

BESIII上 D->V 半轻衰变研究

张书磊 湖南大学

Email: zhangshulei@hnu.edu.cn

BESIII粲强子物理研讨会 2023年4月09日@合肥

⁰² BESIII 实验与分析技术

^{II3} c -> s 类型半轻衰变

[]4 c -> d 类型半轻衰变

2023/April/09

2023/April/09

- 测量强子化形状因子 → 检验 LQCD等QCD非微扰理论
- 测量CKM矩阵元素 $|V_{cs}|/|V_{cd}|$ → 检验 CKM 矩阵幺正性 (新物理)
- $\mathcal{B}(D_{(s)} \rightarrow X\mu^+\nu_{\mu})/\mathcal{B}(D_{(s)} \rightarrow Xe^+\nu_e) \rightarrow 检验轻子味道普适性 (新物理)$

X

- ▶ 对称型双环 e⁺e⁻ 对撞机
- ▶ 环周长: 240 m
- ▶ 设计亮度: 1×10³³cm⁻²s⁻¹ 实现时间: 2016年4月5日
- ▶ 质心系能量 *E_{cm}*: 2 5 GeV
- ▶ 束流夹角: 22 mrad

2023/April/09

BESIII 合作组

Wuhan University, Xinyang Normal University, YanTai University , YunNan University , Zhejiang University, Zhengzhou University

张书磊@BESIII

8

CLEO-c

- $\succ E_{cm}: 2-5 \text{ GeV}$
- ▶ 阈值附近产生粲介子对

- ▶ 不对称型 e⁺e⁻ 对撞机
- ➢ E_{cm}: 10.8 GeV
- ▶ bb 和 cc 衰变产生粲介子

实验组	数据大小	所在能区	时间
BESIII	$D^{+(0)}$: 2.93 fb ⁻¹ D_s^+ : 7.33 fb ⁻¹	3.773 GeV 4.128-4.223GeV	2010-2011 2013-2017
CLEO-c	$D^{+(0)}$: 0.82 fb ⁻¹ D_s^+ : 0.6 fb ⁻¹	3.770 GeV 4.170 GeV	至2008
BABAR	468 fb^{-1}	Y(4S)附近	至2008
Belle	976 fb ⁻¹	Y(4S)附近	至2010

分析技术:双标记方法

以 D_s 衰变为例(复杂情况)

分析技术:振幅分析—螺旋度振幅公式

$\Gamma(D_{(s)} \to V\ell^+ v_\ell) \propto \left| V_{cd(s)} \right|^2 \mathfrak{T}(A_1(q^2), A_2(q^2), V(q^2), \dots) dm^2 dq^2 dcos(\theta_h) dcos(\theta_\ell) d\chi$

V: ρ,ω,Κ*,φ 理论:Phys. Rev. **137**, B438(1965), Phys.Reive.D 46,5040(1992)

> 衰变强度 ℃ 可以包含 S, P, D 波过程的成分
> 不分bin的最大似然方法(基于 RooFit 框架来实现)
> 形状因子(单极点参数化,双极点参数化...)

分析技术:振幅分析—最大似然法

▶ 对负的log似然函数求极小:

$$NLL = -\sum_{i=1}^{N} \ln \frac{\omega(\xi_i, \eta)}{\sigma_s}$$

▶ 本底较低时可直接在NLL中扣除:

$$NLL = (-lnL_{data}) - (-lnL_{bkg})$$

> 本底较高时:
$$-\sum_{i=1}^{N} ln \left((1-f_b) \frac{\omega(\xi_i, \eta)}{\int d\xi_i \omega(\xi_i, \eta) \epsilon(\xi_i)} + f_b \frac{B_{\epsilon}(\xi_i)}{\int d\xi_i B_{\epsilon}(\xi_i) \epsilon(\xi_i)} \right)$$

1

分析技术:面临问题与困难

▶ 本底的问题

- ▶ 本底较高,尤其是缪子道
- ▶ 本底如何参数化
- ▶ 物理公式的问题
 - ➢ 轻子质量是否可以忽略 (e/μ)
 - ▶ 考虑轻子质量项的完整振幅公式(包含S, P和D波)

c -> s 类型半轻衰变: $D^+ ightarrow \overline{K}^{*0} e^+ v_e^+$

Phys. Rev. D 94, 032001(2016)

> 测量形状因子:

- $r_V = 1.411 \pm 0.058 \pm 0.007$,
- $r_2 = 0.788 \pm 0.042 \pm 0.008$

输入 $G_f, \tau_{D^+}, |V_{cs}|$ →

 $A_1(0) = 0.589 \pm 0.010 \pm 0.012$ (零宽度假设) $A_1(0) = 0.619 \pm 0.011 \pm 0.013$ (考虑宽度)

c -> s 类型半轻衰变: $D^0 o K^{*-}e^+v_e$

N_{sig} = 3112 ± 64 (本底水平: 0.6%)
 B(D⁰ → K̄⁰π⁺e⁺v_e)= (1.434 ± 0.029 ± 0.032)%
 f_{S-wave} = (5.51 ± 0.97 ± 0.62)%
 首次测量形状因子:

 $r_V = 1.46 \pm 0.07 \pm 0.02$,

 $r_2 = 0.67 \pm 0.06 \pm 0.01$

c -> s 类型半轻衰变到矢量介子末态

	衰变过程	实验/年份/信号数	分支比/形状因子/极化比例	BESIII研究现状	
		BESIII/2018/26	Y/N/N		
	$D_{*}^{+} \rightarrow \phi(K^{+}K^{-})e^{+}\nu_{*}$	CLEO/2015/207	Y/N/N	内审中@4.13~4.23GeV	
		BABAR/2008/25k	Y/Y/N		
		CLEO-II/1994/308	N/Y/Y		
D		BESIII/2018/22	Y/N/N		
	$D_s^+ \to \phi(K^+K^-)\mu^+\nu_\mu$	FOCUS/2004/793	N/Y/N	内审中@4.13~4.23GeV	
		E687/1994/90	N/Y/Y		
		BESIII/2016/18k	Y/Y/N		
	$D^+ \to \overline{K}^{*0}(K^-\pi^+)e^+\nu_e$	BABAR/2011/70k	Y/Y/N	\checkmark	
		CLEO/2010/5k	Y/Y/N		
	$D^+ \to \overline{K}^{*0}(K^-\pi^+)\mu^+\nu_\mu$	CLEO/2010/5k	Y/Y/N	进行中	
		FOCUS/2002/15k	N/Y/N		
	$D^+ \to \bar{K}^{*0}(\bar{K}^0\pi^0)e^+\nu_e$	Ν	N/N/N	进行中	
	$D^+ o \overline{K}^{*0} (\overline{K}^0 \pi^0) \mu^+ \nu_\mu$	Ν	N/N/N	进行中	
	$D^0 \to K^{*-}(K^-\pi^0)e^+\nu_e$	CLEO/2005/94	Y/N/N	进行中	
	$D^0 \to K^{*-}(K^-\pi^0)\mu^+\nu_\mu$	Ν	N/N/N	进行中	
	$D^0 \to K^{*-}(\overline{K}{}^0\pi^-)e^+\nu_e$	BESIII/2019/3k	Y/Y/N		
		CLEO/2005/125	Y/N/N	v	
2023/April/09	$D^0 \to K^{*-}(\overline{K}{}^0\pi^-)\mu^+\nu_\mu$	FOCUS/2005/175	Y/Y/N	进行中	

18

c -> d 类型半轻衰变: $D ightarrow ho e^+ v_e$

Phys. Rev. Lett. 122, 062001 (2019)

 $D^+ \rightarrow \rho^0 e^+ \nu_e$

 $D^+ \rightarrow \omega e^+ \nu_e$

 $D^+ \to f_0(500) e^+ \nu_e, f_0(500) \to \pi^+ \pi^-$

 $D^+ \to f_0(980) e^+ \nu_e, f_0(980) \to \pi^+ \pi^-$

▶ 支持f₀和 a₀为四夸克态 (R = 3, PRD82, 034016(2010))
 ▶ r_V = 1.695 ± 0.083 ± 0.051, r₂ = 0.845 ± 0.056 ± 0.039
 2023/April/09
 ※ 求報a@BESIII

 $1.860 \pm 0.070 \pm 0.061$

 $2.05 \pm 0.66 \pm 0.30$

 $0.630 \pm 0.043 \pm 0.032$

< 0.028

c -> d 类型半轻衰变: $D^0 o ho^- \mu^+ v_\mu$

c -> d 类型半轻衰变: $D^+ \rightarrow \omega e^+ v_e$

Phys. Rev. D 92, 071101(R) (2015)

c -> d 类型半轻衰变: $D^+ \rightarrow \omega \mu^+ v_{\mu}$

R. N. Faustov, V. O. Galkin, and X. W. Kang, Phys. Rev. D101, 013004 (2020)

|c -> d 类型半轻衰变: $D_s^+ o K^{*0} e^+ v_e^+$

Phys. Rev. Lett. 122, 061801 (2019)

- ▶ 采用数据@4.18 GeV
- $> N_{sig}(D_s^+ \to K^{*0}e^+v_e) = 155.0 \pm 17.2$
- $\succ \mathcal{B}(D_s^+ \to K^{*0} e^+ v_e) = (2.37 \pm 0.26 \pm 0.20) \times 10^{-3}$

> 首次测量形状因子:

 $r_V = 1.67 \pm 0.34 \pm 0.16, r_2 = 0.77 \pm 0.28 \pm 0.07$

≻符合LQCD和 U-spin (d ↔ s) 对称性的预期:

Use **BESIII** and **CLEO** measurement

	Values
$f^{D^+_s o K^0}_+(0)/f^{D^+ o \pi^0}_+(0)$	$1.16 \pm 0.14 \pm 0.02$
$r_V^{D_s^+ ightarrow K^{st 0}}/r_V^{D^+ ightarrow ho^0}$	$1.13 \pm 0.26 \pm 0.11$
$r_2^{D_s^+ \to K^{*0}} / r_2^{D^+ \to \rho^0}$	$0.93 \pm 0.36 \pm 0.10$

c->d 类型半轻衰变到矢量介子末态

衰变过程	实验/年份/信号数	分支比/形状因子/极化比例	BESIII研究现状
$D_s^+ \to K^{*0}(K^+\pi^-)e^+\nu_e$	CLE0/2015/32 BESTU /2019/155	Y/N/N Y/Y/N	进行中@4.13~4.23GeV
$D_s^+ \to K^{*0}(K^+\pi^-)\mu^+\nu_\mu$	N	N	进行中@4.13~4.23GeV
$D^+ \to \rho^0 (\pi^- \pi^+) e^+ \nu_e$	CLE0/2013/447 BESIII/2019/1.7k	Y/Y/N Y/Y/N	\checkmark
$D^+ \to \rho^0 (\pi^- \pi^+) \mu^+ \nu_\mu$	FOCUS/2006/320	Y/N/N	进行中
$D^+ \to \omega (\pi^- \pi^+ \pi^0) e^+ \nu_e$	BESIII/2015/491	Y/Y/N	\checkmark
$D^+ \to \omega (\pi^- \pi^+ \pi^0) \mu^+ \nu_\mu$	BESIII/2020/194	Y/N/N	\checkmark
$D^0 \to \rho^-(\pi^-\pi^0)e^+\nu_e$	CLEO/2013/305 BESIII/2019/1.1k	Y/Y/N Y/Y/N	\checkmark
$D^0 \to \rho^-(\pi^-\pi^0)\mu^+\nu_\mu$	BESIII/2021/570	Y/N/N	\checkmark
$D^+ \to \phi(K^+K^-)e^+\nu_e$	BESIII/2015/-	Y/N/N	未开展
$D^+ \to \phi(K^+K^-)\mu^+\nu_\mu$	Ν	Ν	未开展

▶ 总结

利用阈值处粲介子对产生和半轻衰变的独特优势,BESIII实验对粲介子半轻衰变 到矢量介子末态 (ρ,ω,K^{*},φ) 开展了一系列高精度测量的研究。

- ▶ 通过双标记方法测量绝对分支比
- ▶ 通过振幅分析测量强子化形状因子等物理参数
- ▶ 测量CKM矩阵元素 |V_{cs}|/|V_{cd}|
- ➢ 检验轻子味道普适性
- ▶ 展望
 - ▶ 更多衰变过程(尤其是 µ子道)的研究正在BESIII上开展
 - ▶ 更多过程的联合测量准备在BESIII上开展

- ▶ 预期到2024年收集数据:
 - ~**20 fb⁻¹ @** 3.773 GeV
- ▶ 截止2022.6.20:
 - 2.93 fb⁻¹ + 5.0 fb⁻¹
- ▶ 已发布BOSS 710版本
- Round03+Round04+Round15

	BESIII	BESIII	Belle	Belle II
Luminosity	$2.9 { m ~fb^{-1}} @ 3.773 { m ~GeV}$	$20 { m ~fb^{-1}} @ 3.773 { m ~GeV}$	$0.28 \mathrm{ab}^{-1}$	$50 { m ~ab^{-1}}$
$D^0 \to K^- e^+ \nu_e$	$0.4\%_{ m stat.} 0.5\%_{ m syst.}$	$0.2\%_{\rm stat.} 0.4\%_{ m syst.}$	$1.0\%_{\rm stat.} \ 3.2\%_{\rm syst.}^*$	$0.1\%_{\rm stat.} 1.6\%_{\rm syst.}^*$
$D^0 o K^- \mu^+ u_\mu$	$0.5\%_{ m stat.} 0.4\%_{ m syst.}$	$0.2\%_{\rm stat.} 0.4\%_{ m syst.}$	-9	-5
$D^0 o \pi^- e^+ \nu_e$	$1.3\%_{\rm stat.} \ 0.7\%_{\rm syst.}$	$0.5\%_{\rm stat.} 0.4\%_{\rm stat.}$	$3.2\%_{\rm stat.} 4.8\%_{ m syst.}^*$	$0.2\%_{\rm stat.} 2.4\%_{ m syst.}^*$
$D^0 o \pi^- \mu^+ u_\mu$	NA	$0.8\%_{\mathrm{stat.}} 0.8\%_{\mathrm{syst.}}$	U	U
$D^0 ightarrow K^{*-} e^+ \nu_e$				
r_V	$5.0\%_{\mathrm{stat.}} 2.0\%_{\mathrm{syst.}}$	$2.0\%_{\rm stat.} 2.0\%_{\rm syst.}$	—	-
r_A	$10.\%_{\mathrm{stat.}} 2.0\%_{\mathrm{syst.}}$	$4.0\%_{\rm stat.} 2.0\%_{\rm syst.}$	_	_
$D^0 \to a_0^-(980)e^+\nu_e$	NA	$10.\%_{\rm stat.} 5.0\%_{\rm syst.}$	-	—
$D^0 \to K_1^-(1270)e^+\nu_e$	NA	$10.\%_{\rm stat.} 5.0\%_{\rm syst.}$	_	-
$D^+ \rightarrow \bar{K}^0 e^+ \nu_e$	$0.6\%_{\rm stat.} 1.7\%_{\rm syst.}$	$0.2\%_{\rm stat.} 1.0\%_{\rm syst.}$	_	_
$D^+ ightarrow K^0_{ m L} e^+ u_e$	$0.9\%_{\rm stat.} 1.6\%_{ m syst.}$	$0.4\%_{\rm stat.} 1.0\%_{\rm syst.}$	_	_
$D^+ o \bar{K}^{0} \mu^+ \nu_{\mu}$	NA	$0.3\%_{\rm stat.} 1.0\%_{\rm syst.}$		_
$D^+ o \bar{K}^{*0} e^+ \nu_e$		· · · · ·		
$A_1(0)$	$1.7\%_{\rm stat.} 2.0\%_{ m syst.}$	$0.7\%_{\mathrm{stat.}} 1.0\%_{\mathrm{syst.}}$	—	—
r_V	$4.0\%_{\mathrm{stat.}} 0.5\%_{\mathrm{syst.}}$	$1.6\%_{\mathrm{stat.}} 0.5\%_{\mathrm{syst.}}$	_	-
r_A	$5.0\%_{\mathrm{stat.}} 1.0\%_{\mathrm{syst.}}$	$2.0\%_{\rm stat.} 1.0\%_{ m syst.}$		_
$D^+ o \pi^0 e^+ \nu_e$	$1.9\%_{\mathrm{stat.}} 0.5\%_{\mathrm{syst.}}$	$0.7\%_{\mathrm{stat.}} 0.5\%_{\mathrm{syst.}}$		
$D^+ o \pi^0 \mu^+ u_\mu$	NA	$1.0\%_{\mathrm{stat.}} 1.0\%_{\mathrm{syst.}}$	—	
$D^+ o \eta e^+ \nu_e$	$4.5\%_{\mathrm{stat.}} 2.0\%_{\mathrm{syst.}}$	$2.0\%_{\mathrm{stat.}} 2.0\%_{\mathrm{syst.}}$	-	_
$D^+ o \eta' e^+ \nu_e$	NA	$10.\%_{\mathrm{stat.}} 5.0\%_{\mathrm{syst.}}$	—	—
$D^+ ightarrow \omega e^+ \nu_e$				
r_V	$7.2\%_{\rm stat.} 4.8\%_{ m syst.}$	$3.0\%_{\mathrm{stat.}} 2.0\%_{\mathrm{syst.}}$	-	-
r_A	$14\%_{\rm stat.} 5.0\%_{\rm syst.}$	$3.0\%_{\mathrm{stat.}} 2.0\%_{\mathrm{syst.}}$	-	-
$D^+ \to a_0^0(980) e^+ \nu_e$	NA	$10.\%_{\rm stat.} 5.0\%_{\rm syst.}$	—	—
$D^+ \to \bar{K}_1^0(1270) e^+ \nu_e$	NA	$10.\%_{\rm stat.} 5.0\%_{ m syst.}$	-	-
$D^{0(+)} \to \rho^{-(0)} e^+ \nu_e$				
r_V	$5.0\%_{\rm stat.} 4.0\%_{\rm syst.}$	$2.0\%_{\mathrm{stat.}} 2.0\%_{\mathrm{syst.}}$	-	—
r_A	$8.0\%_{\mathrm{stat.}} 4.0\%_{\mathrm{syst.}}$	$3.0\%_{\mathrm{stat.}} 2.0\%_{\mathrm{syst.}}$	_	_

2023/April/09

$D^0 ightarrow K^{st-} e^+ v_e$ (Backup)

$$\mathrm{d}^{5}\Gamma = \frac{G_{F}^{2}||V_{cs}||^{2}}{(4\pi)^{6}m_{D}^{3}} X\beta \mathcal{I}(m^{2}, q^{2}, \theta_{K}, \theta_{e}, \chi) \times dm^{2}dq^{2}d\,\cos(\theta_{K})d\,\cos(\theta_{e})d\,\chi$$

Where $X = p_{k\pi}m_D$ and $\beta = 2p^*/m$, $p_{k\pi}$ is the momentum of the $K^-\pi^0$ system in the rest D^0 system and p^* is the momentum of K^- in the $K^-\pi^0$ rest frame

$$\begin{split} \mathcal{I} = & \mathcal{I}_1 + I_2 cos 2\theta_e + \mathcal{I}_3 sin^2 \theta_e cos 2\chi + \mathcal{I}_4 sin 2\theta_e cos \chi + \mathcal{I}_5 sin \theta_e cos \chi \\ &+ \mathcal{I}_6 cos \theta_e + \mathcal{I}_7 sin \theta_e sin \chi + \mathcal{I}_8 sin 2\theta_e sin \chi + \mathcal{I}_9 sin^2 \theta_e sin 2\chi \end{split}$$

$$\begin{split} \mathcal{I}_{1} &= \frac{1}{4} \{ |\mathcal{F}_{1}|^{2} + \frac{3}{2} sin^{2} \theta_{k} (|\mathcal{F}_{2}|^{2} + |\mathcal{F}_{3}|^{2}) \} \\ \mathcal{I}_{2} &= -\frac{1}{4} \{ |\mathcal{F}_{1}|^{2} - \frac{1}{2} sin^{2} \theta_{k} (|\mathcal{F}_{2}|^{2} + |\mathcal{F}_{3}|^{2}) \} \\ \mathcal{I}_{3} &= -\frac{1}{4} \{ |\mathcal{F}_{2}|^{2} - |\mathcal{F}_{3}|^{2}) \} sin^{2} \theta_{K} \\ \mathcal{I}_{4} &= \frac{1}{2} Re(\mathcal{F}_{1}^{*} \mathcal{F}_{2}) sin \theta_{K} \\ \mathcal{I}_{5} &= Re(\mathcal{F}_{1}^{*} \mathcal{F}_{3}) sin^{2} \theta_{K} \\ \mathcal{I}_{6} &= Re(\mathcal{F}_{2}^{*} \mathcal{F}_{3}) sin^{2} \theta_{K} \\ \mathcal{I}_{7} &= Im(\mathcal{F}_{1} \mathcal{F}_{2}^{*}) sin \theta_{K} \\ \mathcal{I}_{8} &= \frac{1}{2} Im(\mathcal{F}_{1} \mathcal{F}_{3}^{*}) sin \theta_{K} \\ \mathcal{I}_{9} &= -\frac{1}{2} Im(\mathcal{F}_{2} \mathcal{F}_{3}^{*}) sin^{2} \theta_{K} \end{split}$$

 $\begin{array}{c|cccc}
e^{+} & K^{-} \\
\theta_{e} & \chi & D^{0} & \theta_{K} \\
\hline
W & K^{*} \\
\hline
V_{e} & \pi^{0}
\end{array}$

2023/April/09

 $D^0
ightarrow K^{*-} e^+ v_e$ (Backup)

$$\mathcal{F}_{1} = \mathcal{F}_{10} + \mathcal{F}_{11} \cos \theta_{K}, \ \mathcal{F}_{2} = \frac{1}{\sqrt{2}} \mathcal{F}_{21}, \ \mathcal{F}_{3} = \frac{1}{\sqrt{2}} \mathcal{F}_{31}$$

$$\mathcal{F}_{11} = 2\sqrt{2}\alpha q H_{0} \times \mathcal{A}(m), \ \mathcal{F}_{21} = 2\alpha q (H_{+} + H_{-}) \times \mathcal{A}(m), \ \mathcal{F}_{31} = 2\alpha q (H_{+} - H_{-}) \times \mathcal{A}(m)$$

$$H_{\pm}(q^{2}) = (M_{D} + M_{K\pi})A_{1}(q^{2}) \mp \frac{2M_{D}P_{K\pi}}{M_{D} + M_{K\pi}} V(q^{2})$$

$$H_{0}(q^{2}) = \frac{1}{2M_{K\pi}q} [(M_{D}^{2} - M_{K\pi}^{2} - q^{2})(M_{D} + M_{K\pi})A_{1}(q^{2}) - \frac{4M_{D}^{2}P_{K\pi}^{2}}{M_{D} + M_{K\pi}} A_{2}(q^{2})]$$

$$\mathcal{F}_{10} = p_{K\pi} m_D \frac{1}{1 - \frac{q^2}{m_A^2}} \mathcal{A}_S(m)$$