

Synergy of BESIII/HIEPA and LHCb Physics Programs

Wenbin Qian

University of Chinese Academy of Sciences

On behalf of the LHCb collaboration

HIEPA, 18-21 March 2018, Huairou China

> Very successful and productive workshop; further synergy between BESIII/LHCb planned

> A lot of material in this talk from the workshop

CKM constraints

> Inputs from different experiments already required to over-constrain CKM matrix and search for extra CPV sources

Areas of common interests

Synergy and complementarity

- > CKM angle γ measurements
- > Absolute branching fraction measurements in D, Λ_c decays
- > Spectroscopy and exotics (LHCb status by S. Barsuk)
- > Charm CPV (LHCb status by M. Saur)
- > Rare charm decays (LHCb status by S. Barsuk)

Disclaimer: A LHCb-member point of view

LHCb detector

> Forward spectrometer @ collider, acceptance: 1.9<η<4.9

LHCb upgrade plans

- > Upgrade I: several detector replaced; 40 MHz readout with fully software trigger
- > Upgrade II: new ideas under study on tracking, calorimeter, adding timing info etc

CKM angle y

CKM angle y

 $> \gamma$ at tree level: clean theory prediction $\delta \gamma / \gamma \sim 10^{-7}$

JHEP 1401 (2014) 051

Methodology for y measurement

> Sensitive channels with small BFs: need to combine many channels

GLW: D = CP eigenstates, e.g. KK, $\pi\pi$

ADS: D = quasi-flavour-specific states e.g. $K\pi$

Phys. Lett. B 253 (1991) 483 Phys. Lett. B 265 (1991) 172

Phys. Rev. Lett. 78 (1997) 3257

GGSZ: D = self-conjugate multi(3)-body states e.g. $K_s\pi\pi$

Phys. Rev. D68 (2003) 054018

GLS: ADS variant with singly Cabbibo-suppressed decay $D \rightarrow K_s K \pi$ Phys. Rev. D67 (2003) 071301

time-dependent $B_s \rightarrow D_s K$, $B^0 \rightarrow D\pi$ etc (not discussed here)

Dalitz (GW) method: $B^0 \rightarrow DK\pi$

> Global fit needed to extract γ (also other nuisance parameters)

> Charm inputs crucial (BESIII/HIEPA)

GLW measurements

Phys. Lett. B777 (2018) 16

> Using both fully reco. B \rightarrow DK and partially reco. B \rightarrow D^{*}(D γ /D π^0)K

 $\begin{aligned} R_{CP\pm} &= \frac{2[\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)]}{\Gamma(B^- \to D^0K^-) + \Gamma(B^+ \to \overline{D}^0K^+)} ,\\ A_{CP\pm} &= \frac{\Gamma(B^- \to D_{CP\pm}K^-) - \Gamma(B^+ \to D_{CP\pm}K^+)}{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)} .\\ R_{CP\pm} &= 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma \\ A_{CP\pm} &= \pm 2r_B \sin \delta_B \sin \gamma / R_{CP\pm} . \end{aligned}$

> Extension like $D \rightarrow \pi \pi \pi^0$ can be used => need inputs from charm friends

ADS measurements

Phys. Lett. B760 (2016) 117

> 2 fb⁻¹ (7 TeV) + 1 fb⁻¹ (8 TeV)

ി

50

100

150

γ [°]

> Inputs from charm basic for the analysis

GGSZ measurements

> 2 fb⁻¹ (7 TeV) + 1 fb⁻¹ (8 TeV)

➤ Charm inputs of c_i, s_i crucial for the measurements

GGSZ measurements results

JHEP 10 (2014) 097

$$x_{+} = (-7.7 \pm 2.4 \pm 1.0 \pm 0.4) \times 10^{-2},$$

$$y_{+} = (-2.2 \pm 2.5 \pm 0.4 \pm 1.0) \times 10^{-2},$$

 $x_{-} = (2.5 \pm 2.5 \pm 1.0 \pm 0.5) \times 10^{-2},$ $y_{-} = (7.5 \pm 2.9 \pm 0.5 \pm 1.4) \times 10^{-2},$

➤ Effects from uncertainties on c_i, s_i becomes important with more LHCb data (Run 3 and later)

> With large enough data, LHCb has sensitivity to c_i, s_i

➤ Dalitz model obtained from Dalitz analyses on charm decays (K_shh or similar channels) important for optimizing binning scheme for c_i, s_i;

GW measurements

GW-GGSZ measurements

arXiv:1712.07853

 $> B^0 \rightarrow DK\pi$ are the decay channel of interest

> Studies also performed on GGSZ-type of analysis: two Dalitz plots!

$$|A_{\rm dbl\,Dlz}|^2 = |\overline{A}_B|^2 |\overline{A}_D|^2 + |A_B|^2 |A_D|^2 + 2 |\overline{A}_B| |\overline{A}_D| |A_B| |A_D| [(\varkappa c - \sigma s) \cos \gamma - (\varkappa s + \sigma c) \sin \gamma] ,$$

> Charm inputs of c_i , s_i will be important for Run 1+2 data; LHCb will have self-constraints on c_i , s_i with more data but external inputs are still important

LHCb status on y measurements

Slides stolen from Matt. Kenzie in BESIII/LHCb workshop

31/33

NIVERSITY OF

3. γ averages

Status of γ at LHCb

			Highest Statistics	Poor	er sensitivity at L	HCb	High po (Dalitz stru	otential acture of B)	Low stats (multibody B)
Method		B Decay	$B^- \to D^0 K^-$	$ \begin{array}{c} B^- \rightarrow D^0 K^{*-} \\ [K^{*-} \rightarrow K^0_{\rm S} \pi^-] \end{array} $	$B^{-} \to D^{*0} K^{-} \\ [D^{*0} \to D^{0} \pi^{0}], [D^{*0} \to D^{0} \gamma]$		$B^0 \to D^0 K^+ \pi^-$		$B^- \to D^0 K^- \pi^+ \pi^-$
		D Decay			part-rec	full-rec	K^{*0} res	Dalitz	
GLW	(+)	$D^0 \to K^+ K^-$	$5{\rm fb}^{-1}$	$5{\rm fb}^{-1}$	$5{\rm fb}^{-1}$	•	$3{ m fb}^{-1}(ullet)$	$3{ m fb}^{-1}$	$3{\rm fb}^{-1}$
		$D^0 \to \pi^+\pi^-$	$5{\rm fb}^{-1}$	$5{ m fb}^{-1}$	$5{ m fb}^{-1}$	•	$3{ m fb}^{-1}(ullet)$	$3{ m fb}^{-1}$	$3{ m fb}^{-1}$
		$D^0 \to K^+ K^- \pi^0$	$3{ m fb}^{-1}(ullet)$	-	-	-	-	-	-
		$D^0 \to \pi^+\pi^-\pi^0$	$3{ m fb}^{-1}$	-	-	-	-	-	-
		$D^0 \to K^+ K^- \pi^+ \pi^-$	-	-	-	-	-	-	-
		$D^0 \to \pi^+\pi^-\pi^+\pi^-$	$3{ m fb}^{-1}(ullet)$	$5{ m fb}^{-1}$	•	•	•	-	-
	(-)	$D^0 \to K^0_{\rm S} \pi^0$	•	-	-	-	-	-	-
ADS		$D^0 \to K^+ \pi^-$	$3{ m fb}^{-1}(ullet)$	$5{ m fb}^{-1}$	•	•	$3{ m fb}^{-1}(ullet)$	•	$3{\rm fb}^{-1}$
		$D^0 \to K^+ \pi^- \pi^0$	$3{ m fb}^{-1}$	-	-	-	-	-	-
		$D^0 \to K^+\pi^-\pi^+\pi^-$	$3{ m fb}^{-1}(ullet)$	$5{ m fb}^{-1}$	•	•	•	-	-
GGSZ		$D^0 \to K^0_{\rm s} \pi^+ \pi^-$	$3{ m fb}^{-1}(ullet)$	•	-	•	$3{ m fb}^{-1}(ullet)$	•	-
		$D^0 \to K^0_{\rm s} K^+ K^-$	$3{ m fb}^{-1}(ullet)$	•	-	•	$3{ m fb}^{-1}(ullet)$	•	-
		$D^0 \to K^0_{\rm s} \pi^+ \pi^- \pi^0$	•	-	-	-	-	-	-
		$D^0 \to K^0_{\rm s} K^+ K^- \pi^0$	•	-	-	-	-	-	-

KEY: •: (update) in progress

•: requires input from Charm sector $(r_D, \delta_D, \kappa_D)$

NOTE: LHCb has a $3 \text{ fb}^{-1}(\bullet)$ TD result with $B_s^0 \to D_s^- K^+$

LHCb has a $3 \text{ fb}^{-1}(\bullet)$ GLS result from $B^- \to D^0 K^-$ with $D^0 \to K^0_{\rm s} K^{\pm} \pi^{\mp}$

Poor	er sensitivity at L	High potential (Dalitz structure of B)			
$ \rightarrow D^0 K^{*-} $ $ \overset{*-}{\rightarrow} K^0_{\rm S} \pi^-] $	$B^{-} \to D^{*0} K$ $[D^{*0} \to D]$	$C^{-} = D^0 \pi^0], [D^{*0} \to D^0 \gamma]$	$B^0 \to D^0 K^+ \pi^-$		
	part-rec	full-rec	K^{*0} res	Dalitz	
$5{\rm fb}^{-1}$	$5{ m fb}^{-1}$	•	$3{ m fb}^{-1}(ullet)$	$3{\rm fb}^{-1}$	
$\mathbf{r} \mathbf{q}_{\mathbf{r}} = 1$	$r r_{\rm b} = 1$		$2 f_{\rm b}^{-1}(\bullet)$	$2 {\rm m}^{-1}$	

y average

LHCb-CONF-2017-004

> Combining all LHCb measurements, we have

- > Some tension exists and may be interesting to follow-up
- > Future sensitivities (scaled according to statistical uncertainties)

Run 1	Run 2	Upgrade 1	Upgrade 2
5.5°	2.8 °	0.71°	0.28°

New GGSZ analysis

arXiv:1712.08326

> Use Fourier transformation over strong phase obtained from a model to extract information

$$\Phi(m_+^2, m_-^2) = \arg A_D^{(
m model)}(m_+^2, m_-^2) - \arg A_D^{(
m model)}(m_-^2, m_+^2)$$

> Fourier transformation applied to both quantum-correlated data and to LHCb B data

 $\bar{\boldsymbol{p}}_{B}(\phi) \propto \boldsymbol{p}_{D}(\phi) + r_{B}^{2}\bar{\boldsymbol{p}}_{D}(\phi) + 2[\boldsymbol{x}_{+}\boldsymbol{C}(\phi) - \boldsymbol{y}_{+}\boldsymbol{S}(\phi)],$

 \succ All orders of Fourier transformations give constraints on x_{\pm} and y_{\pm}

> Binning of Dalitz plot according to amplitude ratio can help

Ultimate precision:

Sample size			γ resolution, $^{\circ}$	$\sigma(\gamma) = 2.91$	$\pm0.07^{\circ}$
LHCb Run 1: ~2000	CLEO: 470	Binned optimal	Fourier non-split	Fourier split	
$2 imes 10^4~B^\pm ightarrow DK^\pm$	$^\pm$, 10 3 $D^0\overline{D}{}^0$	4.33 ± 0.10	4.54 ± 0.10	3.73 ± 0.08	
$2 imes 10^4~B^\pm o DK^\pm$	$^{\pm}$, 10 4 $D^{0}\overline{D}{}^{0}$	3.60 ± 0.08	4.51 ± 0.10	$\textbf{3.43} \pm \textbf{0.08}$	
$2 imes 10^4~B^\pm ightarrow DK^\pm$	$^{\pm}$, $10^5~D^0\overline{D}{}^0$	3.49 ± 0.10	4.47 ± 0.10	$\textbf{3.32}\pm\textbf{0.08}$	

> New approaches requiring efforts from LHCb and BESIII/HIEPA to make it possible

Other interesting channels

```
arXiv:1712.08326
```

> Other D decay channels have been used for γ measurements:

K_SK π , 4 π global, K3 π global, K $\pi\pi^0$, $\pi\pi\pi^0$, KK π^0 etc.

> Inputs from BESIII/HIEPA can definitely help a lot

 $K_{S}\pi\pi$ in Run 2: 7° uncertainty (stat. dominate)

- > Other channels like $K_{S}\pi\pi\pi^{0}$ may also be interesting
- > Common PWA would be very interesting for these D decays

Other similar measurements

 $> B^0 → Dππ \text{ with } D → \text{hh was proposed to measure CKM angle } \beta, \text{ where not}$ only sin2β but also cos2β can be accessed; Phys. Lett. B 425 (1998) 375 J. Phys. G36 (2009) 025006

> Same decay channel but with D \rightarrow K_shh is proposed and with similar ideas as GGSZ B \rightarrow DK analysis;

> Charm inputs from c_i, s_i required as for GGSZ analysis

$g_{ij}(\Delta t) \propto \mathcal{U}_{ij} + q_B \left[\mathcal{D}_{ij} \cos(\Delta m \Delta t) - \mathcal{F}_{ij} \sin(\Delta m \Delta t) \right]$	Decay	Belle II (50 ab ⁻¹)	LHCb (50 fb ⁻¹)
$u_{ij} = \kappa_i \kappa_j + \kappa_{-i} \kappa_{-j}, \qquad D_{ij} = \kappa_i \kappa_j - \kappa_{-i} \kappa_{-j},$	$B^0 \to D\pi^+\pi^-$	1.5°	1.5°
$\mathcal{F}_{ij} = 2 \left[K_i K_{-i} k_j k_{-j} \left[(C_i s_j - S_i c_j) \cos 2\beta - (C_i c_j + S_i s_j) \sin 2\beta \right] \right]$	$B^0 \rightarrow Dh^0$	0.7°	_

Analogy to those from $B^0 \rightarrow DK\pi$ Dalitz

> c_i , s_i inputs from quantum-correlated charm mesons will be important when statistic is low; The system can also offer self-constraints on c_i , s_i with large enough dataset (i.e. LHCb 50 fb⁻¹)

> c_i, s_i inputs are also used in charm mixing parameter measurements (model independent approach)

Absolute Branching fractions

Charm branching fraction measurements

. . 3

arXiv:1711.01157

> In LHCb, we measure relative branching fractions;

$$\frac{\mathcal{B}(\Lambda_{c}^{+} \to p\pi^{-}\pi^{+})}{\mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+})} = (7.44 \pm 0.08 \pm 0.18)\%,$$

$$\frac{\mathcal{B}(\Lambda_{c}^{+} \to pK^{-}K^{+})}{\mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+})} = (1.70 \pm 0.03 \pm 0.03)\%,$$

$$\frac{\mathcal{B}(\Lambda_{c}^{+} \to p\pi^{-}K^{+})}{\mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+})} = (0.165 \pm 0.015 \pm 0.005)\%.$$

$$\sum_{i=1}^{N(10^{-1})} \frac{\mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+})}{\mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+})} = (0.165 \pm 0.015 \pm 0.005)\%.$$

$$\sum_{i=1}^{N(10^{-1})} \frac{\mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+})}{\mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+})} = (0.165 \pm 0.015 \pm 0.005)\%.$$

$$\begin{split} & \mathcal{B}(\Lambda_{c}^{+} \to p\pi^{-}\pi^{+}) \times 10^{3} = 4.72 \pm 0.05 \pm 0.11 \pm 0.25 \\ & \mathcal{B}(\Lambda_{c}^{+} \to pK^{-}K^{+}) \times 10^{3} = 1.08 \pm 0.02 \pm 0.02 \pm 0.02 \pm 0.06 \\ & \mathcal{B}(\Lambda_{c}^{+} \to p\pi^{-}K^{+}) \times 10^{4} = 1.04 \pm 0.09 \pm 0.03 \pm 0.05 \end{split} \begin{cases} \text{external} \\ & \mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+}) \\ & (6.35 \pm 0.33)\% \end{cases}$$

> Clearly, uncertainties due to external inputs are dominant/important

Vub measurement

> |V_{ub}| is one of the key CKM matrix elements

0.0060

Nature Phys. 11 (2015) 743-747

V_{cb}

V_{cb} _{SL,ord}

p-value

1.0

0.9

0.0055 0.8 V_{ub} 0.0050 0.7 > Some tension between inclusive and exclusive 0.0045 0.6 >⁹0.0040 measurements Vub 0.5 0.4 0.0035 Vue 0.3 0.0030 V_{ub}/V_{cb} > Ratio between $|V_{ub}|$ and $|V_{cb}|$ has been 0.2 0.0025 CKM fitter 0.1 measured by LHCb using baryon decays excluded area has Cl 0.0 0.0020 0.034 0.036 0.038 0.040 0.042 0.044 0.048 0.046 $|V_{cb}|$ $\frac{\mathcal{B}(\Lambda_b^0 \to \rho \mu^- \overline{\nu}_\mu)_{q^2 > 15 \,\mathrm{GeV}^2}}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_\mu)_{q^2 > 7 \,\mathrm{GeV}^2}} = (1.471 \pm 0.095 \pm 0.109) \left| \frac{V_{ub}}{V_{cb}} \right|^2$ **Dominant uncertainty** Shift in central value $\frac{\mathcal{B}(\Lambda_b^0 \to p\mu^- \overline{\nu}_\mu)_{q^2 > 15 \,\text{GeV}^2}}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_\mu)_{q^2 > 7 \,\text{GeV}^2}} = \frac{\mathcal{N}(\Lambda_b^0 \to p\mu^- \overline{\nu}_\mu)}{\mathcal{N}(\Lambda_b^0 \to \Lambda_c^+ (pK^- \pi^+)\mu^- \overline{\nu}_\mu)} \cdot r_\epsilon \cdot \mathcal{B}(\Lambda_c^+ \to pK^- \pi^+)$ $(6.35 \pm 0.33)\%$

> Charm inputs on the branching fractions are crucial (for similar analyses)

Hadronization factor measurements

JHEP 1304 (2013) 001 Phys. Rev. D 85 (2012) 032008

> Hadronization factors for b hadrons uses charm branching fraction measurements unavoidably

$$\begin{aligned} \frac{f_{s}}{f_{d}} &= \frac{\mathcal{B}(B^{0} \to D^{-}(K^{+}\pi^{-}\pi^{-})K^{+})}{\mathcal{B}(B^{0}_{s} \to D^{-}_{s}(K^{+}K^{-}\pi^{-})\pi^{+})} \frac{\epsilon_{D^{-}K^{+}}}{\epsilon_{D^{-}_{s}\pi^{+}}} \frac{N_{D^{-}_{s}\pi^{+}}}{N_{D^{-}K^{+}}} \\ &= \Phi_{\rm PS} \left| \frac{V_{us}}{V_{ud}} \right|^{2} \left(\frac{f_{K}}{f_{\pi}} \right)^{2} \frac{\tau_{B^{0}}}{\tau_{B^{0}_{s}}} \frac{1}{\mathcal{N}_{a}\mathcal{N}_{F}} \frac{\mathcal{B}(D^{-} \to K^{+}\pi^{-}\pi^{-})}{\mathcal{B}(D^{-}_{s} \to K^{+}K^{-}\pi^{-})} \frac{\epsilon_{D^{-}K^{+}}}{\epsilon_{D^{-}_{s}\pi^{+}}} \frac{N_{D^{-}_{s}\pi^{+}}}{N_{D^{-}K^{+}}} \end{aligned}$$

 Φ_{PS} is a phase space factor, \mathcal{N}_a parameterizes nonfactorizable SU(3)-breaking, \mathcal{N}_F is the ratio of form factors.

> Systematic uncertainties from charm branching fractions normally dominate (similar situation also for $f_{\Lambda b}/(f_d + f_u)$ etc)

Lepton flavor universality measurements

arXiv:1708.08856

> Lepton flavor universality test becomes a hot topic after many deviations seen from B-factories and LHCb measurements

> Charm inputs are very important for understanding backgrounds of **R(D)** and **R(D*)** measurements with $\tau \rightarrow 3\pi v$

Conclusion

> Many important physics results need synergy between BESIII/HIEPA and LHCb

> Combined efforts from both experiments may lead to long-waited new physics

3 == New Physics !!!