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Introduction

★ ...can be calculated as real and imaginary parts of a correlation function

★ “Experimental” mass and lifetime differences of mass eigenstates...

★ DD-oscillations:

★CP-violating phases can appear from subleading local SM or NP operators 

local operator  
(b-quark, NP): small?

bi-local time-ordered product

bi-local time-ordered product

xD =
M2 �M1
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∆c = 2 example: mixing

★ It is important to understand relevant energy scales for the problem at hand

★ Main goal of the exercise: understand physics at the most fundamental scale

physics of beauty physics of charm

dominant dominant smallsmall
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Mixing: short vs long distance 

★ It is important to remember that the expansion parameter is 1/Ereleased

★ How can one tell that a process is dominated by long-distance or short-distance?

OPE-leading contribution:

★ In the heavy-quark limit mc → ∞ we have mc ≫ ∑ mintermediate quarks, so Ereleased ~ mc 

- the situation is similar to B-physics, where it is “short-distance” dominated 
- one can consistently compute pQCD and 1/m corrections 

★ But wait, mc is NOT infinitely large! What happens for finite mc???  
- how is large momentum routed in the diagrams? 
- are there important hadronization (threshold) effects? 

26
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Threshold (and related) effects in OPE

★ Let’s look how the momentum is routed in a  
leading-order diagram  
- injected momentum is pc ~ mc, so 
- thus, p1~p2~mc/2 ~ O(ΛQCD)? 

★ How can one tell that a process is dominated by long-distance or short-distance?

pc

p1

p2
★ For a particular example of the lifetime difference, 
have hadronic intermediate states  

- let’s use an example of KKK intermediate state 
- in this example,  Ereleased ~ mD - 3 mK ~ O(ΛQCD) 

★ Similar threshold effects exist in B-mixing calculations  
- but mb ≫ ∑ mintermediate quarks, so Ereleased ~ mb (almost) always 
- quark-hadron duality takes care of the rest!

Maybe a better approach would be to work 
with hadronic DOF directly?

25
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CP-violation I: indirect

★ It seems like xD ~ yD ~ O(1%) - consistent with SM? 
★ SM CP-violating phase is arg(VcbVub) ~ γ 
★ SM CP-violating amplitude is always suppressed by |VcbVub/VcsVus| ~ O(10-3)

xD = 0.41+0.14
�0.15%, yD = 0.63+0.07

�0.08%
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CP-violation I: indirect

★ It seems like xD ~ yD ~ O(1%) - consistent with SM? 
★ SM CP-violating phase is arg(VcbVub) ~ γ 
★ SM CP-violating amplitude is always suppressed by |VcbVub/VcsVus| ~ O(10-3)

xD = 0.41+0.14
�0.15%, yD = 0.63+0.07

�0.08%
UTFit JHEP 1403 (2014) 123
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Resume: a contribution to x and y of the order of 1% is natural in the SM 
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Generic restrictions on NP from DD-mixing

★ Comparing to experimental value of x, obtain constraints on NP models 
- assume x is dominated by the New Physics model 
- assume no accidental strong cancellations b/w SM and NP 

★ ... which are

�NP ⇤ (4� 10)⇥ 103 TeV

�NP ⇤ (1� 3)⇥ 102 TeV

Gedalia, Grossman, Nir, Perez 
Phys.Rev.D80, 055024, 2009

New Physics is either at a very high scales 
!
           tree level: 

           loop level:   !
or have highly suppressed couplings to charm!

★ Constraints on particular NP models available E.Golowich, J. Hewett, S. Pakvasa and A.A.P. 
Phys. Rev. D76:095009, 2007
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A bit on CP-violation

★ Possible sources of CP violation in charm transitions: 
!

★  CPV in Δc = 1 decay amplitudes (“direct” CPV) 
!

!
★  CPV in               mixing matrix (Δc = 2):  
!
!
!
!

★  CPV in the interference of decays with and without mixing 

★ One can separate various sources of CPV by customizing observables
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★ Fundamental problem: observation of CP-violation in up-quark sector!
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CP-violation I: indirect

★ Indirect CP-violation manifests itself in DD-oscillations 
- see time development of a D-system:

★ Define “theoretical” mixing parameters

★ Assume that direct CP-violation is absent (                                                )  
- can relate x, y, ϕ, |q/p| to x12, y12 and ϕ12

★ Four “experimental” parameters related to three “theoretical” ones 
- a “constraint” equation is possible 

20

“superweak limit”



Alexey A Petrov (WSU & MCTP) HIEPA-2015, Hefei 14-17 January 2015

x

y
=

1� |q/p|
tan�

= �1
2

Am

tan�

CP-violation I: indirect

★ Relation; data from HFAG’s compilation 
!
!
!
!

- it might be experimentally xD < yD 
- this has implications for NP 
searches in charm CP-violating 
asymmetries! 
!

- that is, if |M12| < |Γ12|:

★ With available experimental constraints on x, y, and q/p, one can bound WCs of a 
generic NP Lagrangian -- bound any high-scale model of NP

Note: CPV is suppressed even if M12 is all NP!!! Bergmann, Grossman, Ligeti, Nir, AAP  
PL B486 (2000) 418
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�NP ⇤ (4� 10)⇥ 103 TeV

�NP ⇤ (1� 3)⇥ 102 TeV

CP-violation I: indirect

★ Assume that direct CP-violation is absent (                                                ) 
- experimental constraints on x, y, ϕ, |q/p| exist 

- can obtain generic constraints on Im parts of Wilson coefficients 

Gedalia, Grossman, Nir, Perez 
Phys.Rev.D80, 055024, 2009

★ In particular, from 

New Physics is either at a very high scales 
!
           tree level: 

           loop level:   !
or have highly suppressed couplings to charm!

★ Constraints on particular NP models possible as well

H�C=2
NP =

1
�2

NP

8�

i=1

zi(µ)Q�
i

Bigi, Blanke, Buras, Recksiegel, 
JHEP 0907:097, 2009
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CP-violation I: beyond “superweak”

★ Look at parameterization of CPV phases; separate absorptive and dispersive 
!
!
!
!

- consider f= CP eigenstate, can generalize later: 
!
!
!
!
!
!
!

- CP-violating phase for the final state f is then

Grossman, Kagan, Perez, 
Silvestrini, AAP

�2
f =

2M⇤
12 � i�⇤

12

2M12 � i�12

✓
Af

Af

◆2

�2
CP = R2

me2i�

��
12f =

1

2
arg

"
�12

�⇤
12

✓
Af

Af

◆2
#

�M
12f =

1

2
arg

"
M12

M⇤
12

✓
Af

Af

◆2
#

�12 = �M
12f � ��

12f

★ Can we put a Standard Model theoretical bound on           or          ?�M
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CP-violation I: beyond “superweak”

Grossman, Kagan, Perez, 
Silvestrini, AAP

M12 = M0
12 + �M12

★ Let us define convention-independent universal CPV phases. First note that 
- for the absorptive part: 

!
!
!
!

- … and similarly for the dispersive part:  

�12 = �0
12 + ��12

�0
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★ CP-violating mixing phase can then be written as 
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★ These phases can then be constrained; e.g. the absorptive phase

|��
12| = 0.009⇥ |�sd|

�
⇥
����
�sd � �dd

�sd

���� < 0.01
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CP-violation II: direct
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GFp
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SU(3) is badly broken in D-decays 
e.g. Br(D → KK) ~ 3 Br(D →ππ)

★ IDEA: consider the DIFFERENCE of decay rate asymmetries: D →ππ vs D → KK!     
    For each final state the asymmetry

★ A reason:  amKK=amππ and aiKK=aiππ (for CP-eigenstate final states), so, ideally, 
mixing asymmetries cancel!

direct     mixing    interference

★ ... and the resulting DCPV asymmetry is                                                  (double!)

★ ... so it is doubled in the limit of SU(3)F symmetry 

D0: no neutrals in 
the final state!

15
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Experiment?

Looks like CP is broken in 
charm transitions!  

Now what?

★ Experiment: the difference of CP-asymmetries: �aCP = aCP,KK � aCP,⇡⇡

★ Earlier results (before 2013):

14
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Is it Standard Model or New Physics??

★ Is it Standard Model or New Physics? Theorists used to say... 
!
!
!
!
                                                                           ...what do you say now?

★ assuming SU(3) symmetry, aCP (ππ) ~ aCP (KK) ~ 0.4%. Is it 1% or 0.1%? 
★ let us try Standard Model 

- need to estimate size of penguin/penguin contractions vs. tree 
!

- unknown penguin enhancement (similar to ∆I = 1/2) 
- SU(3) analysis: some ME are enhanced 
!

-  unusually large 1/mc corrections 
!

- no assumptions, flavor-flow diagrams  

Naively, any CP-violating signal in the SM will be small, at most O(VubVcb
*/VusVcs

*) ~ 10-3 

Thus, O(1%) CP-violating signal can provide a “smoking gun” signature of New Physics

Golden & Grinstein PLB 222 (1989) 501;Pirtshalava & Uttayarat 1112.5451

Isidori et al PLB 711 (2012) 46; Brod et al 1111.5000

Broad et al 1203.6659; Bhattacharya et al PRD 85 (2012) 054014; 
Cheng & Chiang 1205.0580

13
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Is it a penguin or a tree?

12

Without QCD

With QCD
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New Physics: operator analysis

★ Factorizing decay amplitudes, e.g.

Z. Ligeti, CHARM-2012

★ one can fit to ε’/ε and mass difference in D-anti-D-mixing  
- LL are ruled out 
- LR are borderline 
- RR and dipoles are possible

Gedalia, et al, arXiv:1202.5038

Constraints from particular models also available

11
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Experiment again?

LHCb arXiv:1405.2797

Looks like CP is broken in 
charm transitions!  

Now what?

★ Experiment: the difference of CP-asymmetries: �aCP = aCP,KK � aCP,⇡⇡

★ Earlier results (before 2013):

★ Recent results (after 2013):

Is it NP or SM? Doesn’t look like NP is needed to explain the result.

10

�aCP = (+0.14± 0.16(stat)± 0.08(syst))%

aCP,KK = (�0.06± 0.15(stat)± 0.10(syst))%

aCP,⇡⇡ = (�0.20± 0.19(stat)± 0.10(syst))%
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Future: lattice to the rescue*?

★ There are methods to compute decays on the lattice (Lellouch-Lüscher) 
- calculation of scattering of final state particles in a finite box  
- matching resulting discrete energy levels to decaying particle 
- reasonably well developed for a single-channel problems (e.g. kaon decays) 

★ Application of this approach to calculate lifetime difference is not trivial!!! 
- need to consider other members of SU(3) octet  
- need to consider 4π states that mix with ππ + others 
- need to consider 3-body and excited light-quark states

* See “panacea”: In Greek mythology, Panacea (Greek Πανάκεια, Panakeia) was a goddess of Universal remedy.

Hansen, Sharpe 
PRD86, 016007 (2012)

★ Can these methods be generalized to D-decays? 
- make D-meson slightly lighter, mD < 4 mπ 

-  assume G-parity and consider scattering of two pions and two kaons in a 
box with SM scattering energy 
!

!
!

- only four possible scattering events: ππ→ππ, ππ→KK, KK→ππ, KK→KK  

- couple the two by adding weak part to the strong Hamiltonian

2m⇡ < 2mK < E⇤ < 4m⇡

H(x)! H(x) + �HW (x)

9

http://en.wikipedia.org/wiki/Greek_mythology
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D0D0 � (F1)(F2)
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Future: transitions forbidden w/out CP-violation

★   Recall that CP of the states in                              are anti-correlated at ψ(3770): 
★ a simple signal of CP violation:  

★    CP-violation in the rate   →   of the second order in  
CP-violating parameters. 
★     Cleanest measurement of CP-violation!

CP eigenstate F1

CP eigenstate F2

τ-charm factory

I. Bigi, A. Sanda; H. Yamamoto; 
Z.Z. Xing; D. Atwood, AAP

AAP,  Nucl. Phys. PS 142 (2005) 333 
           hep-ph/0409130

8
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Future: Rare D(B)-decays with missing energy

★ SM process:  D → 𝝂𝝂 and D → 𝝂𝝂𝛾: 

- for B-decays   
- for D-decays  

7

Badin, AAP (2010)

★ For B(D) → 𝝂𝝂 decays SM branching ratios are tiny 

- SM decay is helicity suppressed  
!
!
!
!

- NP: other ways of flipping helicity?  
- add a third particle to the final state?

   Decay Branching ratio

Bs ! ⌫⌫̄

Bd ! ⌫⌫̄

D0 ! ⌫⌫̄

3.07⇥ 10�24

1.24⇥ 10�25

1.1⇥ 10�30

What would happen if a photon is added to the final state?

Ø Let us discuss B and D-decays simultaneously: physics is similar
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Rare D(B)-decays with missing energy

6

Badin, AAP (2010)

★ For B(D) → 𝝂𝝂𝛾 decays SM branching ratios are still tiny 

- need form-factors to describe the transition 
!
!
!
!
!
!
!
!
!
!
!
!

- helicity suppression is lifted 

Can calculate photon 
energy distributions as well.

   Decay Branching ratio

★ BUT: missing energy does not always mean neutrinos 
- nice constraints on light Dark Matter properties !!!

3.68⇥ 10�8

1.96⇥ 10�9

3.96⇥ 10�14

Bs ! ⌫⌫̄�

Bd ! ⌫⌫̄�

D0 ! ⌫⌫̄�
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Rare D(B)-decays: scalar DM

★ Generic interaction Lagrangian: 
!

- respective neutral currents for B-and D-decays  

5

Badin, AAP (2010)

These general bounds translate into constraints onto constraints for particular models

Ø Let us discuss B and D-decays simultaneously: physics is similar

Heff =
X

i

2C(s)
i
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0�0)
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★ Scalar DM does not exhibit helicity suppression 
- B(D) → Emis is more powerful than B(D) → Emis 𝛾
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Example of a particular model of scalar DM

4

★ Several different models of light scalar DM    
- simplest: singlet scalar DM 
- more sophisticated - less restrictive

These results are complimentary to constraints from quarkonium decays with missing energy

★ B(D) decays rate in this model 
!
!
!
!
!
!
!

- fix 𝛌 from relic density
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Rare D(B)-decays: fermionic DM

★ Generic interaction Lagrangian: 
!

- respective neutral currents for B-and D-decays  

3

Badin, AAP 

Lots of operators — less so in particular models

★ Scalar DM does exhibit helicity suppression 
- B(D) → Emis maybe less powerful than B(D) → Emis 𝛾 

- … but it really depends on the DM mass!

O1 =

⇣
Jµ
Qq

⌘

LL

�
�̄1/2L�µ�1/2L

�

O2 =
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Jµ
Qq

⌘
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�
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�

O3 = O1(L$R), O4 = O2(L$R)

O5 = (JQq)LR

�
�̄1/2L �1/2R

�

O6 = (JQq)LR

�
�̄1/2R �1/2L
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O7 = O5(L$R), O8 = O6(L$R)

+ tensor operators

Heff =
X

i

4Ci
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Rare D(B)-decays: fermionic DM

★ Constraints from B decays are the best at the moment   

2

★ … the same is true for the radiative decays with missing energy

These general bounds translate into constraints onto constraints for particular models
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Things to take home

Ø Computation of charm amplitudes is a difficult task 
– no dominant heavy dof, as in beauty decays 
– light dofs give no contribution in the flavor SU(3) limit 
– D-mixing is a second order effect in SU(3) breaking (x,y ~ 1% in the SM) 

Ø For indirect CP-violation studies 
– constraints on Wilson coefficients of generic operators are possible, point to the 

scales much higher than those directly probed by LHC 
– consider new parameterizations that go beyond the “superweak” limit 

Ø For direct CP-violation studies 
- unfortunately, large DCPV signal is no more; need more results in individual channels, 

especially including baryons 

- hit the “brown muck”: future observation of DCPV does not give easy interpretation 
in terms of fundamental parameters  

- need better calculations: lattice? 

Ø Lattice calculations can, in the future, provide a result for aCP!   
Ø Decays to states with missing energy probe light DM 
Ø Need to give more thought on how large SM CPV can be…

1
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"I'm looking for a lot of men who have an infinite 
capacity to not know what can't be done." !
!
                                                                                                                         Henry Ford

0
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★ In particular, time-dependent                           analysis

Experimental analyses of mixing

D0(t)� K+��

�[D0(t)⇥ K+��] = e��t |AK+�� |2
⇤
R +

⌅
RRm (y⇥ cos ⇥� x⇥ sin⇥) �t +

R2
m

4
�
x2 + y2

⇥
(�t)2

⌅

★ In principle, can extract mixing (x,y) and CP-violating parameters (Am, ϕ)

★ The expansion can be continued to see how well it converges for large t 

LHCb: x'2 = (-0.9 ± 1.3) x 10-4, y' = (7.2 ± 2.4) x 10-3


