

BESIII上粲强子稀有衰变的寻找

姜候兵

武汉大学

BESIII 粲强子物理研讨会 合肥, 04/09/2023

Outline

- Introduction
- BESIII results
 - ✓ FCNC
 - $D^0 \rightarrow \gamma \gamma$
 - $D \rightarrow h(h')e^+e^-$
 - $D^0 \to \pi^0 \nu \bar{\nu}$
 - ✓ L/BNV
 - $D \rightarrow K\pi e^+ e^+$
 - $D^{\pm} \rightarrow n(\bar{n})e^{\pm}$
 - $D^+ \to \overline{\Lambda}(\overline{\Sigma}^0) e^+ / \Lambda(\Sigma^0) e^+$
 - $D^0 \rightarrow \bar{p}e^+/pe^-$
 - ✓ Radiative decay
 - $\Lambda_c^+ \to \Sigma^+ \gamma$
- Summary

Introduction

• Why rare and forbidden decays?

- $\checkmark\,$ SM is incomplete -> DM, neutrino masses , asymmetry between matter and antimatter \ldots
- ✓ Rare decays are amongst the most powerful indirect probes as they are very sensitive to the presence of new particles in the virtual states.
- Rare and forbidden decays in charm sector: can be categorized as
 - ✓ flavor-changing neutral currents (FCNC)
 - \checkmark Radiative decay
 - ✓ lepton-flavor-violating (LFV), lepton-number-violating (LNV), baryon- and lepton-number-violating (BNV)

SM prediction

LFV, LNV,BNV		FCNC	VMD	Radiative
0	10^{-15}	10 ⁻⁹	10 ⁻⁶	
4/00/22		DECUU성지면 7 배ㅠT用I		2

Introduction

• Why charm ?

- ✓ GIM mechanism is very strong in charm decay
- ✓ Unique to test QCD in low energy
- Charm hadron is the only system made of up-type heavy quark: complementary to the B and K sectors in NP searching
- New physics effect
 - ✓ Indirect: New particles (virtual, high mass) enter loops enhance BFs
 - ✓ Direct: New particles (real) can enhance BFs significantly

Data samples

• $2.93 f b^{-1} \psi(3770)$

 $N_{{
m D}^0ar{
m D}^0} = (10,597{\pm}28{\pm}98){ imes}10^3, \ N_{{
m D}^+{
m D}^-} = (8,296{\pm}31{\pm}65){ imes}10^3,$

• $4.5 f b^{-1} E_{c.m.} = 4.6 - 4.7 \text{ GeV}$

 $N_{\Lambda_c\overline{\Lambda}_c}$ ~ 0.9 M

Analysis strategy

Double tag: reconstruct both of D mesons
 ✓ Low background level, absolute branching fraction

$$\mathcal{B}_{\mathrm{sig}} = N_{\mathrm{DT}} / (N_{\mathrm{ST}}^{\mathrm{tot}} \cdot \epsilon_{\mathrm{sig}}),$$

- Single tag: reconstruct one of D mesons
 - ✓ High efficiency, high signal yield, relative higher background level

 $\mathcal{B}_{\mathrm{sig}} = rac{N_{\mathrm{sig}}}{2 \cdot N_{\mathrm{D}\bar{\mathrm{D}}}^{\mathrm{tot}} \cdot \epsilon \cdot \mathcal{B}}$

FCNC

FCNC processes

- In SM, FCNC is strongly suppressed by GIM mechanism and can happen only through loop diagram, leading to a very small BF, 10⁻⁹, theoretically
- However, it can reach 10^{-6} under LD contribution
- The study of FCNC transitions is a key tool to look for physics beyond the standard model (BSM).

$$: D^0 \to \gamma \gamma$$
 PRD 91, 112015(2015)

- The branching fractions $B_{SD} \sim 3 \times 10^{-11} / B_{SD+LD} (1-3) \times 10^{-8}$;
- Some extensions to the SM can enhance FCNC processes by many orders of magnitude. For example, MSSM, gluino exchange can increase the branching fraction;

 $D^0 \rightarrow \gamma \gamma$

- Double-Tag method is implied
- Single tag (ST) candidate events are selected approximately 2.8 million.
- An unbinned maximum likelihood fit to the two-dimensional distribution of $\Delta E^{\gamma\gamma}$ versus ΔE^{tag}

$$\Delta E \equiv \sum_{i} E_{i} - E_{\text{beam}},$$

• An 90% CL uper limit is set to be

$$\mathcal{B}(D^0 \rightarrow \gamma \gamma) < 3.8 \times 10^{-6}$$

The UL is consistent with BaBar result and with the SM prediction.

- For FCNC decays $c \rightarrow uv\bar{v}$, LD contributions become insignificant and the SD contributions dominate, resulting in the branching fraction at the level of 10^{-15} in SM. Thus, $c \rightarrow uv\bar{v}$ provide a unique and clean probe to study the CP violation in the charm sector and search for NP
- In the scenario of leptoquarks, the branching fraction can be enhanced up to 9.7×10^{-4} with the sterile neutrinos

 $D^0 \rightarrow \pi^0 \nu \bar{\nu}$

- Double-Tag method is implied
- Discriminating variable : E_{EMC} all the showers excluding π^0 , signified a peak ~ 0.
- $N_{sig} = 14 \pm 30$, which consistent with 0. An 90% CL upper limit is estimated:

 $\mathcal{B}(D^0 \to \pi^0 \nu \bar{\nu}) < 2.1 \times 10^{-4}$

the world-first experimental in charm sector, providing constrains on the fermionic coupling strength of leptoquarks to the sterile neutrino

- In SM, the FCNC process $c \rightarrow ul^+l^-$ with a BF at the level of 10^{-9} , NP can enhance the BF
- The BF with LD effect through vector meson decays at the level of 10^{-6}
- Experimentally, $D^+ \rightarrow \pi^+ \mu^+ \mu^- (e^+ e^-)$, $D^0 \rightarrow K^- K^+ \mu^+ \mu^- / K^- \pi^+ \mu^+ \mu^- / \pi^- \pi^+ \mu^+ \mu^-$ have been observed with significant LD contribution
- 11 decays are searched in this work $D^0 \to K^- K^+ e^+ e^- / \pi^- \pi^+ e^+ e^- / K^- \pi^+ e^+ e^- / \pi^0 e^+ e^- / \omega e^+ e^- / K_s^0 e^+ e^- / K_s^0 \pi^+ e^+ e^- / K_s^0 K^+ e^+ e^ K_s^0 e^+ e^- / D^+ \to \pi^+ \pi^0 e^+ e^- / K^+ \pi^0 e^+ e^- / K_s^0 \pi^+ e^+ e^- / K_s^0 K^+ e^+ e^$ the four-body D^+ decays are performed for the first time

$D \rightarrow h(h')e^+e^-$

- $M(e^+e^-)$ out of ϕ mass window to exclude contribution from $D \to h(h')\phi, \phi \to e^+e^-$;
- The 90% CL upper limits are at the level of $10^{-5} 10^{-6}$. For the D^0 decays, the ULs are improved in general by a factor of 10, compared to previous measurements.
- All the measured ULs on the BFs are above the SM predictions, which include both LD and SD contributions.

Signal decays	$\mathcal{B}\;(\times 10^{-5})$	PDG [9] (×10 ⁻
$D^+ \to \pi^+ \pi^0 e^+ e^-$	<1.4	
$D^+ \rightarrow K^+ \pi^0 e^+ e^-$	<1.5	
$D^+ \rightarrow K^0_S \pi^+ e^+ e^-$	<2.6	
$D^+ \rightarrow K^{0}_{S}K^+e^+e^-$	<1.1	
$D^0 \rightarrow K^- K^+ e^+ e^-$	<1.1	<31.5
$D^0 ightarrow \pi^+\pi^- e^+e^-$	< 0.7	<37.3
$D^0 \rightarrow K^- \pi^+ e^+ e^{-\dagger}$	<4.1	<38.5
$D^0 ightarrow \pi^0 e^+ e^-$	< 0.4	<4.5
$D^0 ightarrow \eta e^+ e^-$	< 0.3	<11
$D^0 \rightarrow \omega e^+ e^-$	< 0.6	<18
$D^0 \rightarrow K^0_S e^+ e^-$	<1.2	<11
[†] in $M_{e^+e^-}$ regions:		
[0.00, 0.20) GeV/c ²	$< 3.0 \ (1.5^{+1.0}_{-0.9})$	
[0.20, 0.65) GeV/c ²	< 0.7	
[0.65, 0.90) GeV/c ²	$< 1.9 \ (1.0^{+0.5}_{-0.4})$	

LNV/BNV

- Neutrino oscillation -> neutrinos have mass ->NP In "seesaw" mechanism, a new massive neutrino can provide a tiny mass of SM neutrinos
- Nature of neutrinos: Dirac or Majorana particles. The effects of Majorana neutrino can be manifested through violating lepton-number conservation by two units ($\Delta L = 2$)
- The LNV processes with $\Delta L = 2: D^0 \to K^- \pi^- e^+ e^+, D^+ \to K_s^0 \pi^- e^+ e^+, D^+ \to K^- \pi^0 e^+ e^+$ are searched. These processes can occur by mediation of a Majorana neutrino.

 $D \rightarrow K\pi e^+ e^+$

- A Single-Tag method is implied;
- The signals are determined by performing an unbinned maximum likelihood fit on the M_{BC} distribution.

 $M_{\rm BC} = \sqrt{E_{\rm beam}^2 - |\vec{p}_D|^2}$

• No obvious signal is observed, 90% CL upper limits

Channel	$\epsilon(\%)$	$N_{ m sig}^{ m UL}$	$\mathcal{B}_{ m sig}^{ m UL}(imes 10^{-6})$
$D^0 \rightarrow K^- \pi^- e^+ e^+$	16.8	10.0	<2.8
$D^+ \rightarrow K^0_S \pi^- e^+ e^+$	11.5	4.4	<3.3
$D^+ \rightarrow K^- \pi^0 e^+ e^+$	10.6	14.8	<8.5

PHYS. REV. D 99, 112002 (2018)

 $D \rightarrow K\pi e^+ e^+$

- Search for Majorana neutrino: the Majorana neutrino are searched for in the CF processes $\checkmark D^0 \rightarrow K^- e^+ \nu_m, \nu_m \rightarrow \pi^- e^+$ $\checkmark D^+ \rightarrow K_s^0 e^+ \nu_m, \nu_m \rightarrow \pi^- e^+$
- ✓ The results on BF and mixing matrix element provide the supplementary information in the study of mixing between the heavy Majorana neutrino and the standard model neutrino in D meson decays

Search for baryon- and lepton-number violating decays

- The matter-antimatter asymmetry in the Universe suggests the existence of BNV.
- Various SM extensions, BNV processes can happen with $\Delta(L B) = 0$, $\Delta(L B) = 2$ mediated by heavy gauge bosons X or Y, called "leptoquarks", or scalar field ϕ
- Four decays of $D^{\pm} \to \Lambda(\overline{\Lambda})e^{\pm}$, $D^{\pm} \to \Sigma(\overline{\Sigma}^0)e^{\pm}$, $D^{\pm} \to p(\overline{p})e^{\pm}$ and $D^{\pm} \to n(\overline{n})e^{\pm}$ are performed at BESIII

dimension-six operators - $\Delta(L - B) = 0$

dimension-seven operators - $\Delta(L - B) = 2$

BESIII粲强子物理研讨会

 $:D^{\pm} \to \Lambda(\overline{\Lambda})e^{\pm}, D^{\pm} \to \Sigma(\overline{\Sigma}^{0})e^{\pm}$ PRD 101, 031102 (2020)

- The $D^+ \to \overline{\Lambda}e^+$, $D^+ \to \overline{\Sigma}{}^0e^+ \Delta(B-L) = 0$ $D^+ \to \Lambda e^+$, $D^+ \to \Sigma e^+ \Delta(B-L) = 2$ are searched for the first time;
- A Single-Tag method is implied;
- ULs are determined by likelihood scan

Mode	$N_{ m sig}^{ m UL}$	ε (%)	$\mathcal{B}^{\mathrm{UL}}$
$\overline{\Lambda e^+}$	5.6	31.11 ± 0.14	1.1×10^{-6}
$ar{\Lambda} e^+$	3.4	31.18 ± 0.10	6.5×10^{-7}
$\Sigma^0 e^+$	4.5	16.31 ± 0.07	1.7×10^{-6}
$ar{\Sigma^0}e^+$	3.5	16.40 ± 0.07	1.3×10^{-6}

II: $D^{\pm} \rightarrow n(\bar{n})e^{\pm}$

PRD 106, 112009 (2022)

- A Double-Tag method is implied
- Single tag (ST) candidate events ~ 1.5 million
- ULs are determined by likelihood scan

 $\mathcal{B}_{D^+ \to \bar{n}e^+} < 1.43 \times 10^{-5}$ $\mathcal{B}_{D^+ \to ne^+} < 2.91 \times 10^{-5}$

• Most stringent constraint to date

III: $D^0 \to p(\bar{p})e^{\mp}$

PRD 105, 032006 (2022)

- A Double-Tag method is implied;
- Single tag (ST) candidate events ~ 2.3 million
- The ULs are calculated by using a frequentist method with an unbounded profile likelihood (TROLKE).
- The ULs on the BFs:

$$\mathcal{B}_{D^0 \to pe^-} < 2.2 \times 10^{-6}$$

 $\mathcal{B}_{D^0 \to \bar{p}e^+} < 1.2 \times 10^{-6}$

Radiative decay

Radiative decays

- Rare radiative decays are most likely dominated by the LD SM contributions SD (10⁻⁸) LD (10⁻⁴)
- The rare radiative transitions could be sensitive to NP contributions:
 - \checkmark the difference between different radiative transitions
 - ✓ *CP*-violating asymmetries
 - ✓ photon polarization patterns

 $D^0 \to \gamma \rho^0 / \gamma \phi / \gamma \overline{K}^*$

PRL 118, 051801 (2017)/ PR D 78, 071101(R)

• The radiative decays of $D^0 \to \gamma \rho^0 / \gamma \phi / \gamma \overline{K}^*$ have been observed by Belle and BaBar

- LD contributions to radiative charm decays are expected to 10^{-5} ;
- With $20 f b^{-1} \psi(3770)$ data, the radiative decays are expected to be observed;

 $\Lambda_{c}^{+} \rightarrow \Sigma^{+} \gamma$

- A Double-Tag method is implied;
- Single tag (ST) candidate events ~105K
- Since no significant signal is observed, the upper limit on the BF

 $\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \gamma) < 4.4 \times 10^{-4}$

 This result is consistent with the theoretical predictions from the bag model and appropriate QCD corrections, respectively, where the short-distance *cd* → *γsu* mechanism is expected to be dominant.

Summary

- Rare charm decays are a powerful indirect probes for NP
 - $\checkmark \text{ FCNC } D^0 \to \gamma \gamma, D \to h(h')e^+e^-, D^0 \to \pi^0 \nu \bar{\nu}$
 - ✓ L/BNV $D \to K\pi e^+ e^+$, $D^{\pm} \to n(\bar{n})e^{\pm}$, $D^+ \to \overline{\Lambda}(\bar{\Sigma}^0)e^+/\Lambda(\Sigma^0)e^+$, $D^0 \to \bar{p}e^+/pe^-$
 - ✓ Radiative decay. $\Lambda_c^+ \to \Sigma^+ \gamma$
- Ongoing
 - ✓ FCNC: $D_s^+ \to h(h')e^+e^-$ L/BNV: $D_s^+ \to h(h')e^+e^+$, $D_s^+ \to \Lambda e^+$
 - ✓ Radiative decay: $D_s^+ \to \gamma \rho^+(K^{*+})$, $D^0 \to \gamma \omega / \gamma \phi / \gamma \overline{K}^*$
- A more stringent constraint, or discovery (LD), is expected with the larger dataset that BESIII expects to accumulate in the near future!

