

Prospects of Baryon Physics with PANDA at FAIR

Karin Schönning Workshop on Baryon Production at BESIII Hefei, China, September 14-16 2019

Outline

- Introduction
- Nucleon structure
- Hyperons
- PANDA at FAIR
- Nucleon Structure with PANDA
- Hyperon Physics with PANDA
- Summary

Many challenges in modern physics concern the **nucleon**:

- Abundance
- Mass
- Spin*
- Inner structure**
- Radius***

*C. A. Aidala *et al.,* RMP 85 (2013) 655-691. ** G. A. Miller, PRL 99 (2007) 112001. ***R. Pohl, *Nature* 466 (2010)7303, 213-216.

Many challenges in modern physics concern the **nucleon**:

IG BANG SCAL

Seems to be a big difference

- Abundance Standard Model and beyond
- Mass
- Spin*
- Inner structure**
- Radius***

*C. A. Aidala *et al.,* RMP 85 (2013) 655-691. ** G. A. Miller, PRL 99 (2007) 112001. ***R. Pohl, *Nature* 466 (2010)7303, 213-216.

4

Many challenges in modern physics concern the **nucleon**:

– Abundance – Mass BIG BANG SCAL Non-perturbative – Spin* QCD Inner structure** Seems to be a big difference – Radius*** *C. A. Aidala *et al.*, RMP 85 (2013) 655-691. ** G. A. Miller, PRL 99 (2007) 112001. 5 ***R. Pohl, Nature 466 (2010)7303, 213-216.

Many challenges in modern physics concern the **nucleon**:

- Abundance
- Mass
- Spin*
- Inner structure**

– Radius Solved? ****

*C. A. Aidala *et al.*, RMP 85 (2013) 655-691. ** G. A. Miller, PRL 99 (2007) 112001. ***R. Pohl, Nature 466 (2010)7303, 213-216. **** N. Bezginov et al., Science (2019) 365, 6457, 1007-1012

Approaches

When you don't understand a system, you can*

- Scatter on it
- Excite it
- Replace one of the building blocks

*C. Granados *et al.*, EPJA 53 (2017) 117⁷

Electromagnetic Structure

Let's first scatter!

Can measure *e.g.* EM Form Factors!

- Electromagnetic structure observable:
 Lattice QCD, ChPT, VDM...
- Measured in interactions hadron virtual photon γ^* .
- Quantify deviation from point-like case

= depend on q^2 of γ^* .

Space-like vs. time-like FF's

Space-like vs. time-like FF's

Electromagnetic Form Factors

- Space-like Sachs FFs G_E and G_M .
 - In Breit frame: G_E and G_M Fourier transforms of
 charge- and magnetization
 density.

Hyperons

What happens if we replace one of the light quarks in the proton with one - or many - heavier quark(s)?

Hyperons

- Systems with strangeness
 - − Scale: $m_s \approx 100 \text{ MeV} \sim \Lambda_{\text{QCD}} \approx 200 \text{ MeV}$: Relevant degrees of freedom?
 - Probes QCD in the confinement domain.
- Systems with charm
 - Scale: $m_c \approx 1300$ MeV: Quarks and gluons more relevant.
 - Probes QCD just below pQCD.

Hyperons

Traceable spin:

Polarization experimentally accessible by the weak, parity violating decay:

Example: $\Lambda \rightarrow p\pi^-$ decay $I(\cos\theta_p) = N(1+\alpha P_A \cos\theta_p)$ P_A : polarisation α = asymmetry parameter

- Precise tracking
- PID
- Calorimetry

- Modular design
- Time-based data acquisition with software trigger 17

Advantages of PANDA

- Measured cross sections of ground-state hyperons in $\bar{p}p \rightarrow \bar{Y}Y$ 1-100 µb*.
- Excited hyperon cross sections should to be similar to those of ground-states**.

→ Large expected production rates!

* Mainly PS185 @ LEAR. Review by E. Klempt *et al.,* Phys. Rept. 368 (2002) 119-316 **V. Flaminio *et al.,* CERN-HERA 84-01

Advantages of PANDA

Antipartile – particle pair production:

- Two-body processes
 → well-defined kinematics.
- Symmetric particle-antiparticle final state
 → controllable systematics.

Advantages of PANDA

Near 4π detectors \rightarrow exclusive measurements:

- Larger reconstruction efficiency.
- Smaller reconstruction bias.

Nucleon Electromagnetic Form Factors

Nucleon Electromagnetic Form Factors

World data in TL region:

- Precision approaching SL region.
- Separation of G_E and G_M at low q^2 .
- Oscillating effective form factor.

K. Zhu, Proc. from $\varphi 2\Psi 2019$, EPJConf. **212**, 07001 (2019) + references therein.

Nucleon EMFFs with PANDA

- Possible to study EMFFs in $\bar{p}p \rightarrow e^+e^-$ and $\bar{p}p \rightarrow \mu^+\mu^-$
 - First measurements of $\bar{p}p \rightarrow \mu^+\mu^-$.
 - Enables test of lepton universality.
- Good precision of $R = |G_E/G_M|$ already at $L = 0.1 f b^{-1}$ (Phase 1)

Nucleon EMFFs with PANDA

- Unprecedented precision for $L = 2 f b^{-1}$ of $R = |G_E/G_M|$ at medium q^2 .
- Access to high *q*² region.

 $\mu^+\mu^-$: I. Zimmerman *et al.*, Proc. from WE-Heraeus Seminar on Baryon Form Factors (2018) e^+e^- : EPJA 52 (2016) No. 10, 325.

Nucleon EMFFs with PANDA

"Unphysical" or off-shell region accessible in $\bar{p}p \rightarrow \pi^0 e^+ e^-$

- Possible according to preliminary simulation studies*, new underway.
- $\bar{p}p \rightarrow \pi^0 \gamma$ at q^2 , measurable with PANDA, constrain theory models **.
- Further theory development needed.

*J. Boucher, PhD Thesis, U. Paris-Sud XI Orsay and JGU Mainz (2011) **M.P. Rekalo *et al.*, JNP 1 (1965) 760; A. Z. Dubnickova *et al.*, ZPC 70 (1996) 473-481; C. Adamuscin *et al.*, PRC 75 (2007) 045205.

Hard Structure Observables

During Phase 3:

- Generalized Distribution Amplitudes (GDAs)
- Transverse Momentum Dependent Parton Distributions (TMD-PDFs)
- Transition Distribution Amplitudes (TDAs)*

* EPJA 51 (2015) No. 8, 107.

HYPERON PHYSICS IN PANDA

Hyperon production

Strong production dynamics

- Relevant degrees of freedom?
- Strange *versus* charm sector?
- Role of spin?

Hyperon production

- Mainly single-strange data.
- Scarce data bank above 4 GeV.
- No data on Ω nor Λ_c .

T. Johansson, AIP Conf. Proc. of LEAP 2003, p. 95.

Hyperon production prospects with PANDA

New simulation studies of single- and double-strange hyperons*:

- Exclusive measurements of $- \bar{p}p \rightarrow \bar{\Lambda}\Lambda, \Lambda \rightarrow p\pi^{-}, \bar{\Lambda} \rightarrow \bar{p}\pi^{+}.$ * By W. Ikegami-Andersson (talk at FAIRNESS 2019) and G. Perez Andrade (Master Thesis, Uppsala 2019)
 - $\ \bar{p}p \to \bar{\Sigma}^0 \Lambda, \Lambda \to p\pi^-, \bar{\Sigma}^0 \to \bar{\Lambda}\gamma, \bar{\Lambda} \to \bar{p}\pi^+.$
 - $\bar{p}p \to \bar{\Xi}^+ \Xi^-, \Xi^- \to \Lambda \pi^-, \Lambda \to p\pi^-, \bar{\Xi}^+ \to \bar{\Lambda} \pi^+, \bar{\Lambda} \to \bar{p}\pi^+.$
- Ideal pattern recognition and PID
- Background using Dual Parton Model

$p_{beam} \left(\mathbf{GeV/c} \right)$	Reaction	σ (μb)	ε (%)	Rate @ 10 ³¹ cm ⁻² s ⁻¹	S/B	Events /day
1.64	$\bar{p}p ightarrow \bar{\Lambda}\Lambda$	64.0	16.0	44 S ⁻¹	114	3.8·10 ⁶
1.77	$\bar{p}p \to \bar{\Sigma}^0 \Lambda$	10.9	5.3	2.4 S ⁻¹	>11**	207 000
6.0	$\bar{p}p \to \bar{\Sigma}^0 \Lambda$	20	6.1	5.0 S ⁻¹	21	432 000
4.6	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~1	8.2	0.3-1	274	26000
7.0	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~0.3	7.9	0.1-1	65	8600
						** 90% C.L

Hyperon production prospects with PANDA

New simulation studies of single- and double-strange hyperons*:

- Exclusive measurements of $-\bar{p}p \rightarrow \bar{\Lambda}\Lambda, \Lambda \rightarrow p\pi^{-}, \bar{\Lambda} \rightarrow \bar{p}\pi^{+}.$ $-\bar{p}p \rightarrow \bar{\Sigma}^{0}\Lambda, \Lambda \rightarrow p\pi^{-}, \bar{\Sigma}^{0} \rightarrow \bar{\Lambda}\gamma, \bar{\Lambda} \rightarrow \bar{p}\pi^{+}.$ * By W. Ikegami-Andersson (talk at FAIRNESS 2019) and G. Perez Andrade (Master Thesis, Uppsala 2019)
 - $\bar{p}p \to \bar{\Xi}^+ \Xi^-, \Xi^- \to \Lambda \pi^-, \Lambda \to p\pi^-, \bar{\Xi}^+ \to \bar{\Lambda}\pi^+, \bar{\Lambda} \to \bar{p}\pi^+.$
- Ideal pattern recognition and PID
- Background using Dual Parton Model

$p_{beam} \left(\text{GeV/c} \right)$	Reaction	σ (μb)	ε (%)	Rate @ 10 ³¹ cm ⁻² s ⁻¹	S/B	Events /day
1.64	$\bar{p}p ightarrow \bar{\Lambda}\Lambda$	64.0	16.0	44 S ⁻¹	114	3.8·10 ⁶
1.77	$\bar{p}p \rightarrow \bar{\Sigma}^0 \Lambda$	Hyperon factory already during Phase 1!			>11**	207 000
6.0	$\bar{p}p \to \bar{\Sigma}^0 \Lambda$				21	432 000
4.6	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~1	8.2	0.3-1	274	26000
7.0	$\bar{p}p \to \bar{\Xi}^+ \Xi^-$	~0.3	7.9	0.1-1	65	8600
						** 90% C.L.

HYPERON TOPICS IN PANDA

Hyperon Spectroscopy

How do quarks form baryons?

- Forces?
- Degrees of freedom?

Symmetric quark model

Quark - diquark

Molecule / hadronic d.o.f.

Hyperon spectroscopy

How do the puzzles of the light- and single strange baryon spectrum carry over to the multi-strange sector?

- Light baryon spectrum*:
 - "Missing" states
 - Parity pattern:++- (exp.) +-+ (QM)
- Single strange spectrum:
 - "Missing" states
 - The unbearable
 lightness of Λ(1405)

*EPJA 48 (2012) 127, EPJA 10 (2001) 395

Multi-strange hyperon spectrum

- Ξ^* : Few excited states found, only one with ****
 - Spin and parity only determined for two excited states.
- Ω^* : Two excited states listed, none with ****
 - No spin or parity measurement
- Ground-state Ξ and Ω : Parity not measured.
- Ground-state Ω :

No model-Status as seen in Overall independent J^P Particle $\Xi\pi$ ΛK ΣK Other channels $\Xi(1530)\pi$ status $\Xi(1318)$ 1/2 +Decays weakly **** spin $\Xi(1530)$ 3/2+**** **** $\Xi(1620)$ * measurement. $\Xi(1690)$ *** *** ** $\Xi(1820)$ 3/2 -*** ** *** **** $\Xi(1950)$ *** ** ** × $\Xi(2030)$ *** ** *** $\Xi(2120)$ PDG 2018 $\Xi(2250)$ 3-body decays ** $\Xi(2370)$ 3-body decays ** $\Xi(2500)$ 3-body decays * * *

Feasibility study of $\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^{*-}$

- $\bar{p}p \rightarrow \bar{\Xi}^+ \Lambda K^- + c.c.$
 - ΛK^{-} from $\Xi^{*-}(1690)$, $\Xi^{*-}(1820)$ or continuum.
- Simplified PANDA MC framework
- $p_{beam} = 4.6 \text{ GeV/c}$
- Assume $\sigma = 1 \ \mu b$ and $10^{31} \ cm^{-2}s^{-1}$ luminosity
- Results:
 - **-** S/B ~ 30
 - ~18000 exclusive $\overline{\Xi}^+ \Xi^{*-}$ events / day
- \bar{p} $\bar{E}^{-}(1820)$ \bar{K}^{-} $\bar{\pi}^{+}_{1}$ $\bar{\pi}^{+}_{2}$

J. Pütz, talk at NSTAR³⁶2019

HYPERON TOPICS IN PANDA

Hyperon Structure

Hyperon structure

- Transition form factors accessible from Dalitz decays
- Possible in case of *e.g.* Σ^{o} and $\Lambda(1520)$
- **Challenge:** Small predicted BR's $(10^{-3} 10^{-6})$
- **Good news:** Large hyperon production cross sections.

Hyperon Structure

HYPERON TOPICS IN PANDA

Weak two-body decays

- Parity violating and parity conserving decay amplitudes. \rightarrow interference quantified by decay parameters α , β , γ
 - $\rightarrow \alpha$ accessible in decay
 - $\rightarrow \beta$, γ accessible in sequential decays
- CP symmetry: $\alpha_{-}(\Lambda) = -\alpha_{+}(\overline{\Lambda})$ $\beta = -\overline{\beta}$ etc.
- Clean CP observable defined by *e.g.*:

$$A = \frac{\alpha_- + \alpha_+}{\alpha_- - \alpha_+}$$

Hyperon Decays

- A_{CP} predictions from SM ~ 10⁻⁴ 10^{-5*}, ChPT 10^{-5**}, SuSy ~10^{-3***}.
- Most precise measurement of $A_{\Xi\Lambda}$ from HyperCP ~10⁻⁴.
 - Sample of ~ $4 \cdot 10^7 \,\overline{\Xi}^+$, $1 \cdot 10^8 \,\Xi^-$.
- Most precise measurement of A_{Λ} from BESIII: $A_{\Lambda} \sim \sim 10^{-2}$
 - Sample of > $e^+e^- \rightarrow J/\Psi \rightarrow \Lambda \overline{\Lambda} + 10^5$ events.

43

Hyperon Decays in PANDA

Phase 3: HESR design lumiosity = huge $\bar{p}p \rightarrow \bar{Y}Y$ count rates.

p _{beam} (GeV/c)	Reaction	σ (μb)	ε (%)	Rate @ 2•10 ³² cm ⁻² s ⁻¹	S/B	Events /day
1.64	$\bar{p}p ightarrow \bar{\Lambda}\Lambda$	64.0	16.0	880 s ⁻¹	114	$7.6 \cdot 10^7$
1.77	$\bar{p}p ightarrow \bar{\Sigma}^0 \Lambda$	10.9	5.3	48 s ⁻¹	>11**	4.1· 10 ⁶
6.0	$\bar{p}p \to \bar{\Sigma}^0 \Lambda$	20	6.1	100 S ⁻¹	21	8.6·10 ⁶
4.6	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~1	8.2	6 -1	274	520 000
7.0	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~0.3	7.9	2 -1	65	173 000

By W. Ikegami-Andersson (talk at FAIRNESS 2019) and G. Perez Andrade (Master Thesis, Uppsala 2019)

Baryon physics with PANDA

- Phase 1:
 - Nucleon EMFFs
 - Hyperon production and spin observables
 - Single- and double strange hyperon spectroscopy
- Phase 2:
 - Nucleon EMFFs
 - Triple-strange hyperon spectroscopy
 - Hyperon structure in Dalitz decays
- Phase 3:
 - Hard nucleon structure
 - Search for CP violating hyperon decays

Summary

- Many fundamental questions manifest themselves in the nucleon.
- Strategy 1: Scatter on it!
- Strategy 2: replace one of the building blocks \rightarrow hyperons!
- Hyperons of different flavour probe different scales of the strong interaction.
- Self-analyzing decay → help pinpointing the role of spin.
- PANDA will be a strangeness factory already in Phase One
 → Rich hyperon physics programme!

Thanks to:

Jennifer Pütz, Walter Ikegami-Andersson, Gabriela Perez Andrade, Iris Zimmermann, Tord Johansson, Michael Papenbrock,, Alaa Dbeyssi, Jenny Regina and Adeel Akram

UPPSALA UNIVERSITET

Backup

Time-like form factors

- Time-like FF's are complex \rightarrow phase $\Delta \Phi(q^2)$ between G_E and G_M .
 - Gives polarized final state*.
 - Straight-forward to access for hyperons, but not nucleons.
- Analyticity requires TL FF ~ SL FF as $|q^2| \rightarrow \infty *, ***$
 - For nucleons, we can measure and compare TL FF and SL FF
 - For hyperons, we can only measure TL FFs, but TL FF = SL FF when $\Delta \Phi(q^2) \rightarrow o$ for $|q^2| \rightarrow \infty$.

*Nuovo Cim. A **109** (1996) 241. ** Theor. Mat. Fiz. **15** (1973) 332. *** Phys. Rev. Lett. 31 (1973) 1153.

49

Facilities world-wide

- Previous, ongoing and future activity in N*, ∆ and singlestrange spectroscopy (*e.g.* CLAS @ JLAB, CBELSA/TAPS, BGO-OD)
- Charmed hyperons often by-product at b-factories (BaBar, Belle/Belle-II, CLEO, LHCb)

• Gap to fill in the multi-strange sector!

HYPERON TOPICS IN PANDA

CP violation in hyperon decays

- CP violation in SM insufficient to explain matter-antimatter asymmetry.
- CP violation beyond SM never observed for baryons.
- The $\overline{p}p \rightarrow \overline{Y}Y$ process suitable for CP measurements:
 - Clean, no mixing.
 - Symmetric particle antiparticle conditions.

• If CP valid,
$$\alpha = -\overline{\alpha}$$
 i.e. $A_{CP} = \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}} = 0.0000 \dots$

Spin analyses in $\bar{p}p$

For $\overline{p}p \rightarrow \overline{Y}Y \rightarrow \overline{B}MB\overline{M}$, the angular distribution at each θ_Y is given by

$$I(\theta_{i},\theta_{j}) = N[1 + \bar{\alpha}\sum_{i}P_{i}^{\bar{Y}}\cos\theta_{i} + \alpha\sum_{j}P_{j}^{Y}\cos\theta_{i} + \alpha\bar{\alpha}\sum_{i,j}C_{ij}\cos\theta_{i}\cos\theta_{i}]$$

where
$$P_i^{\overline{Y}} = P_i^{\overline{Y}}(\cos\theta_Y)$$
, $P_j^Y = P_j^Y(\cos\theta_Y)$, and $C_{ij} = C_{ij}(\cos\theta_Y)$.

In the past, the dependencies on $cos\theta_Y$ was studied, but only in one variable at a time.

- Gives rise to systematics from model dependent efficiencies
- Loss of information for *e.g.* PWA.

	\bar{B} $\tilde{y}_{\bar{Y}}$ $\bar{\theta}_{y}$
Ŷv	$\hat{x}_{\bar{Y}}$ \hat{z}
$\bar{p} = \theta_y B$	$\theta_{cm} p$

e^+e^- versus $\bar{p}p$

Q: Many θ_{Y} – dependent production parameters in $\overline{p}p$ case. \rightarrow how could that even be feasible?

A: Because the $\overline{Y}Y$ reconstruction rate is 2 orders of magnitide larger at PANDA compared to current e^+e^- experiments - already during the first phase!

The $\overline{Y}Y$ interaction is important to understand:

- Hyperon structure, studied in $e^+e^- \rightarrow \overline{Y}Y$, predicted using potential models obtained with $\overline{p}p \rightarrow \overline{Y}Y$ data.*
- Spin observables sensitive to $\overline{Y}Y$ potential.
- New data from BaBar** and BESIII***.

*Haidenbauer *et al.*,PLB 761(2016) 456 **BaBar: PRD 76 (2007) 092006 ***BES III: Talk by C. Li, BEACH2018

The Ω hyperon is more complicated.

- Spin $\frac{1}{2}$: **3** polarisation parameters: r_{-1}^{1} , r_{0}^{1} and r_{1}^{1} (P_x, P_y and P_z)
- Spin $\frac{3}{2}$: **15** polarisation parameters: r_{-1}^{1} , r_{0}^{1} , r_{1}^{1} , r_{-2}^{2} , r_{-1}^{2} , r_{0}^{2} , r_{1}^{2} , r_{2}^{2} , r_{-3}^{3} , $\frac{2}{r_{-2}^{3}}$, r_{-1}^{3} , r_{0}^{3} , r_{1}^{3} , r_{2}^{3} and r_{3}^{3} .

Spin observables for spin $\frac{3}{2}$ hyperons

Density matrix:

4

- Spin $\frac{3}{2}$: **15** polarisation parameters: $r_{.1}^{1}$, r_{0}^{1} , r_{1}^{1} , $r_{.2}^{2}$, $r_{.1}^{2}$, r_{0}^{2} , r_{1}^{2} , r_{2}^{2} , $r_{.3}^{2}$, $r_{.3}^{3}$, $r_{.2}^{3}$, $r_{.1}^{3}$, r_{0}^{3} , r_{1}^{3} , r_{2}^{3} and r_{3}^{3} .
- Strong production process → parity is conserved → 8 polarisation parameters equal 0.
- Resulting density matrix $\rho\left(\frac{3}{2}\right)$:*

$$\begin{bmatrix} 1+\sqrt{3}r_{0}^{2} & -i\frac{3}{\sqrt{5}}r_{-1}^{1}+\sqrt{3}r_{1}^{2}-i\sqrt{\frac{6}{5}}r_{-1}^{3} & \sqrt{3}r_{2}^{2}-i\sqrt{3}r_{-2}^{3} & -i\sqrt{6}r_{-3}^{3} \\ i\sqrt{\frac{6}{5}}r_{-1}^{3}+i\frac{3}{\sqrt{5}}r_{-1}^{1}+\sqrt{3}r_{1}^{2} & 1-\sqrt{3}r_{0}^{2} & -i2\sqrt{\frac{3}{5}}r_{-1}^{1}+i3\sqrt{\frac{2}{5}}r_{-1}^{3} & \sqrt{3}r_{2}^{2}+i\sqrt{3}r_{-2}^{3} \\ \sqrt{3}r_{2}^{2}+i\sqrt{3}r_{-2}^{3} & i2\sqrt{\frac{3}{5}}r_{-1}^{1}-i3\sqrt{\frac{2}{5}}r_{-1}^{3} & 1-\sqrt{3}r_{0}^{2} & -i\frac{3}{\sqrt{5}}r_{-1}^{1}+\sqrt{3}r_{1}^{2}-i\sqrt{\frac{6}{5}}r_{-1}^{3} \\ i\sqrt{6}r_{-3}^{3} & \sqrt{3}r_{2}^{2}-i\sqrt{3}r_{-2}^{3} & i\frac{3}{\sqrt{5}}r_{-1}^{1}+\sqrt{3}r_{1}^{2}+i\sqrt{\frac{6}{5}}r_{-1}^{3} & 1+\sqrt{3}r_{0}^{2} \\ \end{bmatrix}$$

* Erik Thomé, PhD thesis, Uppsala University (2012)

First, let's focus on $\Omega^- \to \Lambda K^-$, *i.e.* $\frac{3}{2} \to \frac{1}{2} 0$.

Weak decay: parity conserving *P*-state and parity violating *D*-state allowed.

Amplitudes: T_P and T_D .

Using the *method of moments*, the **3** polarisation parameters r_2^2 , r_1^2 , r_0^2 can be extracted from the angular distribution of the Λ :*

*Elisabetta Perotti, FAIRNESS (2017)

UPPSALA UNIVERSITET

Spin observables for spin $\frac{3}{2}$ hyperons

π

 $\langle \sin \phi_{\Lambda} \cos \phi_{\rm p} \rangle$ Four polarisation parameters can be $= \int I(\theta_{\Lambda}, \phi_{\Lambda}, \theta_{\rm p}, \phi_{\rm p}) \times \sin \phi_{\Lambda} \cos \phi_{\rm p} d\Omega_{\Lambda} d\Omega_{\rm p} =$ determined from the joint angular distributions of the Λ and the proton *: $= -\frac{3\pi^2 \alpha_\Lambda \gamma_\Lambda r_{-2}^3}{1024}$ $\langle (3\cos\theta_{\Lambda}-1)\sin\phi_{\rm p} \rangle$ $= \int I(\theta_{\Lambda}, \phi_{\Lambda}, \theta_{\rm p}, \phi_{\rm p}) \times (3\cos\theta_{\Lambda} - 1)\sin\phi_{\rm p}d\Omega_{\Lambda}\epsilon$ $= -\frac{\pi \alpha_{\Lambda} \gamma r_{-1}^3}{4 \sqrt{10}}$ $\langle \sin \phi_{\rm p} \rangle$ $= \int I(\theta_{\Lambda}, \phi_{\Lambda}, \theta_{\rm p}, \phi_{\rm p}) \times \sin \phi_{\rm p} d\Omega_{\Lambda} d\Omega_{\rm p} =$ Ω $=\frac{\pi\alpha_{\Lambda}\gamma_{\Omega}}{160}\left(-4\sqrt{16r_{-1}^{1}}+\sqrt{10r_{-1}^{3}}\right)$ K $\langle \sin \phi_{\Lambda} \cos \phi_{\Lambda} \cos \phi_{\rm p} \rangle$ $= \int I(\theta_{\Lambda}, \phi_{\Lambda}, \theta_{\rm p}, \phi_{\rm p}) \times \sin \phi_{\Lambda} \cos \phi_{\Lambda} \cos \phi_{\rm p} d\Omega_{\Lambda} d\Omega_{\rm p} =$ $=\frac{\pi\alpha_{\Lambda}\gamma_{\Omega}}{c_{AO}}\left(5\sqrt{6r_{-3}^3}+4\sqrt{16r_{-1}^1}\right)$ *Erik Thomé, Ph. D. Thesis and Elisabetta Perotti, FAIRNESS

Anti-hyperons in nuclei

- Antibaryon potential in nuclei:
 - Discrepancy theory/data for antiprotons in nuclei.
 - (Anti-) strangeness sector experimentally unknown.*
- Advantage of PANDA:
 - Large production cross sections for $\overline{Y}Y$.

