

Study the Neutrino Oscillation in Super-Kamiokande

Yang Gao

SA19004005

育天下英才 嚴濟慈調題 1

Final-report

Outline

- Motivation
- The introduction of Super-Kamiokande
- Event reconstruction
- Results Analysis
- MSW(Matter-enhanced neutrino oscillations)
- CP-violation results
- Proton decay results
- Summary

Motivation

- In the framework of "old" electroweak theory, formulated by Glashow, Weinberg and Salam, lepton flavor is conserved and neutrinos are massless.
- However, various observations have shown that the flavor of neutrinos change upon propagating long distances.

$$\nu_{\alpha}(t) >= \sum_{i=1}^{N} U_{\alpha i}^{*} e^{-iE_{i}t} |\nu_{i}\rangle$$

• where N is the number of neutrino flavors and U is

• So the probability is:

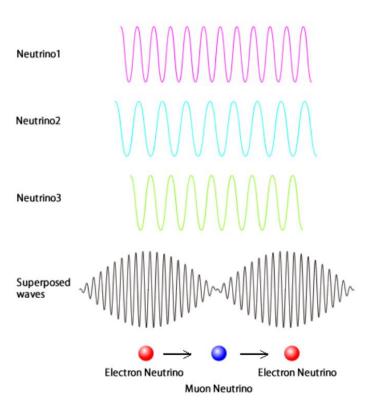
$$P(\nu_{\alpha} \to \nu_{\beta}, t) = | < \nu_{\beta} | \nu_{\alpha}(t) > |^{2} = |\sum_{i=1}^{N} U_{\beta i} e^{-iE_{i}t} U_{\alpha i}^{*}|^{2}$$

• For N=2 and ν_e and ν_{μ}

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta_0 & \sin\theta_0 \\ -\sin\theta_0 & \cos\theta_0 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$
$$E_i = \sqrt{p^2 + m_i^2} \simeq p + \frac{m_i^2}{2p} \simeq p + \frac{m_i^2}{2E}$$

Motivation

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta_0 & \sin\theta_0 \\ -\sin\theta_0 & \cos\theta_0 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$
$$E_i = \sqrt{p^2 + m_i^2} \simeq p + \frac{m_i^2}{2p} \simeq p + \frac{m_i^2}{2E}$$


• So, we get

$$P(\nu_e \to \nu_\mu, t) = P(\nu_\mu \to \nu_e, t) = \sin^2(2\theta_0)\sin^2(\frac{\Delta m^2}{4E}t)$$

• Give a correction of factor:

$$P(\nu_e \to \nu_\mu, L) = \sin^2(2\theta_0)\sin^2(1.27\frac{\Delta m^2(eV)L(km)}{E(GeV)})$$

- Where θ is the mixing angle between the mass eigenstates and the weak eigenstates.
- Δm^2 (eV²) is the difference of the squared mass eigenvalues.
- *C* is the constant C = 1.27.
- *L* (km)is the neutrinos propagating distances.
- $E_{\nu}(\text{GeV})$ is the energy of the neutrino.
- We can find *P* is not zero, then Δm^2 is not zero, so the neutrinos are not massless.

The introduction of Super-Kamiokande

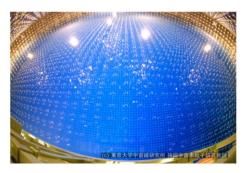
- Cylindrical water Cherenkov detector.
- 50-kton of purified water.
- SK has started its observation in 1996.
- The summary of the SK experiments is at Table I.

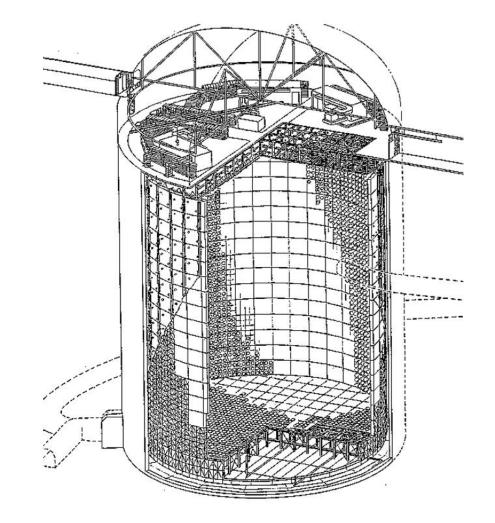
Phase	Run period	Number of ID PMT	Photo coverage	Analysis energy threshold
			(%)	Total / Kinetic Energy
SK-I	Apr. 1996 – Jul. 2001	11146	40	5.0 MeV / 4.5 MeV
SK-II	Dec. 2002 – Oct. 2005	5182	19	7.0 MeV / 6.5 MeV
SK-III	Jul. 2006 - Aug. 2008	11129	40	5.0 MeV / 4.5 MeV
SK-IV	Sep. 2008 – today	11129	40	(4.5 MeV / 4.0 MeV)

Table 1: Summary of the experimental phases in SK.

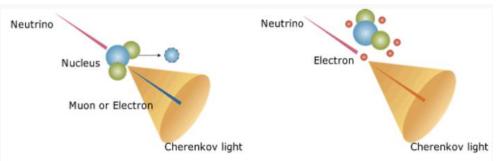
- The PMT tubes comprising a photocathode cover about 40%.
- 11,146 Hamamatsu R3600 50cm inner detectors (ID PMTs).
- 1885 outward-facing Hamamatsu R1408 20 cm PMTs (OD).

To reject cosmic ray muons background.




Figure 1: Super-Kamiokande detector during water filling in June 2006.

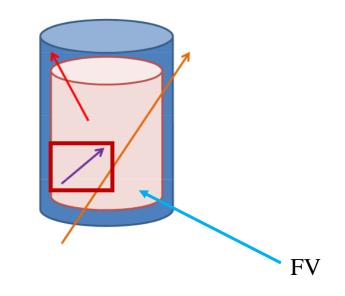
The introduction of Super-Kamiokande


- An event used in analysis is required by the coincidence of at least 30 PMT hits in a 200 nsec window.
- The hit threshold for each individual PMT is about 0.5 pC.
- This trigger condition corresponds to the mean number of hist PMTs for a 5.7 MeV electron.
- The trigger rate is 10-12 Hz.
- The trigger rate due to cosmic ray muons is 2.2 Hz.
- The Cherenkov photons in the detector is simulated with a Monte Carlo program based on the GEANT package.
- For hadronic interactions in water, the CALOR package was employed.

Event reconstruction

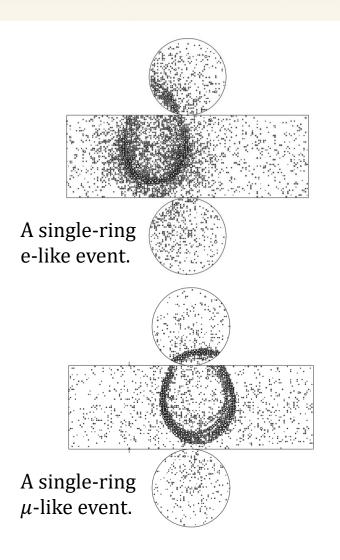
- There are four charged and neutral current neutrino interactions are considered:
- ► Elastic scattering: $\nu N \rightarrow lN'$
- ► Single meson production: $\nu N \rightarrow lN'm$
- ➤ Coherent π production: ν0¹⁶ → $lπ0^{16}$
- ▶ Deep inelastic scattering: $\nu N \rightarrow lN'$ hadrons

The generated charged particle emits the Cherenkov light.

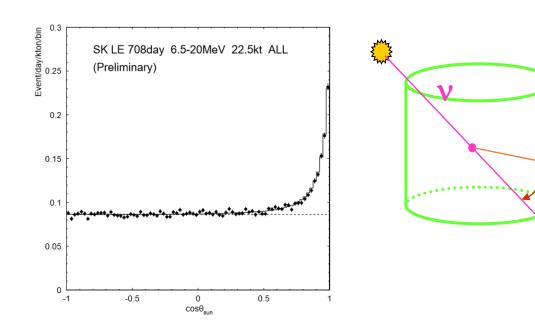

- Where N and N' are the nucleons (proton or neutron), 1 is the lepton, and m is the meson.
- If the neutrino interaction occurred in the oxygen nuclei, generated particles like pions and kaons interact with the nucleus before escaping.
- There are four event types:
- \succ FC(full reconstruction) events.
- PC(part reconstruction) events.
- ► Up- μ events.
- Stopping- μ events.

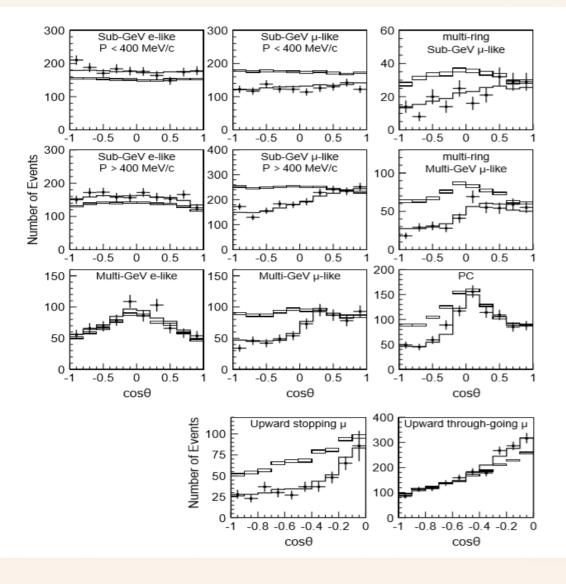
Event reconstruction

For example,


- To reconstruct FC events:
- ✓ (1), Total charge in 300 ns timing window >200 photoelectrons (p.e.).
- > To reject background from the PMT level.
- \checkmark (2), Less than half of the light in any ID PMT.
- > To avoid events that most light is detected by just one ID, these background events should be rejected.
- \checkmark (3), Little OD activity.
- \blacktriangleright To make sure this event can't be from the cosmic ray.
- ✓ (4), >100 μs window between events.
- > To reject background from different events.
- ✓ (5), Remove flashers.
- > To reject background of light from FV.
- \checkmark (6), Inside FV(fiducial volume) with at least 30 MeV visible energy.
- > To improve the significance of signal.

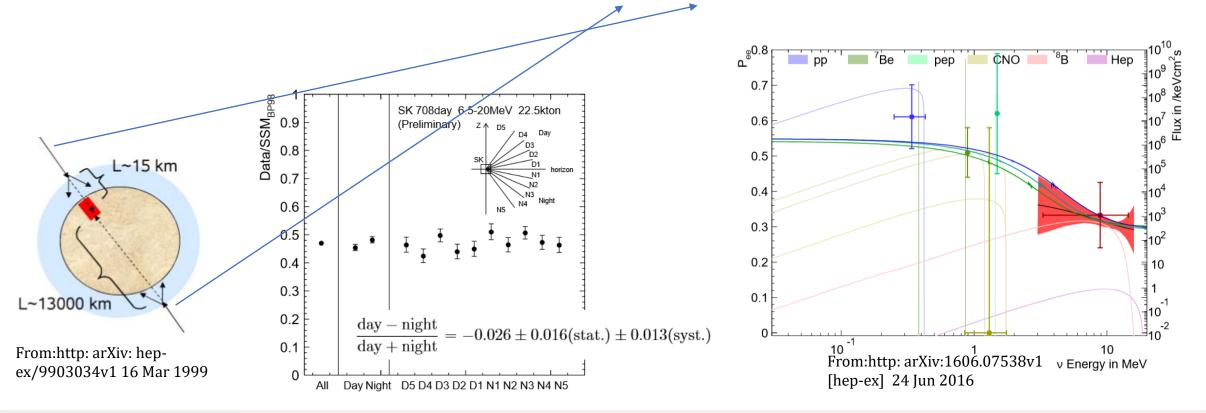
Event reconstruction


- There are some brief steps to reconstruct the events:
- (1), search for an event with a single Cherenkov ring of a lepton produced by neutrino charged or neutral current interaction.
- > (2), classify the ring into two categories, e-like and μ -like, using the photon distribution of the ring pattern.
- (3), reconstruct the momentum and direction of the lepton using the observed ring image.
- Details for every type are shown in paper.



Results Analysis

- This is signal distribution in zenith angle spectrum. The points show the data, the box histograms show the non-oscillated MC and the lines show the best-fit expectations for $v_{\mu} \leftrightarrow v_{\tau}$.
- The zenith angle (θ_{sun}) is shown in picture below:
- The left picture shows super-K can detect the zenith angle pretty good from solar neutrino.
- $\Delta m_{23}^2 = 2.19^{+0.14}_{-0.13} \times 10^{-3} \text{eV}^2$, $\sin^2 2\theta_{23} > 0.96(90\%)$ C.L.



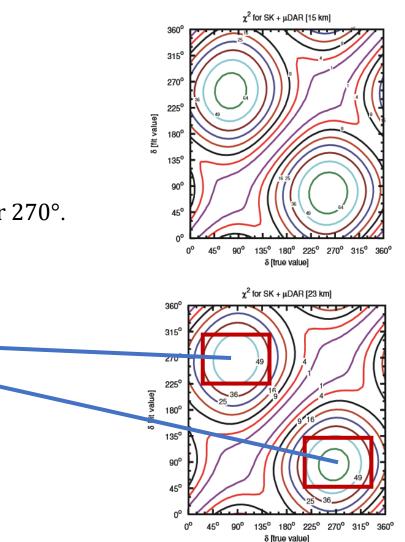
e

sun

MSW(Matter-enhanced neutrino oscillations)

- Even if all neutrinos are massless it is possible to have oscillations occur when neutrinos pass through matter in theory.(Phys. Rev. D 17, 2369 (1978)).
- The right picture shows the solar neutrino interact with the matter.
- The middle picture shows the different numbers during night and day.

Other results in Super-K

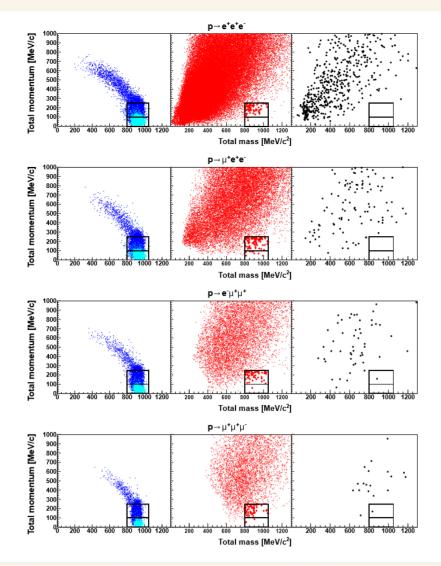

Brief CP-violation results in Super-K

- X-axis is trial value of the best fit δ .
- Y-axis is the theoretical spectra of δ_{true} .

 \checkmark Maximum deviation during fit the theory.

 \checkmark CP-violation may appear at here.

- The line shows the different χ^2 .
- For 23 km baseline, there is a CP-violation at $\delta = 90^{\circ}$ or 270°.



Other results in Super-K

Brief proton decay results in Super-K

- Four tagged modes used here:
- $\checkmark p \rightarrow e^+e^+e^-$
- $\checkmark p \rightarrow \mu^+ e^+ e^-$
- $\checkmark p \rightarrow \mu^+ \mu^+ e^-$
- $\checkmark \quad p \to \mu^+ \mu^+ \mu^-$
- The right picture shows two dimensional plots of total mass and momentum for signal (left), background (center) and measured data (right).
- Only $p \to \mu^+ \mu^+ e^-$ and $p \to \mu^+ \mu^- \mu^+$ has one event and from the table, these two events may be background events.
- Finally there is no proton decay signal found.

				Lifetime limit
	Background	C. ndidate	Probability	$(\times 10^{34} \text{ years})$
Modes	(events)	(ev nts)	(%)	at 90% CL
$p \rightarrow e^+ e^+ e^-$	$0.58{\pm}0.08$	0	-	3.4
$p \rightarrow \mu^+ e^+ e^-$	$0.50 {\pm} 0.06$	0	-	2.3
$p \rightarrow \mu^- e^+ e^+$	$0.50 {\pm} 0.06$	0	-	1.9
$p \rightarrow e^+ \mu^+ \mu^-$	$0.27 {\pm} 0.04$	1	18.4	0.92
$p \rightarrow e^- \mu^+ \mu^+$	$0.27 {\pm} 0.04$	1	18.4	1.1
$p \rightarrow \mu^+ \mu^+ \mu^-$	0.40 ± 0.07	1	25.8	1.0

Summary

- Give a brief talk about motivation
- Give a talk about Super-K and the method of reconstruction.
- Finally, give some simple results in Super-K:
- ≻ (1), For neutrino oscillation: $\Delta m_{23}^2 = 2.19^{+0.14}_{-0.13} \times 10^{-3} \text{eV}^2$, $sin^2 2\theta_{23} > 0.96(90\%)$ C.L.
- > (2), For MSW neutrino oscillation : $\frac{day-night}{day+night} = -0.026 \pm 0.016(stat.) \pm 0.013(syst.)$
- > (3), For CP-violation: there is a CP-violation at $\delta = 90^{\circ}$ or 270°.
- \succ (4), For proton decay: there is no proton decay signal found.

That's all, Thanks!

