

* 中國科學院高能物理研究所 Institute of High Energy Physics Chinese Academy of Sciences

BESIIL上粲介子纯轻衰变研究

王腾蛟 (wangtj@mail.nankai.edu.cn)

南开大学、中国科学院高能物理研究所

@BESIII粲强子物理研讨会,中国科学技术大学,2023年4月9日

物理动机

 在SM中,CKM矩阵元描述顶夸克和底夸克通过W玻色子发生弱相互作用的耦合强度, 是待定的参数,只能由实验来测量

$$V_{CKM} = \begin{pmatrix} V_{ud} V_{us} V_{ub} \\ V_{cd} V_{cs} V_{cb} \\ V_{td} V_{ts} V_{tb} \end{pmatrix} \begin{pmatrix} d \\ b \\ s \end{pmatrix}$$

$$\underbrace{\overset{\circ}{4} \text{ Im} \overset{\circ}{4}}_{I} \underbrace{\overset{\circ}{4}}_{V_{eq}} \underbrace{\overset{\circ}{4}}_{V_{eq$$

2

● 研究夸克强相互作用力和弱相互作用力的理想衰变道

$$\Gamma(D_{(s)}^{+} \to \ell^{+} \nu_{\ell}) = \frac{G_{F}^{2}}{8\pi} |V_{cd(s)}|^{2} f_{D_{(s)}^{+}}^{2} m_{\ell}^{2} m_{D_{(s)}^{+}}^{2} \left(1 - \frac{m_{\ell}^{2}}{m_{D_{(s)}^{+}}^{2}}\right)^{2}$$

测量 f_{D} 检验LQCD; 精确测量 $|V_{cs}|$ 和 $|V_{cd}|$;还可检验轻子普适性,寻找新物理迹象

BEPC-II和BES-III

北京谱仪-III:

- BES-III是大型通用探测器,其原理主要采用现代粒子探测技术。
- 用于分析和记录质心能 量对撞产生的末态粒子 的信息。
- MUC

 超导磁铁(1 Tesla)

 电磁量能器(EMC):

 σ_E

 E

 = 2.5% @1 GeV (桶部)

 σ_E

 = 5% @1 GeV (端盖)

 飞行时间计数器(TOF):

 $\sigma_t = 68 \text{ ps (桶部)}$
 $\sigma_t = 60 \text{ ps (端盖2015)}$

 主漂移室(MDC):

 $\sigma_{\gamma\phi} = 130 \ \mu m \text{ (single wire)}$
 $\sigma_{p_t}/p_t = 0.5\%$ @ 1 GeV

数据样本及双标记方法

双标记方法

- 粲介子*D*⁺*D*⁻, *D*⁺_s*D*^{*-}成对产生,可以
 选择双标记方法;
- 得到较为干净的背景,减小系统误差; ● 分支比:

 $D^+ \rightarrow \ell^+ \nu_\ell : \ell = \mu^+$

 $D^+ \rightarrow \ell^+ \nu_\ell : \ell = \tau^+$

数据:2.93 fb⁻¹ ψ (3770) @3.773 GeV 单标记: 拟合**D**⁻事例

PRL 123, 211802 (2019)

联合拟合: μ^+ –like(左) π^+ –like(右)

根据来自PDG2022的G_F, m_D, m_{τ}, m_{μ}, 输入|V_{cd}|, f_D

参数	输入	来源
f _D	212.0±0.7 MeV	LQCD
V _{cd}	0.22500 ± 0.00067	CKMfitter
$m_{ au}$	1776.86±0.12 MeV	PDG2022
m_{μ}	105.6483755±0.0000023 MeV	PDG2022
m_D	1869.66±0.005 MeV	PDG2022

 $D_{S}^{+} \rightarrow \ell^{+} \nu_{\ell}$

数据1:7.33 fb⁻¹ @ 4.128 - 4.226 GeV 数据2:482 pb⁻¹ @ 4.009 GeV 14个单标记道@ 4.128 - 4.226 GeV : *N*_{ST}~0.89 M

信号侧重建 $X(X = e, \pi^+, \pi^+, \pi^0, \mu^+)$, 丢失掉的中微子的的运动学信息:

$$M_{\rm miss}^2 = E_{\rm miss}^2 - |\vec{p}_{\rm miss}|^2$$
$$E_{\rm miss}^2 = E_{\rm cm} - \sqrt{|\vec{p}_{\rm tag}|^2 + m_{Ds}^2 - E_{\gamma(\pi^0)} - E_X}$$
$$\vec{p}_{\rm miss} = -\vec{p}_{\rm tag} - \vec{p}_{\gamma(\pi^0)} - \vec{p}_X$$

 $D^+_{s} \rightarrow \ell^+ \nu_{\ell}$: $\ell = \mu^+, \tau^+$

PRD 94, 072004 (2016)

衰变链: $e^+e^- \rightarrow D_s^+D_s^- \rightarrow D_s^+D_s^-$

 $\mathcal{B}(D_s^+ o \mu^+
u_\mu) = (0.517 \pm 0.075 \pm 0.021)\%$ $\mathcal{B}(D_s^+ o \tau^+
u_ au) = (3.28 \pm 1.83 \pm 0.37)\%$

 $D_{s}^{+} \rightarrow \ell^{+} \nu_{\ell} : \ell = \mu^{+}$

数据:3.19 fb⁻¹ @ 4.178 GeV $e^+e^- \rightarrow D_s^+D_s^{*-} \rightarrow \gamma(\pi^0)D_s^+D_s^-$ PRL 122, 071802 (2019) 双标拟合:误差棒为数据,直方图为蒙卡模拟的背景

$$\begin{split} N_{\rm ST} &= 388660 \pm 2592 \\ N_{D_s^+ \to \mu^+ \nu} &= 1135.9 \pm 33.1 \\ \mathcal{B}_{D_s^+ \to \mu^+ \nu_\mu} &= (5.49 \pm 0.16_{\rm stat} \pm 0.15_{\rm syst}) \times 10^{-3} \\ f_{D_s^+} |V_{cs}| &= 246.2 \pm 3.6_{\rm stat} \pm 3.5_{\rm syst} \text{ MeV} \\ f_{D_s^+} &= 252.9 \pm 3.7_{\rm stat} \pm 3.6_{\rm syst} \text{ MeV} \\ |V_{cs}| &= 0.985 \pm 0.014_{\rm stat} \pm 0.014_{\rm syst}. \end{split}$$

 $D^+_s \to \ell^+ \nu_\ell \colon \ell = \mu^+, \tau^+ \to \pi^+ \overline{\nu}$

数据:6.32 fb⁻¹ @ 4.178 - 4226 GeV

PRD 104, 05209(2021)

 $D^+_S o \ell^+
u_\ell$: $\ell = au^+, au^+ o \pi^+ \pi^0 \overline{
u}$

PRD 104, 032001(2021)

 $N_{D_s^+ \to \tau^+ \nu} = 1745 \pm 84$

 $\begin{aligned} \mathcal{B}_{D_s^+ \to \tau^+ \nu_\tau} &= (5.29 \pm 0.25_{\text{stat}} \pm 0.20_{\text{syst}})\% \\ f_{D_s^+} |V_{cs}| &= (244.8 \pm 5.8_{\text{stat}} \pm 4.8_{\text{syst}}) \text{ MeV} \\ f_{D_s^+} &= (251.6 \pm 5.9_{\text{stat}} \pm 4.9_{\text{syst}}) \text{ MeV} \\ |V_{cs}| &= 0.980 \pm 0.023_{\text{stat}} \pm 0.019_{\text{syst}} \end{aligned}$

多能量点测量;
分支比和之前结 果相符;
|V_{cs}|精度: ~3.1 %

 $D_{S}^{+} \rightarrow \ell^{+} \nu_{\ell} : \ell = \tau^{+}, \tau^{+} \rightarrow e^{+} \nu_{\rho} \overline{\nu}_{\tau}$

数据:6.32 fb⁻¹ @ 4.178 - 4.226 GeV

 $E_{\rm extra}^{\rm tot}$: the total energy of the good EMC showers, excluding FSR and those associated in ST

信号:
$$E_{extra}^{tot} < 0.4 \text{ GeV}$$

背景: $E_{extra}^{tot} > 0.6 \text{ GeV}$

$$\begin{split} \mathcal{B}_{D_s^+ \to \tau^+ \nu_\tau} &= (5.27 \pm 0.10 \pm 0.12) \times 10^{-2} \\ f_{D_s^+} |V_{cs}| &= (244.4 \pm 2.3 \pm 2.9) \text{ MeV.} \\ f_{D_s^+} &= (251.1 \pm 2.4 \pm 3.0) \text{ MeV.} \\ |V_{cs}| &= 0.978 \pm 0.009 \pm 0.012 \\ \hline \bullet \quad 迄今为止 |V_{cs}| 精度最高: ~1.5\% \end{split}$$

 $D_{S}^{+}
ightarrow \ell^{+}
u_{\ell}$: $\ell = \tau^{+}, \tau^{+}
ightarrow \pi^{+} \overline{
u}$

数据:7.33 @ 4.128-4.226 GeV

arXiv:2303.12600

 $D_{S}^{+} \rightarrow \ell^{+} \nu_{\ell} : \ell = \tau^{+}, \tau^{+} \rightarrow \mu^{+} \nu_{\mu} \overline{\nu}_{\tau}$

数据:7.33 fb⁻¹ @ 4.128 - 4.226 GeV

arXiv:2303.12468

根据来自PDG2022的G_F, m_D⁺, m_{τ}, m_{μ}, 输入|V_{cs}|, $f_{D_s^+}$

参数	输入	来源
$f_{D_s^+}$	249.9±0.5 MeV	LQCD
$ V_{cs} $	0.97346 ± 0.00016	CKM fitter
$m_{ au}$	1776.86±0.12 MeV	PDG2022
m_{μ}	105.6483755±0.0000023 MeV	PDG2022
$m_{D_{S}}$	1978.35 ±0.07 MeV	PDG2022

ETM(2+1+1)	PRD91(2015)054507	247.2±4.1	. ⊢• <mark>I</mark>
FMILC(2+1+1)	PRD98(2018)074512	249.9±0.4	+
FLAG21(2+1+1)	EPJC82(2022)869	249.9±0.5	•
HELAV21	PRD107(2023)052008	252 2+2 5	
CLEO	PRD79(2009)052002 . τ.ν	251 8+11 2+5 3	
CLEO	PRD80(2009)112004, τ [°] ν	257.0±11.2±5.5	· · · · · · · · · · · · · · · · · · ·
CLEO	PRD79(2009)052001. τν	277 1+17 5+4 0	
BaBar	PRD82(2010)091103. τ^{π} v	244 6+8 6+12 0	
Balla	ΙΗΕΡ09(2013)139. τ V	244.0±0.0±12.0 261 1±4 8±7 2	
DECILI A 492 fb-1	PRD94(2016)072004 . μγ	$201.1\pm4.0\pm7.2$ 245 5+17 8+5 1	
CLFO	PRD79(2009)052001 UV	256 7+10 2+4 0	
BaBar	PRD82(2010)091103. UV	264 9+8 4+7 6	
Balla	IHEP09(2013)139 UV	204.9±0.4±7.0 248 8±6 6±4 8	
DECILI 2 10 fb ⁻¹	PRI 122(2019)071802 UV	240.0±0.0±4.0 253.0+3.7+3.6	
BESHI 5.1910 RESHI 6.32 fb ⁻¹	PRD104(2021)052009. UV	233.0±3.7±3.0	Hell
DESIII 0.52 IU	ΠΩΠΟΤ(2021)022003, μ	247.0±3.0±3.7	
BESIII 6.32 fb ⁻¹	PRD104(2021)052009 , τ _π ν	249.7±6.0±4.2	<mark>⊪ ∙-</mark> ∦
BESIII 6.32 fb ⁻¹	PRD104(2021)032001 , τ _ρ ν	251.6±5.9±4.9	H <mark>+ +</mark> H
BESIII 6.32 fb ⁻¹	PRL127(2021)171801 , $\tau_{e}v$	251.1±2.4±3.0	H <mark>ell</mark>
BESIII 7.33 fb ⁻¹	arXiv:2303.12600 [hep-ex], $\tau_{\pi} v$	254.3±4.0±3.3	H <mark>.●</mark> H
BESIII 7.33 fb ⁻¹	arXiv:2303.12468 [hep-ex], τ _μ ν	252.7±3.8±2.6	Hel Contraction
BESIII	τν	252.1±1.7±2.0	Combined
0	100	200	300
$\mathbf{f}_{\mathbf{D}_{\mathbf{s}}^{+}}\left(\mathbf{MeV}\right)$			

CKMFitter	PTEP2022(2022)083C01	0.97349±0.00016	
HFLAV21	PRD107(2023)052008	0.9701±0.0081	•
CLEO	PRD79 (2009)052002, $\tau_e v$	0.981±0.044±0.021	HH I
CLEO	PRD80(2009)112004, τ _ρ ν	$1.001 {\pm} 0.052 {\pm} 0.019$	⊢•-I
CLEO	PRD79(2009)052001 , τ _π ν	1.079±0.068±0.016	H+H
BaBar	PRD82(2010)091103 , τ _{e,μ} ν	0.953±0.033±0.047	H <mark>e</mark> H
Belle	JHEP09(2013)139 , τ _{e,μ,π} ν	$1.017 {\pm} 0.019 {\pm} 0.028$	HeH
BESIII 0.482 fb ⁻¹	PRD94(2016)072004, μν	0.956±0.069±0.020	H 4 -1
CLEO	PRD79(2009)052001, μν	$1.000{\pm}0.040{\pm}0.016$	l <mark>+</mark> +I
BaBar	PRD82(2010)091103, μν	$1.032 \pm 0.033 \pm 0.029$	<mark>H+H</mark>
Belle	JHEP09(2013)139, μν	0.969±0.026±0.019	H <mark>e</mark> l
BESIII 3.19 fb ⁻¹	PRL122(2019)071802, μν	0.985±0.014±0.014	N
BESIII 6.32 fb ⁻¹	PRD104(2021)052009, μν	$0.973 {\pm} 0.012 {\pm} 0.015$	H <mark>e</mark> l
BESHI 6.32 fb ⁻¹	PRD104(2021)052009, τ _π ν	0.972±0.023±0.016	H e l
BESIII 6.32 fb ⁻¹	PRD104(2021)032001 , τ _ο ν	0.980±0.023±0.019	. e
BESHI 6.32 fb ⁻¹	PRL127(2021)171801, τ _e ν	0.978±0.009±0.012	H I
BESHI 7.33 fb ⁻¹	arXiv:2303.12600 [hep-ex], τ _π ν	0.991±0.015±0.013	M
BESHI 7.33 fb ⁻¹	arXiv:2303.12468 [hep-ex], τ _µ ν	0.984±0.015±0.010	. M
BESIII	τν	0.982±0.007±0.008	Combined
	-1 0		1
$ \mathbf{V}_{\mathbf{cs}} $			

展望: $D^+_{(s)} \rightarrow \ell^+ \nu_\ell$

① 数据: 8 fb⁻¹ @ 3.773 GeV

- 测量: $D^+ \rightarrow \mu^+ \boldsymbol{\nu}_{\mu}$
- 多标记道尝试
- 更准确的单标记道的产生子

	数据(fb ⁻¹)	精度(%)	状态
2010-2011	2.93	2.8	已发表
2021-2022	8	1.8	On going
2023-2024	20	1.0	?

- 测量: $D^+ \rightarrow \tau^+ \nu_{\tau}$
 - 多变量分析
 - 联合拟合

③ 数据: 7.33 fb⁻¹ @ 4.128 - 4.226 GeV

- 采用更大数据样本
- 测量: $D_s^+ \rightarrow \mu^+ \nu_{\mu}$
- 利用MUC信息
- 精度较大改善:~1.4%

④ 数据: 5.15 fb⁻¹ @ 4.237 - 4.440 GeV

- 不同衰变链: $e^+e^- \rightarrow D_s^{*+}D_s^{*-}$
- 测量: $D_s^+ \rightarrow \ell^+ \nu_\ell \ (\ell = \mu^+, \tau^+)$ • 华导上面面 协会认为
- 能量点更高,检验补充
- BF ($D_s^+ \rightarrow \mu^+ \nu_{\mu}$) 精度: ~8.5%
- BF ($D_s^+ \rightarrow \tau^+ \nu_{\tau}$) 精度: ~4.0%

- 精确测量 $|V_{cs}|$, $|V_{cd}|$ 和 $B(D^+_{(s)} \rightarrow \ell^+ \nu_\ell)$ 在更高精度下检验标准模型CKM矩阵幺正 性以及轻子普适性十分重要
- 通过BESIII采集的7.33 fb⁻¹ @4.128-4.226 GeV和2.93 fb⁻¹ @3.773 GeV数据样本对 纯轻过程 $D_s^+ \rightarrow \ell^+ \nu_\ell \Pi D^+ \rightarrow \ell^+ \nu_\ell (\ell = \mu^+, \tau^+)$ 分别进行分析,精确了测量 $|V_{cs}|$ $(\sim 1.5\%), |V_{cd}|(\sim 2.8\%)$ 。

进行中:

- 根据BESIII在3.773 GeV处发布的共 8 fb⁻¹ ψ (3770)数据, $|V_{cd}|$ 测量精度将从2.6% 提升至~1.8%; $D^+ \rightarrow \mu^+ \nu_\mu \pi D^+ \rightarrow \tau^+ \nu_\tau$
- 7.33 fb⁻¹ @ 4.128 4.226 GeV: $D_s^+ \to \mu^+ \nu_{\mu}$
- 5.15 fb⁻¹ @ 4.237 4.440 GeV: $D_s^+ \to \mu^+ \nu_{\mu} \pi D_s^+ \to \tau^+ \nu_{\tau}$

未来预期:

 在2024年, BESIII在3.773 GeV处将共拥有20 fb⁻¹ ψ(3770), |V_{cd}|测量精度进一步 提升至~1.0%

