than B(D) \rightarrow E_{mis} γ
 - ... but it really depends on the DM mass!

$$\begin{aligned} \mathcal{B}(B_q \to \bar{\chi}_{1/2} \chi_{1/2}) &= \frac{f_{B_q}^2 M_{B_q}^3}{16\pi\Gamma_{B_q} \Lambda^2} \sqrt{1 - 4x_{\chi}^2} \\ &\times \left[C_{57} C_{68} \frac{4M_{B_q}^2 x_{\chi}^2}{(m_b + m_q)^2} - (C_{57}^2 + C_{68}^2) \right. \\ &\left. \times \frac{M_{B_q}^2 (2x_{\chi}^2 - 1)}{(m_b + m_q)^2} - 2\tilde{C}_{1 - 8} \frac{x_{\chi} M_{B_q}}{m_b + m_q} \right. \\ &\left. + 2(C_{13} + C_{24})^2 x_{\chi}^2 \right], \end{aligned}$$

Lots of operators — less so in particular models

Rare D(B)-decays: fermionic DM

\star Constraints from B decays are the best at the moment

TABLE I. Constraints (upper limits) on the Wilson coefficients of operators of Eq. (43) from the $B_q \rightarrow \chi_{1/2} \bar{\chi}_{1/2}$ transition. Note that operators $Q_9 - Q_{12}$ give no contribution to this decay.

x_{χ}	C_1/Λ^2 , GeV ⁻²	C_2/Λ^2 , GeV ⁻²	C_3/Λ^2 , GeV ⁻²	C_4/Λ^2 , GeV ⁻²	C_5/Λ^2 , GeV ⁻²	C_6/Λ^2 , GeV ⁻²	C_7/Λ^2 , GeV ⁻²	C_8/Λ^2 , GeV ⁻²
0					2.3×10^{-8}	2.3×10^{-8}	2.3×10^{-8}	2.3×10^{-8}
0.1	1.9×10^{-7}	1.9×10^{-7}	1.9×10^{-7}	1.9×10^{-7}	2.3×10^{-8}	2.3×10^{-8}	2.3×10^{-8}	2.3×10^{-8}
0.2	$9.7 imes 10^{-8}$	$9.7 imes 10^{-8}$	9.7×10^{-8}	9.7×10^{-8}	2.5×10^{-8}	2.5×10^{-8}	2.5×10^{-8}	2.5×10^{-8}
0.3	$6.9 imes 10^{-8}$	$6.9 imes 10^{-8}$	6.9×10^{-8}	6.9×10^{-8}	$2.8 imes 10^{-8}$	$2.8 imes 10^{-8}$	$2.8 imes 10^{-8}$	$2.8 imes 10^{-8}$
0.4	$6.0 imes 10^{-8}$	$6.0 imes 10^{-8}$	$6.0 imes 10^{-8}$	$6.0 imes 10^{-8}$	3.6×10^{-8}	$3.6 imes 10^{-8}$	3.6×10^{-8}	$3.6 imes 10^{-8}$

\star ... the same is true for the radiative decays with missing energy

TABLE II. Constraints (upper limits) on the Wilson coefficients of operators of Eq. (43) from the $B_q \rightarrow \chi_{1/2} \bar{\chi}_{1/2} \gamma$ transition. Note that operators $Q_5 - Q_8$ give no contribution to this decay.

x_{χ}	C_1/Λ^2 , GeV ⁻²	C_2/Λ^2 , GeV $^{-2}$	C_3/Λ^2 , GeV ⁻²	C_4/Λ^2 , GeV ⁻²
0	6.3×10^{-7}	$6.3 imes 10^{-7}$	6.3×10^{-7}	6.3×10^{-7}
0.1	$7.0 imes 10^{-7}$	$7.0 imes 10^{-7}$	$7.0 imes 10^{-7}$	$7.0 imes 10^{-7}$
0.2	9.2×10^{-7}	9.2×10^{-7}	9.2×10^{-7}	9.2×10^{-7}
0.3	$1.5 imes 10^{-6}$	$1.5 imes 10^{-6}$	$1.5 imes 10^{-6}$	$1.5 imes 10^{-6}$
0.4	3.4×10^{-6}	$3.4 imes 10^{-6}$	$3.4 imes 10^{-6}$	$3.4 imes 10^{-6}$

These general bounds translate into constraints onto constraints for particular models

Things to take home

Computation of charm amplitudes is a difficult task

- no dominant heavy dof, as in beauty decays
- light dofs give no contribution in the flavor SU(3) limit
- D-mixing is a second order effect in SU(3) breaking $(x, y \sim 1\%)$ in the SM)

For indirect CP-violation studies

- constraints on Wilson coefficients of generic operators are possible, point to the scales much higher than those directly probed by LHC
- consider new parameterizations that go beyond the "superweak" limit

For direct CP-violation studies

- unfortunately, large DCPV signal is no more; need more results in individual channels, especially including baryons
- hit the "brown muck": future observation of DCPV does not give easy interpretation in terms of fundamental parameters
- need better calculations: lattice?
- Lattice calculations can, in the future, provide a result for a_{CP}!

1

- Decays to states with missing energy probe light DM
- > Need to give more thought on how large SM CPV can be...

"I'm looking for a lot of men who have an infinite capacity to not know what can't be done."

Henry Ford

7th International Workshop on Charm Physics May 17-23, 2015 Wayne State University Detroit, MI

http://charm2015.wayne.edu

Local Organizing Committee: Wayne State University

David Cinabro, Sean Gavin, Robert Harr, Abhijit Majumder, Gil Paz, Alexey A Petrov (Chair), Claude Pruneau, Joern Putschke

David Asner (PNNL, USA), Alexander Bondar (BINP, Russia), Nora Brambilla (TUM, Germany), Tom Browder (University of Hawai'i, USA), Mikhail Danilov (ITEP, Russia), Christine Davies (University of Glasgow, UK), Marco Gersabeck (The University of Manchester, UK), Yuval Grossman (Cornell University, USA), Fred Harris (University of Hawai'i, USA), Andreas Kronfeld (Fermilab, USA), Alexander Lenz (IPPP, University of Durham, UK), Hai-Bo Li (IHEP, China), Stephen Olsen (Seoul National University, Seoul, Korea), Antimo Palano (Bari, INFN, Italy), Chris Parkes (The University of Manchester, UK), Klaus Peters (University of Frankfurt and GSI, Germany), Alexey Petrov (Wayne State University, USA), Antonio Pich (IFIC, University of Valencia, Spain), Michael Sokoloff (University of Cincinnati, USA), Thomas Ullrich (BNL, USA), Ramona Vogt (LLNL/UC Davis, USA), Yifang Wang (IHEP, China), Ulrich Wiedner (University of Bochum, Germany), Guy Wilkinson (Oxford University, UK), Bruce Yabsley (University of Sydney, Australia), Zhengguo Zhao (USTC, China), Yangheng Zheng (GUCAS, China)

International Organizing Committee:

CHARM 2015

IN SOJE

Experimental analyses of mixing

★ In principle, can extract mixing (x,y) and CP-violating parameters (A_m , φ)

★ In particular, time-dependent $D^0(t) \rightarrow K^+\pi^-$ analysis

$$\Gamma[D^{0}(t) \to K^{+}\pi^{-}] = e^{-\Gamma t} |A_{K^{+}\pi^{-}}|^{2} \left[R + \sqrt{R}R_{m} \left(y'\cos\phi - x'\sin\phi \right) \Gamma t + \frac{R_{m}^{2}}{4} \left(x^{2} + y^{2} \right) \left(\Gamma t\right)^{2} \right]$$

$$\int R_{m}^{2} = \left| \frac{q}{p} \right|^{2}, \ x' = x\cos\delta + y\sin\delta, \ y' = y\cos\delta - x\sin\delta$$

★ The expansion can be continued to see how well it converges for large t

$$\begin{split} \Gamma[D^{0}(t) \to K^{+}\pi^{-}] \left| A_{\mathrm{K}\pi} \right|^{-2} e^{\Gamma t} &= R - \sqrt{R} R_{m} (x \sin(\delta + \phi) - y \cos(\delta + \phi)) \left(\Gamma t \right) \\ &+ \frac{1}{4} \left(\left(R_{m} - R \right) x^{2} + \left(R + R_{m} \right) y^{2} \right) \left(\Gamma t \right)^{2} \\ &+ \frac{1}{6} \sqrt{R} R_{m} \left(x^{3} \sin(\delta + \phi) + y^{3} \cos(\delta + \phi) \right) \left(\Gamma t \right)^{3} \\ &- \frac{1}{48} R_{m} \left(x^{4} - y^{4} \right) \left(\Gamma t \right)^{4} \end{split}$$