

Amplitude Analyses of multibody hadronic $D^{0/+}$ Decays at BESIII

潘 越 (东南大学) BESIII Collaboration

Outline

> Data Sets and Analysis Strategy

> Amplitude Analyses

> Summary

DataSets

- ≻ @ E_{cm} = 3.773 GeV
- > Integrated luminosity ~ 8 fb⁻¹ \rightarrow 20 fb⁻¹:
 - 2.93 fb⁻¹ in 2011-2012
 - 4.97 fb⁻¹ in 2021-2022
 - $-\sigma(e^+e^- \rightarrow D^0 \overline{D^0}) \sim 3.6 \text{ nb} \implies 58 \text{ M } D^0 \text{ produced}$
 - $\sigma(e^+e^- \rightarrow D^+D^-) \sim 2.9 \text{ nb} \implies 46 \text{ M D}^+ \text{ produced}$
- Pair production at threshold
- Fully reconstructed with low background
- Missing Track case

$$\begin{array}{c} \hline \text{Tag Mode} \\ \hline \bar{D}^0 \rightarrow K^+ \pi^- \\ \bar{D}^0 \rightarrow K^+ \pi^- \pi^0 \\ \hline \bar{D}^0 \rightarrow K^+ \pi^- \pi^- \pi^0 \\ \hline D^- \rightarrow K^+ \pi^- \pi^- \pi^0 \\ D^- \rightarrow K^0_S \pi^- \\ D^- \rightarrow K^0_S \pi^- \pi^0 \\ D^- \rightarrow K^0_S \pi^+ \pi^- \pi^- \\ D^- \rightarrow K^0_S \pi^+ \pi^- \pi^- \\ D^- \rightarrow K^+ K^- \pi^- \end{array}$$

Partially reconstructed

$$E_{\text{miss}} = E_{\text{beam}} - \sum_{i} E_{i},$$

$$\vec{p}_{\text{miss}} = -\hat{p}_{\text{tag}} \sqrt{E_{\text{beam}}^{2} - M_{D^{0}}^{2}} - \sum_{i} \vec{p}_{i}$$
For $Ke\nu$, use $U_{\text{miss}} = E_{\text{miss}} - |\vec{p}_{\text{miss}}|$
For K_{L}^{0} included modes, use $M_{\text{miss}}^{2} = E_{\text{miss}}^{2} - |\vec{p}_{\text{miss}}|^{2}$

Fully reconstructed

 $\Delta E = E_{\rm D}$ - $E_{\rm beam}$

 $M_{
m BC} = \sqrt{E_{
m beam}^2 - |ec{
ho}_{
m D}|^2}$

Formalism

Unbinned maximum Likelihood Fit

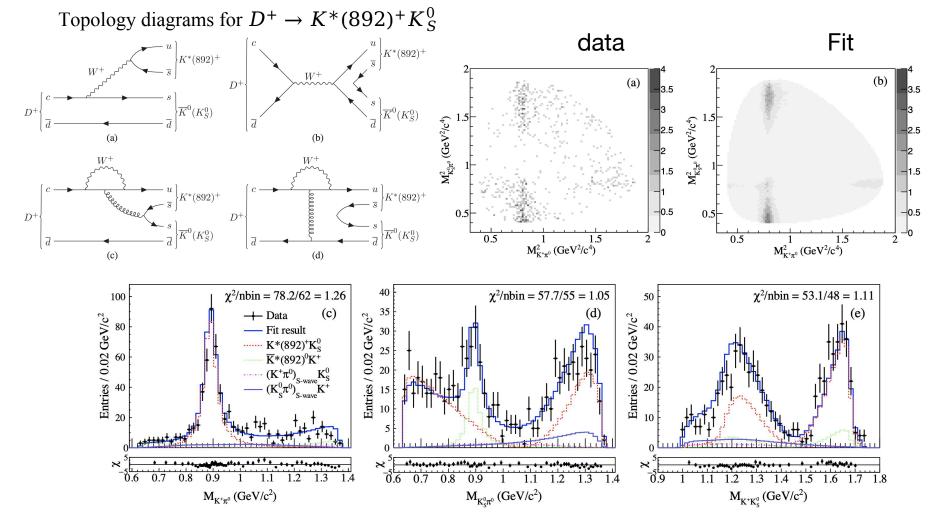
 $A_{D^0}(p) = \sum a_i A_i(p)$

 $a_i = \rho_i e^{i\Phi_i}$: the complex coefficient $A_i(p)$: the *i*th partial wave amplitude

$A_i(p) = B_{L_D}(p)[B_{L_{R_1}}(p)P_{R_1}(p)][B_{L_{R_2}}(p)P_{R_2}(p)]S_i(p)$

- $P_{Ri}(p)$: propagators of intermediate resonances 1 and 2;
- $B_{Li}(p)$ and $B_{LD}(p)$: Blatte-Weisskopf barriers;
- S_i(p): spin factor, describe the dynamic mechamism, angular distribution.

$$\mathcal{P}(p) = \frac{\epsilon(p)|A_{D^0}|^2 d\Phi(p)}{\int \epsilon(p)|A_{D^0}|^2 d\Phi(p)}$$
MC Integration


$$\sum \ln \mathcal{L} = \sum_{i}^{N_{\text{data}}} \ln \mathcal{P}(p_i) - \sum_{j}^{N_{\text{bkg}}} w_j \ln \mathcal{P}(p_j)$$

$$\ln \mathcal{L} = \sum_{i}^{N_{\text{data}}} \ln(w_s \mathcal{P}(p_i) + (1 - w_s) \mathcal{P}_B(p_i))$$

 $\rightarrow K^0_S K^+ \pi^0$

Phys. Rev. D 104, 012006 (2021)

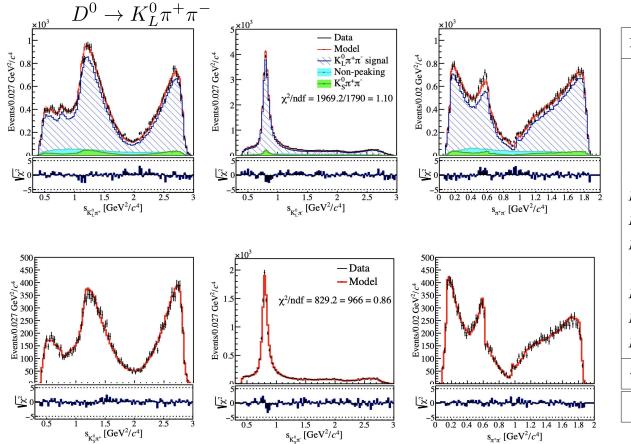
- ➢ Before theory calculation for SCS decay K*(892)⁺K_S⁰ is not consistent with experiment.
 ➢ 692 DT events with 97.4% purity @ √s = 3.773 GeV
- \succ Dominant $K^*(892)^+K_S^0$

 $D^+ \to K^0_S K^+ \pi^0$

Phys. Rev. D 104, 012006 (2021)

- → A factor of 4.6 improvement for $B(D^+ \rightarrow K_S^0 K^+ \pi^0)$
- ➤ Previse measurement of $B(D^+ \to K_S^0 K^+ \pi^0)$ could provide a more stringent test of the theorical models and help to deepen our understanding of the dynamics of charmed meson decays

Amplitude	Magnitude	Phase ϕ (°)	FF (%)	Significance
$D^+ \to K^*(892)^+ K^0_S$		0.0 ~(fixed)	57.1 ± 2.6	29.6σ
$D^+ o ar{K^*(892)^0} K^+$			10.2 ± 1.5	11.6σ
$D^+ \to (K^+ \pi^0)_{\mathcal{S}-\text{wave}} K^0_S$	2.02 ± 0.37	140 ± 14	3.9 ± 1.5	5.2σ
$D^+ \to (K^0_S \pi^0)_{\mathcal{S}-\text{wave}} K^+$	3.14 ± 0.46	-173.7 ± 9.7	9.7 ± 2.6	7.4σ

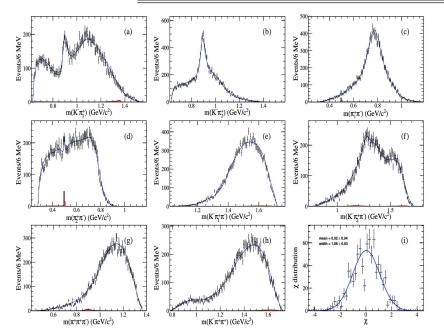

BF	This work	PDG
$\frac{\mathcal{B}(D^+ \to K^*(892)^+ (K^+ \pi^0) K_S^0)}{\mathcal{B}(D^+ \to K^+ K_S^0 \pi^0)}$	$(57.1 \pm 2.6_{ m stat.} \pm 4.2_{ m syst.})\%$	
$\frac{\mathcal{B}(D^+ \to \bar{K}^* (892)^0 (K_S^0 \pi^0) K^+)}{\mathcal{B}(D^+ \to K^+ K_S^0 \pi^0)}$	$(10.2 \pm 1.5_{ m stat.} \pm 2.2_{ m syst.})\%$	
$\mathcal{B}(D^+ \to K^*(892)^+ K^0_S)$	$(8.69 \pm 0.40_{ m stat.} \pm 0.64_{ m syst.} \pm 0.51_{ m Br.}) imes 10^{-3}$	$(17\pm8) imes10^{-3}$
$\mathcal{B}(D^+ \to \bar{K}^*(892)^0 K^+)$	$(3.10 \pm 0.46_{\mathrm{stat.}} \pm 0.68_{\mathrm{syst.}} \pm 0.18_{\mathrm{Br.}}) \times 10^{-3}$	$(3.74^{+0.12}_{-0.20}) \times 10^{-3}$

Model	$\mathcal{B}(D^+ \to K^*(892)^+ K^0_S)(\times 10^{-3})$
Pole	6.2 ± 1.2
FAT[mix]	5.5
TDA[tree]	5.02 ± 1.31
TDA[QCD-penguin]	4.90 ± 0.21
PDG	17 ± 8

 $D^0 \to K_L^0 \pi^+ \pi^-$

arxiv: 2212.09048, submitted to JHEP

Simultaneous Fit with two modes



Resonance	$K_{ m L}^0\pi^+\pi^- \ FF_R \ [\%]$	$K_{ m S}^0\pi^+\pi^-\;FF_R\;[\%]$
ho(770)	$18.16^{+0.53}_{-0.45}\pm2.50$	$18.90 \pm 0.42 \pm 2.12$
$\omega(782)$	$0.06^{+0.03}_{-0.02}\pm0.04$	$0.54 \pm 0.09 \pm 0.14$
$f_2(1270)$	$0.40 \pm 0.08 \pm 0.37$	$0.61^{+0.13}_{-0.11}\pm0.29$
ho(1450)	$0.42 \pm 0.08 \pm 0.53$	$0.21 \pm 0.10 \pm 0.40$
$K^{*}(892)^{-}$	$56.98^{+0.58}_{-0.56}\pm3.10$	$62.18^{+0.55}_{-0.59}\pm2.58$
$K_2^*(1430)^-$	$1.64^{+0.10}_{-0.09}\pm0.48$	$1.79 \pm 0.09 \pm 0.47$
$K^{*}(1680)^{-}$	$0.25^{+0.06}_{-0.05}\pm 0.68$	$0.27 \pm 0.06 \pm 0.63$
$K^{*}(1410)^{-}$	$0.19 \pm 0.06 \pm 0.46$	$0.21 \pm 0.06 \pm 0.19$
$K^{*}(892)^{+}$	$0.45 \pm 0.05 \pm 0.14$	$0.49 \pm 0.05 \pm 0.35$
$K_2^*(1430)^+$	$0.05 \pm 0.02 \pm 0.04$	$0.05 \pm 0.02 \pm 0.03$
$K^{*}(1410)^{+}$	$0.04 \pm 0.02 \pm 0.03$	$0.05 \pm 0.02 \pm 0.02$
$K_0^*(1430)^-$	$6.84^{+0.24}_{-0.25}\pm1.84$	$7.47 \pm 0.26 \pm 1.55$
$\pi\pi$ S-wave	$10.12^{+0.32}_{-0.33}\pm0.96$	$10.24 \pm 0.23 \pm 1.62$
Total	$95.59^{+2.16}_{-2.07}\pm11.17$	$103.02^{+2.11}_{-2.10}\pm10.39$

$D^0 \to K^- \pi^+ \pi^+ \pi^-$

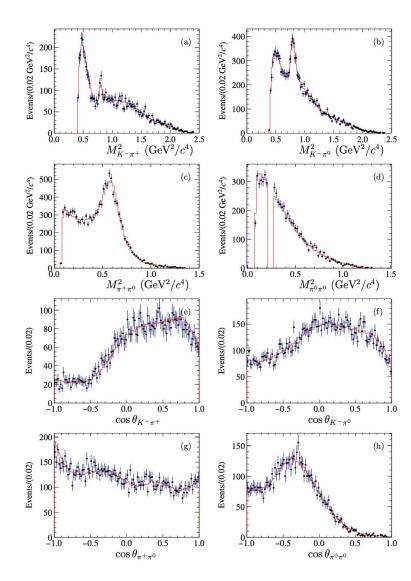
- First publication of the amplitude analysis of four-body decay at Charm group
- Previous analysis only from MARKIII and E691
- > Help to determine the absolute BFs, strong phase, benefit γ

Component	Fit fraction (%)	Mark III's result	E691's result
$\overline{D^0 \to \bar{K}^{*0} \rho^0}$	$12.3 \pm 0.4 \pm 0.5$	$14.2\pm1.6\pm5$	$13\pm2\pm2$
$D^0 \to K^- a_1^+ (1260)(\rho^0 \pi^+)$	$54.6 \pm 2.8 \pm 3.7$	$49.2\pm2.4\pm8$	$47\pm5\pm10$
$D^0 \to K_1^-(1270)(\bar{K}^{*0}\pi^-)\pi^+$	$0.8\pm0.2\pm0.2$	$6.6\pm1.9\pm3$	
$D^0 \to K_1^-(1270)(K^-\rho^0)\pi^+$	$3.4\pm0.3\pm0.5$		
$D^0 \rightarrow K^- \pi^+ \rho^0$	$8.4\pm1.1\pm2.5$	$8.4\pm2.2\pm4$	$5\pm3\pm2$
$D^0 ightarrow ar{K}^{*0} \pi^+ \pi^-$	$7.0\pm0.4\pm0.5$	$14.0\pm1.8\pm4$	$11\pm2\pm3$
$D^0 ightarrow K^- \pi^+ \pi^+ \pi^-$	$21.9\pm0.6\pm0.6$	$24.2\pm2.5\pm6$	$23\pm2\pm3$

Amplitude	$oldsymbol{\phi}_i$	Fit fraction (%)
$D^0[S] o \bar{K}^* ho^0$	$2.35 \pm 0.06 \pm 0.18$	$6.5 \pm 0.5 \pm 0.1$
$D^0[P] o ar{K}^* ho^0$	$-2.25 \pm 0.08 \pm 0.15$	$2.3 \pm 0.2 \pm 0.2$
$D^0[D] o ar{K}^* ho^0$	$2.49 \pm 0.06 \pm 0.11$	$7.9\pm0.4\pm0.2$
$D^0 \to K^- a_1^+(1260), a_1^+(1260)[S] \to \rho^0 \pi^+$	0(fixed)	$53.2 \pm 2.8 \pm 4.$
$D^0 \to K^- a_1^+ (1260), a_1^+ (1260)[D] \to \rho^0 \pi^+$	$-2.11 \pm 0.15 \pm 0.21$	$0.3 \pm 0.1 \pm 0.1$
$D^0 \to K_1^-(1270)\pi^+, \ K_1^-(1270)[S] \to \bar{K}^{*0}\pi^-$	$1.48 \pm 0.21 \pm 0.24$	$0.1 \pm 0.1 \pm 0.$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[D] \to \bar{K}^{*0}\pi^-$	$3.00 \pm 0.09 \pm 0.15$	$0.7 \pm 0.2 \pm 0.2$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270) \to K^-\rho^0$	$-2.46 \pm 0.06 \pm 0.21$	$3.4 \pm 0.3 \pm 0.1$
$D^0 \to (\rho^0 K^-)_A \pi^+, (\rho^0 K^-)_A [D] \to K^- \rho^0$	$-0.43 \pm 0.09 \pm 0.12$	$1.1 \pm 0.2 \pm 0.1$
$D^0 \rightarrow (K^- \rho^0)_{\rm P} \pi^+$	$-0.14 \pm 0.11 \pm 0.10$	$7.4 \pm 1.6 \pm 5.1$
$D^0 \to (K^- \pi^+)_{\text{S-wave}} \rho^0$	$-2.45 \pm 0.19 \pm 0.47$	$2.0 \pm 0.7 \pm 1.0$
$D^0 \to (K^- \rho^0)_{\rm V} \pi^+$	$-1.34 \pm 0.12 \pm 0.09$	$0.4\pm0.1\pm0.1$
$D^0 ightarrow (ar{K}^{*0}\pi^-)_{ m P}\pi^+$	$-2.09 \pm 0.12 \pm 0.22$	$2.4\pm0.5\pm0.1$
$D^0 \rightarrow \overline{K}^{*0}(\pi^+\pi^-)_{\mathrm{S}}$	$-0.17 \pm 0.11 \pm 0.12$	$2.6\pm0.6\pm0$
$D^0 ightarrow (ar{K}^{*0} \pi^-)_{ m V} \pi^+$	$-2.13 \pm 0.10 \pm 0.11$	$0.8\pm0.1\pm0$
$D^0 \rightarrow ((K^-\pi^+)_{\mathrm{S-wave}}\pi^-)_{\mathrm{A}}\pi^+$	$-1.36 \pm 0.08 \pm 0.37$	$5.6\pm0.9\pm2$
$D^0 \to K^-((\pi^+\pi^-)_{\rm S}\pi^+)_{\rm A}$	$-2.23 \pm 0.08 \pm 0.22$	$13.1\pm1.9\pm2$
$D^0 \rightarrow (K^- \pi^+)_{\text{S-wave}} (\pi^+ \pi^-)_{\text{S}}$	$-1.40 \pm 0.04 \pm 0.22$	$16.3\pm0.5\pm0$
$D^0[S] \to (K^- \pi^+)_V (\pi^+ \pi^-)_V$	$1.59 \pm 0.13 \pm 0.41$	$5.4\pm1.2\pm1$
$D^0 \rightarrow (K^- \pi^+)_{\text{S-wave}} (\pi^+ \pi^-)_{\text{V}}$	$-0.16 \pm 0.17 \pm 0.43$	$1.9\pm0.6\pm1$
$D^0 \rightarrow (K^- \pi^+)_{\mathrm{V}} (\pi^+ \pi^-)_{\mathrm{S}}$	$2.58 \pm 0.08 \pm 0.25$	$2.9\pm0.5\pm1$
$D^0 \to (K^- \pi^+)_{\rm T} (\pi^+ \pi^-)_{\rm S}$	$-2.92 \pm 0.14 \pm 0.12$	$0.3 \pm 0.1 \pm 0.1$
$D^0 \rightarrow (K^- \pi^+)_{\text{S-wave}} (\pi^+ \pi^-)_{\text{T}}$	$2.45 \pm 0.12 \pm 0.37$	$0.5 \pm 0.1 \pm 0.1$

 $D^+ \to K^0_S \pi^+ \pi^+ \pi^-$

Phys. Rev. D 100, 072008 (2019)


Help to understand D \rightarrow AP decay and the mixing between $K_1(1270)$ and $K_1(1400)$

Events/(10 MeV/c ²)		$m(K_{3}^{0}T)$ (GeV/c ²)	(b) Exerts(10 MeV) Exerts(10 MeV) Ex	(c) 1 1.2 1.4 $1(K_0^3 \pi_2^2)$ (GeV/c ²)
Events(10 MeV/c ²)	(d) (d) (d) (d) (d) (d) (d) (d) (d) (d)	$0 = \frac{1}{0.4} \frac{1}{0.6} \frac{1}{0.6} \frac{1}{0.8} \frac{1}{0.1} \frac{1}{0.4} \frac{1}{0.6} \frac{1}{0.8} \frac{1}{0.8} \frac{1}{0.1} \frac{1}{0.7} \frac{1}{0.6} \frac{1}{0.6} \frac{1}{0.8} \frac{1}{0.8} \frac{1}{0.1} \frac{1}{0.8} $	(c) (c) (c) (c) (c) (c) (c) (c)	1.2 1.4 $1.6K_{S}^{0}\pi;\pi) (GeV/c2)$
	(1)) (1))	(g) (h) (g) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h	(h) -	
	Amplitude	Significance (σ)	Phase	FF
I	$D^+ \to K^0_{S} a_1(1260)^+ (\rho^0 \pi^+ [S])$	>10	0.0 (fixed)	$0.384 \pm 0.021 \pm 0.041$
п	$D^+ \to K_S^0 a_1(1260)^+ (\rho^0 \pi^+ [D])$	4.3	$-1.55 \pm 0.16 \pm 0.22$	$0.004 \pm 0.002 \pm 0.001$
	$D^+ \to K_S^0 a_1(1260)^+ (\rho^0 \pi^+)$			$0.403 \pm 0.021 \pm 0.041$
ш	$D^+ \to K_S^0 a_1(1260)^+ (f_0(500)\pi^+)$	>10	$-1.82 \pm 0.08 \pm 0.10$	$0.055 \pm 0.007 \pm 0.018$
IV	$D^+ \to \bar{K}_1(1400)^0 (K^{*-} \pi^+ [S]) \pi^+$	>10	$-2.68 \pm 0.05 \pm 0.07$	$0.221 \pm 0.012 \pm 0.016$
v	$D^+ \to \bar{K}_1(1400)^0 (K^{*-} \pi^+[D]) \pi^+ D^+ \to \bar{K}_1(1400)^0 (K^{*-} \pi^+) \pi^+$	>10	$-2.24 \pm 0.10 \pm 0.07$	$\begin{array}{c} 0.015 \pm 0.002 \pm 0.001 \\ 0.216 \pm 0.012 \pm 0.011 \end{array}$
VI	$D^+ o ar{K}_1(1400)^0 (K^{*-}\pi^+)\pi^+$ $D^+ o ar{K}_1(1270)^0 (K^0_{S} ho^0[S])\pi^+$	9.7	$-0.56 \pm 0.09 \pm 0.11$	$\begin{array}{c} 0.210 \pm 0.012 \pm 0.011 \\ 0.024 \pm 0.003 \pm 0.006 \end{array}$
XIII	$D^+ \to \bar{K}_1(1270)^{\circ}(K_S^*\rho^*[3])\pi^+$ $D^+ \to \bar{K}(1460)^{0}(K^{*-}\pi^+)\pi^+$	>10	$-2.50 \pm 0.09 \pm 0.11$ $-2.50 \pm 0.07 \pm 0.06$	$\begin{array}{c} 0.024 \pm 0.005 \pm 0.000 \\ 0.068 \pm 0.006 \pm 0.010 \end{array}$
IX	$D^+ \rightarrow \bar{K}(1460)^0 (K^0_S \rho^0) \pi^+$	6.1	$-2.65 \pm 0.18 \pm 0.25$	$\begin{array}{c} 0.008 \pm 0.000 \pm 0.010 \\ 0.008 \pm 0.002 \pm 0.005 \end{array}$
x	$D^+ \to \bar{K}_1(1650)^0 (K^{*-}\pi^+[S])\pi^+$	6.5	$-0.95 \pm 0.14 \pm 0.22$	$0.016 \pm 0.004 \pm 0.014$
VII	$D^+ \rightarrow (K^0_S \rho^0[S])_A \pi^+$	>10	$-1.88 \pm 0.08 \pm 0.05$	$0.057 \pm 0.007 \pm 0.023$
VIII	$D^+ ightarrow (K^0_S ho^0[D])_A \pi^+$	7.0	$2.77 \pm 0.12 \pm 0.14$	$0.008 \pm 0.002 \pm 0.003$
	$D^+ \rightarrow (K^0_S \rho^0)_A \pi^+$			$0.064 \pm 0.007 \pm 0.034$
XI	$D^+ ightarrow (K^0_S(\pi^+\pi^-)_S)_A\pi^+$	>10	$-3.08 \pm 0.06 \pm 0.04$	$0.064 \pm 0.005 \pm 0.007$
XII	$D^+ \rightarrow ((K_S^0 \pi^+)_{S\text{-wave}} \pi^-)_P \pi^+$	>10	$2.10 \pm 0.08 \pm 0.28$	$0.017 \pm 0.003 \pm 0.005$
	$D^+ \to K_S^0 \pi^+ \pi^+ \pi^-$ nonresonance			$0.081 \pm 0.006 \pm 0.009$

- ~	
Component	Branching fraction (%)
$D^+ \to K^0_S a_1(1260)^+ (\rho^0 \pi^+)$	$1.197 \pm 0.062 \pm 0.120 \pm 0.044$
$D^+ \rightarrow K_S^0 a_1(1260)^+ (f_0(500)\pi^+)$	$0.163 \pm 0.021 \pm 0.053 \pm 0.006$
$D^+ o ar{K}_1 (1400)^0 (K^{*-} \pi^+) \pi^+$	$0.642 \pm 0.036 \pm 0.033 \pm 0.024$
$D^+ o ar{K}_1(1270)^0 (K^0_S ho^0) \pi^+$	$0.071 \pm 0.009 \pm 0.019 \pm 0.003$
$D^+ \to \bar{K}(1460)^0 (K^{*-}\pi^+)\pi^+$	$0.202 \pm 0.018 \pm 0.031 \pm 0.007$
$D^+ o ar{K}(1460)^0 (K^0_S ho^0) \pi^+$	$0.024 \pm 0.006 \pm 0.015 \pm 0.009$
$D^+ \to ar{K}_1(1650)^0 (K^{*-} \pi^+) \pi^+$	$0.048 \pm 0.012 \pm 0.042 \pm 0.002$
$D^+ ightarrow K^0_S \pi^+ ho^0$	$0.190 \pm 0.021 \pm 0.103 \pm 0.007$
$D^+ \to K^0_S \pi^+ \pi^+ \pi^-$	$0.241 \pm 0.018 \pm 0.026 \pm 0.009$

 $D^0 \to K^- \pi^+ \pi^0 \pi^0$

Phys. Rev. D 99, 092008 (2019)

First amplitude analysis of this decay

Amplitude mode	FF (%)	Phase (ϕ)	Significance (σ)
$D \rightarrow SS$	()		0 (/
$D ightarrow (K^- \pi^+)_{S ext{-wave}} (\pi^0 \pi^0)_S$	$6.92 \pm 1.44 \pm 2.86$	$-0.75 \pm 0.15 \pm 0.47$	> 10
$\frac{D \to (K^- \pi^0)_{S-\text{wave}} (\pi^+ \pi^0)_S}{D \to AP, A \to VP}$	$4.18 \pm 1.02 \pm 1.77$	$-2.90 \pm 0.19 \pm 0.47$	6.0
$D \to AP, A \to VP$			
$D \to K^- a_1(1260)^+, \rho^+ \pi^0[S]$	$28.36 \pm 2.50 \pm 3.53$	0 (fixed)	> 10
$D \to K^- a_1(1260)^+, \rho^+ \pi^0[D]$	$0.68 \pm 0.29 \pm 0.30$	$-2.05 \pm 0.17 \pm 0.25$	6.1
$D \to K_1(1270)^- \pi^+, K^{*-} \pi^0[S]$	$0.15 \pm 0.09 \pm 0.15$	$1.84 \pm 0.34 \pm 0.43$	4.9
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[S]$ $D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[D]$	$0.39 \pm 0.18 \pm 0.30$	$-1.55 \pm 0.20 \pm 0.26$	4.8
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[D]$	$0.11 \pm 0.11 \pm 0.11$	$-1.35 \pm 0.43 \pm 0.48$	4.0
$D \to K_1(1270)^0 \pi^0, K^- \rho^+[S]$	$2.71 \pm 0.38 \pm 0.29$	$-2.07 \pm 0.09 \pm 0.20$	> 10
$D \to (K^{*-}\pi^0) {}_{A}\pi^+, K^{*-}\pi^0[S]$	$1.85 \pm 0.62 \pm 1.11$	$1.93 \pm 0.10 \pm 0.15$	7.8
$D \to (K^{*0}\pi^0)_A \pi^0, K^{*0}\pi^0[S]$	$3.13 \pm 0.45 \pm 0.58$	$0.44 \pm 0.12 \pm 0.21$	> 10
$D \to (K^{*0}\pi^0)_A \pi^0, K^{*0}\pi^0[D]$	$0.46 \pm 0.17 \pm 0.29$	$-1.84 \pm 0.26 \pm 0.42$	5.9
$D \to (K^{*0}\pi^{0})_{A}\pi^{0}, K^{*0}\pi^{0}[S]$ $D \to (K^{*0}\pi^{0})_{A}\pi^{0}, K^{*0}\pi^{0}[D]$ $D \to (\rho^{+}K^{-})_{A}\pi^{0}, K^{-}\rho^{+}[D]$	$0.75 \pm 0.40 \pm 0.60$	$0.64 \pm 0.36 \pm 0.53$	5.1
$D \to AP, A \to SP$			
$D \to ((K^-\pi^+)_{S-\text{wave}}\pi^0)_A \pi^0$	$1.99 \pm 1.08 \pm 1.55$	$-0.02 \pm 0.25 \pm 0.53$	7.0
$D \rightarrow VS$			
$D ightarrow (K^- \pi^0)_{S ext{-wave}} ho^+$	$14.63 \pm 1.70 \pm 2.41$	$-2.39 \pm 0.11 \pm 0.35$	> 10
$D ightarrow K^{*-} (\pi^+ \pi^0)_S$	$0.80 \pm 0.38 \pm 0.26$	$1.59 \pm 0.19 \pm 0.24$	4.1
$D ightarrow K^{*0}(\pi^0\pi^0)_S$	$0.12 \pm 0.12 \pm 0.12$	$1.45 \pm 0.48 \pm 0.51$	4.1
$D \to VP, V \to VP$			
$D ightarrow (K^{*-}\pi^+)_V \pi^0$	$2.25 \pm 0.43 \pm 0.45$	$0.52 \pm 0.12 \pm 0.17$	> 10
$D \rightarrow VV$			
$D \to K^{*-} \rho^+[S]$	$5.15 \pm 0.75 \pm 1.28$	$1.24 \pm 0.11 \pm 0.23$	> 10
$D \to K^{*-} \rho^+[P]$	$3.25 \pm 0.55 \pm 0.41$	$-2.89 \pm 0.10 \pm 0.18$	> 10
$D \to K^{*-} \rho^+[D]$	$10.90 \pm 1.53 \pm 2.36$	$2.41 \pm 0.08 \pm 0.16$	> 10
$D \rightarrow (K^- \pi^0)_V \rho^+ [P]$	$0.36 \pm 0.19 \pm 0.27$	$-0.94 \pm 0.19 \pm 0.28$	5.7
$D ightarrow (K^- \pi^0)_V ho^+ [D]$	$2.13 \pm 0.56 \pm 0.92$	$-1.93 \pm 0.22 \pm 0.25$	> 10
$D \to K^{*-} (\pi^+ \pi^0)_V [D]$	$1.66 \pm 0.52 \pm 0.61$	$-1.17 \pm 0.20 \pm 0.39$	7.6
$D \to (K^- \pi^0)_V (\pi^+ \pi^0)_V [S]$	$5.17 \pm 1.91 \pm 1.82$	$-1.74 \pm 0.20 \pm 0.31$	7.6
$D \rightarrow TS$			
$D \to (K^- \pi^+)_{S-\text{wave}} (\pi^0 \pi^0)_T$	$0.30 \pm 0.21 \pm 0.30$	$-2.93 \pm 0.31 \pm 0.82$	5.8
$D \rightarrow (K^- \pi^0)_{S-\text{wave}} (\pi^+ \pi^0)_T$	$0.14 \pm 0.12 \pm 0.10$	$2.23 \pm 0.38 \pm 0.65$	4.0
TOTAL	98.54		

 $B(D0 \rightarrow K - \pi + \pi 0\pi 0) = (8.86 \pm 0.13(stat) \pm 0.19(syst))\%.$

Summary

- Amplitude Analyses of D hadronic decays with 2.93 fb⁻¹ data @ $E_{cm} = 3.773$ GeV have been published.
- > 8 fb⁻¹ data now with more precison, totally 20 fb⁻¹ in the future.
- Several amplitude analyses are ongoing, coming soon.

 $\begin{array}{l} D^+ {\longrightarrow} K_S \ \pi^+ \eta \\ D^+ {\longrightarrow} \pi^+ \ \pi^0 \pi^0 \\ D^+ {\longrightarrow} \pi^+ \ \pi^0 \eta \\ D^0 {\longrightarrow} \pi^+ \pi^- \eta \\ D^0 {\longrightarrow} K_S \ \pi^0 \eta \\ D^0 {\longrightarrow} \pi^+ \pi^- \pi^{+(0)} \pi^{-(0)} \\ D^0 {\longrightarrow} K^+ K^- \ \pi^+ \pi^- \\ D^0 {\longrightarrow} K_S \ \pi^+ \pi^- \pi^0 \end{array}$

.