Theoretical review on charm mixing and decay and physics beyond SM

Table of Contents:

- Introduction
- Mixing and CP-violation in $\Delta c=2$ processes
- CP-violation in $\Delta \mathrm{c}=1$ processes
- New Physics in $\Delta c=1$ processes
- Conclusions

Introduction

夫 D $\overline{\mathrm{D}}$-oscillations: $i \frac{d}{d t}|D(t)\rangle=\left(M-\frac{i}{2} \Gamma\right)|D(t)\rangle$

* "Experimental" mass and lifetime differences of mass eigenstates...

$$
x_{D}=\frac{M_{2}-M_{1}}{\Gamma_{D}}, y_{D}=\frac{\Gamma_{2}-\Gamma_{1}}{2 \Gamma_{D}}
$$

* ...can be calculated as real and imaginary parts of a correlation function

$$
\begin{aligned}
y_{\mathrm{D}} & =\frac{1}{2 M_{\mathrm{D}} \Gamma_{\mathrm{D}}} \operatorname{Im}\left\langle\overline{D^{0}}\right| i \int \mathrm{~d}^{4} x T\left\{\mathcal{H}_{w}^{|\Delta C|=1}(x) \mathcal{H}_{w}^{|\Delta C|=1}(0)\right\}\left|D^{0}\right\rangle \\
x_{\mathrm{D}} & =\frac{1}{2 M_{\mathrm{D}} \Gamma_{\mathrm{D}}} \operatorname{Re}\left[2\left\langle\overline{D^{0}}\right| H^{|\Delta C|=2}\left|D^{0}\right\rangle+\left\langle\overline{D^{0}}\right| i \int \mathrm{~d}^{4} x T\left\{\mathcal{H}_{w}^{|\Delta C|=1}(x) \mathcal{H}_{w}^{|\Delta C|=1}(0)\right\}\left|D^{0}\right\rangle\right]
\end{aligned}
$$

\star CP-violating phases can appear from subleading local SM or NP operators

$\Delta c=2$ example: mixing

* Main goal of the exercise: understand physics at the most fundamental scale
\star It is important to understand relevant energy scales for the problem at hand

Mixing: short vs long distance

* How can one tell that a process is dominated by long-distance or short-distance?
\star It is important to remember that the expansion parameter is $1 / E_{\text {released }}$

$$
y_{\mathrm{D}}=\frac{1}{2 M_{\mathrm{D}} \Gamma_{\mathrm{D}}} \operatorname{Im}\left\langle\overline{D^{0}}\right| i \int \mathrm{~d}^{4} x T\left\{\mathcal{H}_{w}^{|\Delta C|=1}(x) \mathcal{H}_{w}^{|\Delta C|=1}(0)\right\}\left|D^{0}\right\rangle
$$

\star In the heavy-quark limit $m_{c} \rightarrow \infty$ we have $m_{c} \gg \sum m_{\text {intermediate quarks, }}$ so Ereleased $\sim m_{c}$ - the situation is similar to B-physics, where it is "short-distance" dominated - one can consistently compute PQCD and $1 / \mathrm{m}$ corrections
\star But wait, m_{c} is NOT infinitely large! What happens for finite m_{c} ???

- how is large momentum routed in the diagrams?
- are there important hadronization (threshold) effects?

Threshold (and related) effects in OPE

* How can one tell that a process is dominated by long-distance or short-distance?
* Let's look how the momentum is routed in a leading-order diagram
- injected momentum is $p_{c} \sim m_{c}$, so
- thus, $\mathrm{p}_{1} \sim \mathrm{p}_{2} \sim \mathrm{~m}_{c} / 2 \sim O\left(\Lambda_{\mathrm{QCD}}\right)$?

\star For a particular example of the lifetime difference, have hadronic intermediate states
- let's use an example of KKK intermediate state
- in this example, E released $\sim m_{D}-3 m_{K} \sim O\left(\Lambda_{Q C D}\right)$

* Similar threshold effects exist in B-mixing calculations
- but $m_{b} \gg \sum m_{\text {intermediate quarks, }}$ so $E_{\text {released }} \sim m_{b}$ (almost) always
- quark-hadron duality takes care of the rest!

Maybe a better approach would be to work
with hadronic DOF directly?

CP-violation I: indirect

$$
x_{D}=0.41_{-0.15}^{+0.14} \%, \quad y_{D}=0.63_{-0.08}^{+0.07} \%
$$

\star It seems like $X_{D} \sim y_{D} \sim O(1 \%)$ - consistent with SM?
\star SM CP-violating phase is $\arg \left(\mathrm{V}_{\mathrm{cb}} \mathrm{V}_{\mathrm{ub}}\right) \sim \mathrm{V}$
\star SM CP-violating amplitude is always suppressed by $\left|V_{c b} V_{u b} / V_{c s} V_{u s}\right| \sim O\left(10^{-3}\right)$

CP-violation I: indirect

$$
x_{D}=0.41_{-0.15}^{+0.14} \%, \quad y_{D}=0.63_{-0.08}^{+0.07} \%
$$

\star It seems like $X_{D} \sim y_{D} \sim O(1 \%)$ - consistent with SM?
\star SM CP-violating phase is $\arg \left(\mathrm{V}_{\mathrm{cb}} \mathrm{V}_{\mathrm{ub}}\right) \sim \mathrm{y}$
\star SM CP-violating amplitude is always suppressed by $\left|V_{c b} V_{u b} / V_{c s} V_{u s}\right| \sim O\left(10^{-3}\right)$

Generic restrictions on NP from D $\overline{\mathrm{D}}$-mixing

* Comparing to experimental value of x, obtain constraints on NP models
- assume x is dominated by the New Physics model
- assume no accidental strong cancellations b/w SM and NP

$$
\mathcal{H}_{N P}^{\Delta C=2}=\frac{1}{\Lambda_{N P}^{2}} \sum_{i=1}^{8} z_{i}(\mu) Q_{i}^{\prime} \quad \begin{aligned}
& Q_{1}^{c u}=\bar{u}_{L}^{\alpha} \gamma_{\mu} c_{L}^{\alpha} \bar{u}_{L}^{\beta} \gamma^{\mu} c_{L}^{\beta} \\
& Q_{2}^{c u}=\bar{u}_{R}^{\alpha} c_{L}^{\alpha} \bar{u}_{R}^{\beta} c_{L}^{\beta}, \\
& Q_{3}^{c u}=\bar{u}_{R}^{\alpha} c_{L}^{\beta} \bar{u}_{R}^{\beta} c_{L}^{\alpha}
\end{aligned}+\left\{\begin{array}{c}
L \\
\downarrow \\
R
\end{array}\right\}+\begin{aligned}
& Q_{4}^{c u}=\bar{u}_{R}^{\alpha} c_{L}^{\alpha} \bar{u}_{L}^{\beta} c_{R}^{\beta} \\
& Q_{5}^{c u}=\bar{u}_{R}^{\alpha} c_{L}^{\beta} \bar{u}_{L}^{\beta} c_{R}^{\alpha}
\end{aligned}
$$

\star... which are

$$
\begin{aligned}
& \left|z_{1}\right| \lesssim 5.7 \times 10^{-7}\left(\frac{\Lambda_{\mathrm{NP}}}{1 \mathrm{TeV}}\right)^{2}, \\
& \left|z_{2}\right| \lesssim 1.6 \times 10^{-7}\left(\frac{\Lambda_{\mathrm{NP}}}{1 T e V}\right)^{2}, \\
& \left|z_{3}\right| \lesssim 5.8 \times 10^{-7}\left(\frac{\Lambda_{\mathrm{NP}}}{1 \mathrm{TeV}}\right)^{2}, \\
& \left|z_{4}\right| \lesssim 5.6 \times 10^{-8}\left(\frac{\Lambda_{\mathrm{NP}}}{1 T e V}\right)^{2}, \\
& \left|z_{5}\right| \lesssim 1.6 \times 10^{-7}\left(\frac{\Lambda_{\mathrm{NP}}}{1 T e V}\right)^{2} .
\end{aligned}
$$

New Physics is either at a very high scales
tree level: $\quad \Lambda_{N P} \geq(4-10) \times 10^{3} \mathrm{TeV}$
loop level: $\quad \Lambda_{N P} \geq(1-3) \times 10^{2} \mathrm{TeV}$
or have highly suppressed couplings to charm!

Gedalia, Grossman, Nir, Perez
Phys.Rev.D80, 055024, 2009
Constraints on particular NP models available

A bit on CP-violation

* Fundamental problem: observation of CP-violation in up-quark sector!
\star Possible sources of CP violation in charm transitions:
* CPV in $\Delta c=1$ decay amplitudes ("direct" CPV)

$$
\Gamma(D \rightarrow f) \neq \Gamma(C P[D] \rightarrow C P[f])
$$

\star CPV in $D^{0}-\overline{D^{0}}$ mixing matrix $(\Delta c=2)$:

$$
\begin{aligned}
\left|D_{1,2}\right\rangle=p\left|D^{0}\right\rangle \pm q\left|\overline{D^{0}}\right\rangle \Rightarrow\left|D_{C P \pm}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|D^{0}\right\rangle \pm\left|\bar{D}^{0}\right\rangle\right) \\
R_{m}^{2}=|q / p|^{2}=\left|\frac{2 M_{12}^{*}-i \Gamma_{12}^{*}}{\Delta m-(i / 2) \Delta \Gamma}\right|^{2}=1+A_{m} \neq 1
\end{aligned}
$$

* CPV in the interference of decays with and without mixing

$$
\lambda_{f}=\frac{q}{p} \frac{\overline{A_{f}}}{A_{f}}=R_{m} e^{i(\phi+\delta)}\left|\frac{\overline{A_{f}}}{\left\lvert\, \frac{A_{f}}{}\right.}\right|
$$

\star One can separate various sources of CPV by customizing observables

CP-violation I: indirect

* Indirect CP-violation manifests itself in D \bar{D}-oscillations
- see time development of a D-system:

$$
\begin{gathered}
i \frac{d}{d t}|D(t)\rangle=\left(M-\frac{i}{2} \Gamma\right)|D(t)\rangle \\
\left\langle D^{0}\right| \mathcal{H}\left|\overline{D^{0}}\right\rangle=M_{12}-\frac{i}{2} \Gamma_{12} \quad \nearrow \quad\left\langle\overline{D^{0}}\right| \mathcal{H}\left|D^{0}\right\rangle=M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}
\end{gathered}
$$

* Define "theoretical" mixing parameters

$$
y_{12} \equiv\left|\Gamma_{12}\right| / \Gamma, \quad x_{12} \equiv 2\left|M_{12}\right| / \Gamma, \quad \phi_{12} \equiv \arg \left(M_{12} / \Gamma_{12}\right)
$$

\star Assume that direct CP-violation is absent $\left(\operatorname{Im}\left(\Gamma_{12}^{*} \bar{A}_{f} / A_{f}\right)=0,\left|\bar{A}_{f} / A_{f}\right|=1\right)$

- can relate $x, y, \varphi,|q / p|$ to x_{12}, y_{12} and φ_{12}
"superweak limit"

$$
\begin{gathered}
x y=x_{12} y_{12} \cos \phi_{12}, \quad x^{2}-y^{2}=x_{12}^{2}-y_{12}^{2}, \\
\left(x^{2}+y^{2}\right)|q / p|^{2}=x_{12}^{2}+y_{12}^{2}+2 x_{12} y_{12} \sin \phi_{12}, \\
x^{2} \cos ^{2} \phi-y^{2} \sin ^{2} \phi=x_{12}^{2} \cos ^{2} \phi_{12} .
\end{gathered}
$$

太 Four "experimental" parameters related to three "theoretical" ones

- a "constraint" equation is possible

CP-violation I: indirect

* Relation; data from HFAG's compilation

$$
\frac{x}{y}=\frac{1-|q / p|}{\tan \phi}=-\frac{1}{2} \frac{A_{m}}{\tan \phi}
$$

- it might be experimentally $x_{D}<y_{D}$
- this has implications for NP searches in charm CP-violating asymmetries!
- that is, if $\left|M_{12}\right|<\left|\Gamma_{12}\right|$:

$$
\begin{aligned}
x / y & =2\left|M_{12} / \Gamma_{12}\right| \cos \phi_{12} \\
A_{m} & =4\left|M_{12} / \Gamma_{12}\right| \sin \phi_{12} \\
\phi & =-2\left|M_{12} / \Gamma_{12}\right|^{2} \sin 2 \phi_{12}
\end{aligned}
$$

Note: CPV is suppressed even if M_{12} is all NP!!!

Bergmann, Grossman, Ligeti, Nir, AAP PL B486 (2000) 418

* With available experimental constraints on x, y, and q / p, one can bound WCs of a generic NP Lagrangian -- bound any high-scale model of NP

CP-violation I: indirect

\star Assume that direct $C P$-violation is absent $\left(\operatorname{Im}\left(\Gamma_{12}^{*} \bar{A}_{f} / A_{f}\right)=0,\left|\bar{A}_{f} / A_{f}\right|=1\right)$

- experimental constraints on $x, y, \varphi,|q / p|$ exist
- can obtain generic constraints on Im parts of Wilson coefficients

$$
\mathcal{H}_{N P}^{\Delta C=2}=\frac{1}{\Lambda_{N P}^{2}} \sum_{i=1}^{8} z_{i}(\mu) Q_{i}^{\prime}
$$

\star In particular, from $x_{12}^{\mathrm{NP}} \sin \phi_{12}^{\mathrm{NP}} \lesssim 0.0022$

$$
\begin{aligned}
& \mathcal{I} m\left(z_{1}\right) \lesssim 1.1 \times 10^{-7}\left(\frac{\Lambda_{\mathrm{NP}}}{1 T e V}\right)^{2}, \\
& \mathcal{I} m\left(z_{2}\right) \lesssim 2.9 \times 10^{-8}\left(\frac{\Lambda_{\mathrm{NP}}}{1 T e V}\right)^{2}, \\
& \mathcal{I} m\left(z_{3}\right) \lesssim 1.1 \times 10^{-7}\left(\frac{\Lambda_{\mathrm{NP}}}{1 T e V}\right)^{2}, \\
& \mathcal{I} m\left(z_{4}\right) \lesssim 1.1 \times 10^{-8}\left(\frac{\Lambda_{\mathrm{NP}}}{1 T e V}\right)^{2} \\
& \mathcal{I} m\left(z_{5}\right) \lesssim 3.0 \times 10^{-8}\left(\frac{\Lambda_{\mathrm{NP}}}{1 T e V}\right)^{2}
\end{aligned}
$$

New Physics is either at a very high scales

tree level: $\quad \Lambda_{N P} \geq(4-10) \times 10^{3} \mathrm{TeV}$
loop level: $\quad \Lambda_{N P} \geq(1-3) \times 10^{2} \mathrm{TeV}$
or have highly suppressed couplings to charm!

* Constraints on particular NP models possible as well

CP-violation I: beyond "superweak"

* Look at parameterization of CPV phases; separate absorptive and dispersive

Grossman, Kagan, Perez,

$$
\lambda_{f}^{2}=\frac{2 M_{12}^{*}-i \Gamma_{12}^{*}}{2 M_{12}-i \Gamma_{12}}\left(\frac{\bar{A}_{f}}{A_{f}}\right)^{2}
$$

- consider $\mathrm{f}=\mathrm{CP}$ eigenstate, can generalize later: $\lambda_{C P}^{2}=R_{m}^{2} e^{2 i \phi}$

$$
\phi_{12 f}^{M}=\frac{1}{2} \arg \left[\frac{M_{12}}{M_{12}^{*}}\left(\frac{A_{f}}{\bar{A}_{f}}\right)^{2}\right] \quad \phi_{12 f}^{\Gamma}=\frac{1}{2} \arg \left[\frac{\Gamma_{12}}{\Gamma_{12}^{*}}\left(\frac{A_{f}}{\bar{A}_{f}}\right)^{2}\right]
$$

- CP-violating phase for the final state f is then

$$
\phi_{12}=\phi_{12 f}^{M}-\phi_{12 f}^{\Gamma}
$$

\star Can we put a Standard Model theoretical bound on $\phi_{12 f}^{M}$ or $\phi_{12 f}^{\Gamma}$?

CP-violation I: beyond "superweak"

* Let us define convention-independent universal CPV phases. First note that - for the absorptive part: $\Gamma_{12}=\Gamma_{12}^{0}+\delta \Gamma_{12}$

$$
\begin{aligned}
& \Gamma_{12}^{0}=-\lambda_{s}\left(\Gamma_{s s}+\Gamma_{d d}-2 \Gamma_{s d}\right) \\
& \delta \Gamma_{12}=2 \lambda_{b} \lambda_{s}\left(\Gamma_{s d}-\Gamma_{s s}\right)+O\left(\lambda_{b}^{2}\right)
\end{aligned}
$$

- ... and similarly for the dispersive part: $\quad M_{12}=M_{12}^{0}+\delta M_{12}$
\star CP-violating mixing phase can then be written as

$$
\phi_{12}=\arg \frac{M_{12}}{\Gamma_{12}}=\operatorname{Im}\left(\frac{\delta M_{12}}{M_{12}^{0}}\right)-\operatorname{I} m\left(\frac{\delta \Gamma_{12}}{\Gamma_{12}^{0}}\right) \equiv \phi_{12}^{M}-\phi_{12}^{\Gamma}
$$

* These phases can then be constrained; e.g. the absorptive phase

$$
\left|\phi_{12}^{\Gamma}\right|=0.009 \times \frac{\left|\Gamma_{s d}\right|}{\Gamma} \times\left|\frac{\Gamma_{s d}-\Gamma_{d d}}{\Gamma_{s d}}\right|<0.01
$$

CP-violation II: direc \dagger

\star IDEA: consider the DIFFERENCE of decay rate asymmetries: $D \rightarrow \pi \pi$ vs $D \rightarrow K K$!
For each final state the asymmetry
D^{0} : no neutrals in the final state!

$$
a_{f}=\frac{\Gamma(D \rightarrow f)-\Gamma(\bar{D} \rightarrow \bar{f})}{\Gamma(D \rightarrow f)+\Gamma(\bar{D} \rightarrow \bar{f})} \rightarrow a_{f}=\underset{\neq}{a} d \underset{\text { direct mixing interference }}{d}+a_{f}^{m}+a_{f}^{i}
$$

* A reason: $a^{m}{ }_{k k}=a^{m}{ }_{\pi \pi}$ and $a^{i}{ }_{k k}=a^{i}{ }_{\pi \pi}$ (for CP-eigenstate final states), so, ideally, mixing asymmetries cancel!

$$
a_{f}^{d}=2 r_{f} \sin \phi_{f} \sin \delta_{f}
$$

$\star \ldots$ and the resulting DCPV asymmetry is $\Delta a_{C P}=a_{K K}^{d}-a_{\pi \pi}^{d} \approx 2 a_{K K}^{d}$ (double!)

$$
\begin{aligned}
& A_{K K}=\frac{G_{F}}{\sqrt{2}} \lambda\left[\left(T+E+P_{s d}\right)+a \lambda^{4} e^{-i \gamma} P_{b d}\right] \\
& A_{\pi \pi}=\frac{G_{F}}{\sqrt{2}} \lambda\left[\left(-(T+E)+P_{s d}\right)+a \lambda^{4} e^{-i \gamma} P_{b d}\right]
\end{aligned}
$$

* ... so it is doubled in the limit of $S U(3)_{\text {F }}$ symmetry
$\mathrm{SU}(3)$ is badly broken in D-decays e.g. $\operatorname{Br}(\mathrm{D} \rightarrow \mathrm{KK}) \sim 3 \operatorname{Br}(\mathrm{D} \rightarrow \pi \pi)$

Experiment?

\star Experiment: the difference of CP-asymmetries: $\Delta a_{C P}=a_{C P, K K}-a_{C P, \pi \pi}$

* Earlier results (before 2013):

Experiment	$\Delta A_{C P}$
LHCb	$(-0.82 \pm 0.21 \pm 0.11) \%$
CDF	$(-0.62 \pm 0.21 \pm 0.10) \%$
Belle	$(-0.87 \pm 0.41 \pm 0.06) \%$
BaBar	$(+0.24 \pm 0.62 \pm 0.26) \%$

Looks like CP is broken in charm transitions!

Now what?

Is it Standard Model or New Physics??

Is it Standard Model or New Physics? Theorists used to say...

Naively, any CP-violating signal in the $S M$ will be small, at most $O\left(V_{u b} V_{c b}{ }^{*} / V_{u s} V_{c s}{ }^{*}\right) \sim 10^{-3}$ Thus, O(1\%) CP-violating signal can provide a "smoking gun" signature of New Physics
...what do you say now?
\star assuming $S U(3)$ symmetry, $a_{C P}(\pi \pi) \sim a_{C P}(K K) \sim 0.4 \%$. Is it 1% or 0.1% ?
\star let us try Standard Model

- need to estimate size of penguin/penguin contractions vs. tree

- unknown penguin enhancement (similar to $\Delta I=1 / 2$)
- SU(3) analysis: some ME are enhanced

Golden \& Grinstein PLB 222 (1989) 501;Pirtshalava \& Uttayarat 1112.5451

- unusually large $1 / m_{c}$ corrections

Isidori et al PLB 711 (2012) 46; Brod et al 1111.5000

- no assumptions, flavor-flow diagrams

Broad et al 1203.6659; Bhattacharya et al PRD 85 (2012) 054014; Cheng \& Chiang 1205.0580

Is it a penguin or a tree?

Without QCD

With QCD

New Physics: operator analysis

* Factorizing decay amplitudes, e.g.
$\mathcal{H}_{|\Delta c|=1}^{\mathrm{eff}-\mathrm{NP}}=\frac{G_{F}}{\sqrt{2}} \sum_{i=1,2,5,6} \sum_{q}\left(C_{i}^{q} Q_{i}^{q}+C_{i}^{q^{\prime}} Q_{i}^{q \prime}\right)+\frac{G_{F}}{\sqrt{2}} \sum_{i=7,8}\left(C_{i} Q_{i}+C_{i}^{\prime} Q_{i}^{\prime}\right)+$ H.c.
$Q_{1}^{q}=(\bar{u} q)_{V-A}(\bar{q} c)_{V-A}$
$Q_{2}^{q}=\left(\bar{u}_{\alpha} q_{\beta}\right)_{V-A}\left(\bar{q}_{\beta} c_{\alpha}\right)_{V-A}$
$Q_{5}^{q}=(\bar{u} c)_{V-A}(\bar{q} q)_{V+A}$
$Q_{6}^{q}=\left(\bar{u}_{\alpha} c_{\beta}\right)_{V-A}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V+A}$
$Q_{7}=-\frac{e}{8 \pi^{2}} m_{c} \bar{u} \sigma_{\mu \nu}\left(1+\gamma_{5}\right) F^{\mu \nu} c$

$Q_{8}=-\frac{g_{s}}{8 \pi^{2}} m_{c} \bar{u} \sigma_{\mu \nu}\left(1+\gamma_{5}\right) T^{a} G_{a}^{\mu \nu} c$

Z. Ligeti, CHARM-2012
* one can fit to $\varepsilon^{\prime} / \varepsilon$ and mass difference in D-anti-D-mixing
- LL are ruled out
- LR are borderline
- RR and dipoles are possible

| Allowed | Ajar | Disfavored |
| :---: | :---: | :---: | $\forall f Q_{1,2}^{f \prime}, Q_{5,6}^{(c-u, b, 0) \prime} \quad Q_{5,6}^{(0)}, Q_{5,6}^{(8 d d)} \quad Q_{5,6}^{s-c, c-u, 8, b}$

Constraints from particular models also available

Experiment again?

\star Experiment: the difference of CP-asymmetries: $\Delta a_{C P}=a_{C P, K K}-a_{C P, \pi \pi}$

* Earlier results (before 2013):

Experiment	$\Delta A_{C P}$
LHCb	$(-0.82 \pm 0.21 \pm 0.11) \%$
CDF	$(-0.62 \pm 0.21 \pm 0.10) \%$
Belle	$(-0.87 \pm 0.41 \pm 0.06) \%$
BaBar	$(+0.24 \pm 0.62 \pm 0.26) \%$

Looks like CP is broken in charm transitions!

Now what?

* Recent results (after 2013):

$$
\begin{aligned}
\Delta a_{C P} & =(+0.14 \pm 0.16(\text { stat }) \pm 0.08(\text { syst })) \% \\
a_{C P, K K} & =(-0.06 \pm 0.15(\text { stat }) \pm 0.10(\text { syst })) \% \\
a_{C P, \pi \pi} & =(-0.20 \pm 0.19(\text { stat }) \pm 0.10(\text { syst })) \%
\end{aligned}
$$

[^0]
Future: lattice to the rescue*?

* There are methods to compute decays on the lattice (Lellouch-Lüscher)
- calculation of scattering of final state particles in a finite box
- matching resulting discrete energy levels to decaying particle
- reasonably well developed for a single-channel problems (e.g. kaon decays)
\star Can these methods be generalized to D-decays?
- make D-meson slightly lighter, $m_{D}<4 m_{\pi}$
- assume G-parity and consider scattering of two pions and two kaons in a box with SM scattering energy

$$
2 m_{\pi}<2 m_{K}<E^{*}<4 m_{\pi}
$$

- only four possible scattering events: $\pi \pi \rightarrow \pi \pi, \pi \pi \rightarrow K K, K K \rightarrow \pi \pi, K K \rightarrow K K$
- couple the two by adding weak part to the strong Hamiltonian $\mathcal{H}(x) \rightarrow \mathcal{H}(x)+\lambda \mathcal{H}_{W}(x)$

太 Application of this approach to calculate lifetime difference is not trivial!!!

- need to consider other members of SU(3) octet
- need to consider 4π states that mix with $\pi \pi+$ others
- need to consider 3-body and excited light-quark states
* See "panacea": In Greek mythology, Panacea (Greek Паváкعıa, Panakeia) was a goddess of Universal remedy.

Future: transitions forbidden w/out CP-violation

t-charm factory
\star Recall that $C P$ of the states in $D^{0} \overline{D^{0}} \rightarrow\left(F_{1}\right)\left(F_{2}\right)$ are anti-correlated at $\psi(3770)$: $\star \quad$ a simple signal of CP violation: $\quad \psi(3770) \rightarrow D^{0} \overline{D^{0}} \rightarrow\left(C P_{ \pm}\right)\left(C P_{ \pm}\right)$

$$
\left|D^{0} \bar{D}^{0}\right\rangle_{L}=\frac{1}{\sqrt{2}}\left[\left|D^{0}\left(k_{1}\right) \bar{D}^{0}\left(k_{2}\right)\right\rangle+(-1)^{L}\left|D^{0}\left(k_{2}\right) \bar{D}^{0}\left(k_{1}\right)\right\rangle\right]
$$

$$
\begin{gathered}
\Gamma_{F_{1} F_{2}}=\frac{\Gamma_{F_{1}} \Gamma^{\top} F_{2}}{R_{m}^{2}}\left[\left(2+x^{2}+y^{2}\right)\left|\lambda_{F_{1}}-\lambda_{F_{2}}\right|^{2}+\left(x^{2}+y^{2}\right)\left|1-\lambda_{F_{1}} \lambda_{F_{2}}\right|^{2}\right] \\
\quad \begin{array}{l}
\star \quad \text { CP-violation in the rate }
\end{array} \rightarrow \text { of the second order in } \quad \lambda_{f}=\frac{q}{p} \frac{\bar{A}}{A} \\
\quad \text { CP-violating parameters. }
\end{gathered}
$$

$$
\star \quad \text { Cleanest measurement of CP-violation! }
$$

Future: Rare $D(B)$-decays with missing energy

- Let us discuss B and D-decays simultaneously: physics is similar
\star SM process: $\mathrm{D} \rightarrow \boldsymbol{v} \boldsymbol{v}$ and $\mathrm{D} \rightarrow \boldsymbol{v} \boldsymbol{v}$:
- for B-decays $J_{o a}^{\mu}=\bar{q}_{L} \gamma^{\mu} b_{L}$
- for D-decays $J_{Q q}^{\mu}=\bar{u}_{L} \gamma^{\mu} c_{L}$

$$
\begin{aligned}
\mathcal{H}_{\text {eff }}= & \frac{4 G_{F}}{\sqrt{2}} \frac{\alpha}{2 \pi \sin ^{2} \theta_{W}} \sum_{l=e, \mu, \tau} \sum_{k} \lambda_{k} X^{l}\left(x_{k}\right)\left(J_{\ell q}^{\mu}\right) \\
& \times\left(\bar{\nu}_{L}^{l} \gamma_{\mu} \nu_{L}^{l}\right),
\end{aligned}
$$

\star For $B(D) \rightarrow v v$ decays $S M$ branching ratios are tiny

- SM decay is helicity suppressed

$$
\mathcal{B}\left(B_{s} \rightarrow \nu \bar{\nu}\right)=\frac{G_{F}^{2} \alpha^{2} f_{B}^{2} M_{B}^{3}}{16 \pi^{3} \sin ^{4} \theta_{W} \Gamma_{B_{s}}}\left|V_{t b} V_{t s}^{*}\right|^{2} X\left(x_{t}\right)^{2} x_{\nu}^{2}
$$

- NP: other ways of flipping helicity?
- add a third particle to the final state?

Decay	Branching ratio
$B_{s} \rightarrow \nu \bar{\nu}$	3.07×10^{-24}
$B_{d} \rightarrow \nu \bar{\nu}$	1.24×10^{-25}
$D^{0} \rightarrow \nu \bar{\nu}$	1.1×10^{-30}

What would happen if a photon is added to the final state?

Rare $D(B)$-decays with missing energy

For $B(D) \rightarrow \boldsymbol{v} \boldsymbol{v} \gamma$ decays SM branching ratios are still tiny

- need form-factors to describe the transition

$$
\begin{aligned}
\langle\gamma(k)| \bar{b} \gamma_{\mu} q\left|B_{q}(k+q)\right\rangle= & e \epsilon_{\mu \nu \rho \sigma} \epsilon^{* \nu} q^{\rho} k^{\sigma} \frac{f_{V}^{B}\left(q^{2}\right)}{M_{B_{q}}} \\
\langle\gamma(k)| \bar{b} \gamma_{\mu} \gamma_{5} q\left|B_{q}(k+q)\right\rangle= & -i e\left[\epsilon_{\mu}^{*}(k q)-\left(\epsilon^{*} q\right) k_{\mu}\right] \\
& \times \frac{f_{A}^{B}\left(q^{2}\right)}{M_{B_{q}}} \\
\langle\gamma(k)| \bar{b} \sigma_{\mu \nu} q\left|B_{q}(k+q)\right\rangle= & \frac{e}{M_{B_{q}}^{2}} \epsilon_{\mu \nu \lambda \sigma}\left[G \epsilon^{* \lambda} k^{\sigma}\right. \\
& \left.+H \epsilon^{* \lambda} q^{\sigma}+N\left(\epsilon^{*} q\right) q^{\lambda} k^{\sigma}\right]
\end{aligned}
$$

Decay	Branching ratio
$B_{s} \rightarrow \nu \bar{\nu} \gamma$	3.68×10^{-8}
$B_{d} \rightarrow \nu \bar{\nu} \gamma$	1.96×10^{-9}
$D^{0} \rightarrow \nu \bar{\nu} \gamma$	3.96×10^{-14}

Can calculate photon energy distributions as well.

Badin, AAP (2010)

- helicity suppression is lifted $A\left(B_{q} \rightarrow \nu \bar{\nu} \gamma\right)=\frac{2 e C_{1}^{\mathrm{SM}}\left(x_{t}\right)}{M_{B_{q}}}\left[\epsilon_{\mu \nu \rho \sigma} \epsilon^{* \nu} q^{\rho} k^{\sigma} f_{V}^{B}\left(q^{2}\right)\right.$

$$
\left.+i\left[\epsilon_{\mu}^{*}(k q)-\left(\epsilon^{*} q\right) k_{\mu}\right] f_{A}^{B}\left(q^{2}\right)\right] \bar{\nu}_{L} \gamma^{\mu} \nu_{L}
$$

* BUT: missing energy does not always mean neutrinos
- nice constraints on light Dark Matter properties !!!

Rare $D(B)$-decays: scalar DM

- Let us discuss B and D-decays simultaneously: physics is similar
\star Generic interaction Lagrangian: $\quad \mathcal{H}_{e f f}=\sum_{i} \frac{2 C_{i}^{(s)}}{\Lambda^{2}} O_{i} \quad O_{1}=m_{Q}\left(J_{Q q}\right)_{R L}\left(\chi_{0}^{*} \chi_{0}\right)$
- respective neutral currents for B-and D-decays

$$
\begin{aligned}
O_{2} & =m_{Q}\left(J_{Q q}\right)_{L R}\left(\chi_{0}^{*} \chi_{0}\right) \\
O_{3} & =\left(J_{Q q}^{\mu}\right)_{L L}\left(\chi_{0}^{*} \overleftrightarrow{\partial}_{\mu} \chi_{0}\right) \\
O_{4} & =\left(J_{Q q}^{\mu}\right)_{R R}\left(\chi_{0}^{*} \overleftrightarrow{\partial}_{\mu} \chi_{0}\right)
\end{aligned}
$$

* Scalar DM does not exhibit helicity suppression
$-B(D) \rightarrow E_{\text {mis }}$ is more powerful than $B(D) \rightarrow E_{\text {mis }} \gamma$

$$
\begin{aligned}
& \mathcal{B}\left(B_{q} \rightarrow \chi_{0} \chi_{0}\right)= \frac{\left(C_{1}^{(s)}-C_{2}^{(s)}\right)^{2}}{4 \pi M_{B_{q}} \Gamma_{B_{q}}}\left(\frac{f_{B_{q}} M_{B_{q}}^{2} m_{b}}{\Lambda^{2}\left(m_{b}+m_{q}\right)}\right)^{2} \\
& \times \sqrt{1-4 x_{\chi}^{2}}, \\
& \mathcal{B}\left(B_{q} \rightarrow \chi_{0}^{*} \chi_{0} \gamma\right)= \frac{f_{B_{q}}^{2} \alpha C_{3}^{(s)} C_{4}^{(s)} M_{B_{q}}^{5}}{6 \Lambda^{4} \Gamma_{B_{q}}}\left(\frac{F_{B_{q}}}{4 \pi}\right)^{2} \\
& \times\left(\frac{C_{1}^{(s)}-C_{2}^{(s)}}{\Lambda^{2}}\right)^{1-4 x_{\chi}^{2}}\left(1-16 x_{\chi}^{2}-12 x_{\chi}^{4}\right) \quad 2.07 \times 10^{-16} \mathrm{GeV}^{-4} \\
& \text { for } m_{\chi}=0.1 \times M_{B_{d}},
\end{aligned}
$$

These general bounds translate into constraints onto constraints for particular models

Example of a particular model of scalar DM

Several different models of light scalar DM

- simplest: singlet scalar DM
- more sophisticated - less restrictive

$$
\begin{aligned}
-\mathcal{L}_{S}= & \frac{\lambda_{S}}{4} S^{4}+\frac{m_{0}^{2}}{2} S^{2}+\lambda S^{2} H^{\dagger} H \\
= & \frac{\lambda_{S}}{4} S^{4}+\frac{1}{2}\left(m_{0}^{2}+\lambda v_{\mathrm{EW}}^{2}\right) S^{2}+\lambda v_{\mathrm{EW}} S^{2} h \\
& +\frac{\lambda}{2} S^{2} h^{2}
\end{aligned}
$$

$\star B(D)$ decays rate in this model

$$
\begin{aligned}
\mathcal{B}\left(B_{q} \rightarrow S S\right)= & {\left[\frac{3 g_{w}^{2} V_{t b} V_{t q}^{*} x_{t} m_{b}}{128 \pi^{2}}\right]^{2} \frac{\sqrt{1-4 x_{S}^{2}}}{16 \pi M_{B} \Gamma_{B_{q}}}\left(\frac{\lambda^{2}}{M_{H}^{4}}\right) } \\
& \times\left(\frac{f_{B_{q}} M_{B_{q}}^{2}}{m_{b}+m_{q}}\right)^{2}
\end{aligned}
$$

- fix λ from relic density

$$
\sigma_{\mathrm{ann}} v_{\mathrm{rel}}=\frac{8 v_{\mathrm{EW}}^{2} \lambda^{2}}{M_{H}^{2}} \times \lim _{m_{h^{*}} \rightarrow 2 m_{S}} \frac{\Gamma_{h^{*} X}}{m_{h}^{*}} .
$$

These results are complimentary to constraints from quarkonium decays with missing energy

Rare $D(B)$-decays: fermionic $D M$

\star Generic interaction Lagrangian:

$$
\mathcal{H}_{e f f}=\sum_{i} \frac{4 C_{i}}{\Lambda^{2}} O_{i}
$$

$$
O_{1}=\left(J_{Q q}^{\mu}\right)_{L L}\left(\bar{\chi}_{1 / 2 L} \gamma_{\mu} \chi_{1 / 2 L}\right)
$$

- respective neutral currents for B-and D-decays
* Scalar DM does exhibit helicity suppression + tensor operators
$-\mathrm{B}(\mathrm{D}) \rightarrow \mathrm{E}_{\text {mis }}$ maybe less powerful than $\mathrm{B}(\mathrm{D}) \rightarrow \mathrm{E}_{\text {mis }} \gamma$
- ... but it really depends on the DM mass!

$$
\begin{aligned}
\mathcal{B}\left(B_{q} \rightarrow \bar{\chi}_{1 / 2} \chi_{1 / 2}\right)= & \frac{f_{B_{q}}^{2} M_{B_{q}}^{3}}{16 \pi \Gamma_{B_{q}} \Lambda^{2}} \sqrt{1-4 x_{\chi}^{2}} \\
& \times\left[C_{57} C_{68} \frac{4 M_{B_{q}}^{2} x_{\chi}^{2}}{\left(m_{b}+m_{q}\right)^{2}}-\left(C_{57}^{2}+C_{68}^{2}\right)\right. \\
& \times \frac{M_{B_{q}}^{2}\left(2 x_{\chi}^{2}-1\right)}{\left(m_{b}+m_{q}\right)^{2}}-2 \tilde{C}_{1-8} \frac{x_{\chi} M_{B_{q}}}{m_{b}+m_{q}} \\
& \left.+2\left(C_{13}+C_{24}\right)^{2} x_{\chi}^{2}\right],
\end{aligned}
$$

Lots of operators - less so in particular models

$$
\begin{aligned}
& O_{2}=\left(J_{Q q}^{\mu}\right)_{L L}\left(\bar{\chi}_{1 / 2 R} \gamma_{\mu} \chi_{1 / 2 R}\right) \\
& O_{3}=O_{1(L \leftrightarrow R)}, \quad O_{4}=O_{2(L \leftrightarrow R)} \\
& O_{5}=\left(J_{Q q}\right)_{L R}\left(\bar{\chi}_{1 / 2 L} \chi_{1 / 2 R}\right) \\
& O_{6}=\left(J_{Q q}\right)_{L R}\left(\bar{\chi}_{1 / 2 R} \chi_{1 / 2 L}\right) \\
& O_{7}=O_{5(L \leftrightarrow R)}, \quad O_{8}=O_{6(L \leftrightarrow R)}
\end{aligned}
$$

Rare $D(B)$-decays: fermionic $D M$

Constraints from B decays are the best at the moment

TABLE I. Constraints (upper limits) on the Wilson coefficients of operators of Eq. (43) from the $B_{q} \rightarrow \chi_{1 / 2} \bar{\chi}_{1 / 2}$ transition. Note that operators $Q_{9}-Q_{12}$ give no contribution to this decay.

$x_{\chi} C_{1} / \Lambda^{2}, \mathrm{GeV}^{-2}$	$C_{2} / \Lambda^{2}, \mathrm{GeV}^{-2}$	$C_{3} / \Lambda^{2}, \mathrm{GeV}^{-2}$	$C_{4} / \Lambda^{2}, \mathrm{GeV}^{-2}$	$C_{5} / \Lambda^{2}, \mathrm{GeV}^{-2}$	$C_{6} / \Lambda^{2}, \mathrm{GeV}^{-2} C_{7} / \Lambda^{2}, \mathrm{GeV}^{-2} C_{8} / \Lambda^{2}, \mathrm{GeV}^{-2}$		
0	\ldots	\ldots	\ldots	\ldots	2.3×10^{-8}	2.3×10^{-8}	2.3×10^{-8}
0.1	1.9×10^{-7}	1.9×10^{-7}	1.9×10^{-7}	1.9×10^{-7}	2.3×10^{-8}	2.3×10^{-8}	2.3×10^{-8}
0.2	9.7×10^{-8}	9.7×10^{-8}	9.7×10^{-8}	9.7×10^{-8}	2.5×10^{-8}	2.5×10^{-8}	2.5×10^{-8}
0.3	6.9×10^{-8}	6.9×10^{-8}	6.9×10^{-8}	6.9×10^{-8}	2.8×10^{-8}	2.8×10^{-8}	2.8×10^{-8}
0.4	6.0×10^{-8}	6.0×10^{-8}	6.0×10^{-8}	6.0×10^{-8}	3.6×10^{-8}	3.6×10^{-8}	3.6×10^{-8}

* ... the same is true for the radiative decays with missing energy

TABLE II. Constraints (upper limits) on the Wilson coefficients of operators of Eq. (43) from the $B_{q} \rightarrow \chi_{1 / 2} \bar{\chi}_{1 / 2} \gamma$ transition. Note that operators $Q_{5}-Q_{8}$ give no contribution to this decay.

x_{χ}	$C_{1} / \Lambda^{2}, \mathrm{GeV}^{-2}$	$C_{2} / \Lambda^{2}, \mathrm{GeV}^{-2}$	$C_{3} / \Lambda^{2}, \mathrm{GeV}^{-2}$	$C_{4} / \Lambda^{2}, \mathrm{GeV}^{-2}$
0	6.3×10^{-7}	6.3×10^{-7}	6.3×10^{-7}	6.3×10^{-7}
0.1	7.0×10^{-7}	7.0×10^{-7}	7.0×10^{-7}	7.0×10^{-7}
0.2	9.2×10^{-7}	9.2×10^{-7}	9.2×10^{-7}	9.2×10^{-7}
0.3	1.5×10^{-6}	1.5×10^{-6}	1.5×10^{-6}	1.5×10^{-6}
0.4	3.4×10^{-6}	3.4×10^{-6}	3.4×10^{-6}	3.4×10^{-6}

These general bounds translate into constraints onto constraints for particular models

Things to take home

> Computation of charm amplitudes is a difficult task

- no dominant heavy dof, as in beauty decays
- light dofs give no contribution in the flavor SU(3) limit
- D-mixing is a second order effect in SU(3) breaking ($x, y \sim 1 \%$ in the $S M$)
$>$ For indirect CP-violation studies
- constraints on Wilson coefficients of generic operators are possible, point to the scales much higher than those directly probed by LHC
- consider new parameterizations that go beyond the "superweak" limit
> For direct CP-violation studies
- unfortunately, large DCPV signal is no more; need more results in individual channels, especially including baryons
- hit the "brown muck": future observation of DCPV does not give easy interpretation in terms of fundamental parameters
- need better calculations: lattice?
> Lattice calculations can, in the future, provide a result for $a_{c p}$!
> Decays to states with missing energy probe light DM
$>$ Need to give more thought on how large SM CPV can be...

"I'm looking for a lot of men who have an infinite capacity to not know what can't be done."

Henry Ford

7th International Workshop on Charm Physics May 17-23, 2015 CHARM 2015

Wayne State University Detroit, MI

Experimental analyses of mixing

In principle, can extract mixing (x, y) and $C P$-violating parameters $\left(A_{m}, \varphi\right)$

太 In particular, time-dependent $D^{0}(t) \rightarrow K^{+} \pi^{-}$analysis

$$
\begin{array}{r}
\Gamma\left[D^{0}(t) \rightarrow K^{+} \pi^{-}\right]=e^{-\Gamma t}\left|A_{K^{+} \pi^{-}}\right|^{2}\left[R+\sqrt{R} R_{m}\left(y^{\prime} \cos \phi-x^{\prime} \sin \phi\right) \Gamma t+\frac{R_{m}^{2}}{4}\left(x^{2}+y^{2}\right)(\Gamma t)^{2}\right] \\
R_{m}^{2}=\left|\frac{q}{p}\right|^{2}, x^{\prime}=x \cos \delta+y \sin \delta, y^{\prime}=y \cos \delta-x \sin \delta
\end{array}
$$

$$
\text { LHCb: } x^{\prime 2}=(-0.9 \pm 1.3) \times 10^{-4}, y^{\prime}=(7.2 \pm 2.4) \times 10^{-3}
$$

* The expansion can be continued to see how well it converges for large \dagger

$$
\begin{aligned}
\Gamma\left[D^{0}(t) \rightarrow K^{+} \pi^{-}\right]\left|A_{\mathrm{K} \pi}\right|^{-2} e^{\Gamma t} & =R-\sqrt{R} R_{m}(x \sin (\delta+\phi)-y \cos (\delta+\phi))(\Gamma t) \\
& +\frac{1}{4}\left(\left(R_{m}-R\right) x^{2}+\left(R+R_{m}\right) y^{2}\right)(\Gamma t)^{2} \\
& +\frac{1}{6} \sqrt{R} R_{m}\left(x^{3} \sin (\delta+\phi)+y^{3} \cos (\delta+\phi)\right)(\Gamma t)^{3} \\
& -\frac{1}{48} R_{m}\left(x^{4}-y^{4}\right)(\Gamma t)^{4}
\end{aligned}
$$

[^0]: Is it NP or SM? Doesn't look like NP is needed to explain the result.

