Fixed Target Physics in BES II with Detector Upgrades Daniel Cebra University of California - Davis ## History of Low Energy Running at RHIC ## RHIC Runs at or Below Nominal Injection Energy: 1. Au+Au 19.6 GeV 2001 2. Cu+Cu 22.4 GeV 2005 3. Au+Au 9.0 GeV 2007 4. Au+Au 9.2 GeV 2008 5. Au+Au 7.7 GeV 2010 6. Au+Au 11.5 GeV 2010 7. Au+Au 5.5 GeV 2010 8. Au+Au 19.6 GeV 2011 9. Au+Au 5.0 GeV 2011 10. Au+Au 14.5 GeV 2014 100 k events 250 k events 0 events 7 k events 4 M events 12 M events 0 events 36 M events 1 event 20 M events ## History of Fixed-Target Analysis - Analysis of the background triggers began in 2008. - Developing the Beam Energy Scan I Proposal → could not afford to seriously miscalculate the number events. - Effort was aimed at understanding the background. - Later realized we could develop a physics program. - In 2014, we installed an internal gold target. - Parasitic tests in 2014. Directed beam tests in 2015. ## Glauber Model of Au+Al -- Centrality 35 protons with a radius of 3.4 fm → Coulomb Potential = 15 MeV #### For top 10% central collisions: - 13 protons from Al - 14 neutrons from Al - 22 protons from Au - 33 neutrons from Au ## Physics Results: Spectra, Ratios, and Coulomb Analysis ## RHIC Fixed-Target Test Runs 2014 and 2015 Workshop of STAR Upgrades USTC, Hefei, China ## Imaging the Gold Target - 2014 ## Centrality Determination - 2014 ## Physics Results: Spectra, Ratios, and Coulomb Analysis Workshop of STAR Upgrades USTC, Hefei, China ## Physics results: Fluctuations and Correlations ## **Fixed Target Physics in BES II with Detector Upgrades** ## **Upgrade Capabilities** - Low p_{T} acceptance \rightarrow Determined by the minimum hit requirement (10) - Current TPC $p_{T} > 120 \text{ MeV/c}$ - iTPC $-p_T > 70 \text{ MeV/c}$ - Momentum Resolution: - Mostly determined by track length, only improves with the square root of samples - Pseudorapidity Acceptance Limited by 10 hit requirements - Particle Identification: - •dE/dx Resolution $$\sigma_{dEdx} = 0.47 N^{-0.46} (Ph)^{-0.32} (dE/dx)_{trunc}$$ ToF Resolution $$TOF = d / \beta c$$ $$t + \Delta t = \frac{d}{c} \left(\frac{1}{\beta} + \delta \frac{1}{\beta} \right)$$ ## Conversion of psuedorapidity to rapidity -- Protons | Collider
Energy | Fixed-
Target
Energy | Single
beam
AGeV | Center-
of-mass
Rapidity | μ _в (MeV) | |--------------------|----------------------------|------------------------|--------------------------------|----------------------| | 62.4 | 7.7 | 30.3 | 2.10 | 420 | | 39 | 6.2 | 18.6 | 1.87 | 487 | | 27 | 5.2 | 12.6 | 1.68 | 541 | | 19.6 | 4.5 | 8.9 | 1.52 | 589 | | 14.5 | 3.9 | 6.3 | 1.37 | 633 | | 11.5 | 3.5 | 4.8 | 1.25 | 666 | | 9.1 | 3.2 | 3.6 | 1.13 | 699 | | 7.7 | 3.0 | 2.9 | 1.05 | 721 | #### **The Onset of Deconfinement:** - High p_⊤ suppression - N_{CO} scaling of Elliptic Flow - LPV through three particle correlators (CME) - Balance Functions - Strangeness Enhancement #### <u>Compressibility → First Order Phase Transition</u> - Directed flow - Tilt angle of the HBT source - The Volume of the HBT source - The width of the pion rapidity distributions (Dale) - The zero crossing of the elliptic flow (~6 AGeV) - Volume measures from Coulomb Potential #### **Criticality:** - Higher moments - Particle Ratio Fluctuations #### **Chirality:** • Dilepton studies No measurements in this energy range **BESII FXT Physics Program** #### Hypernuclei: • ³ _^ H Lifetime and excitation function Daniel Cebra 24 of 28 ## Search for the Critical Point – $\kappa\sigma^2$ Daniel Cebra 09/21/2015 Workshop of STAR Upgrades USTC, Hefei, China 25 of 28 Yields of Hadrons → Mapping the Phase Boundary Acceptance of π , K, p is good to midrapidity at all FXT energies. Acceptance for weak decay parents should be good as well. Measurements can be extrapolated to 4π Will be able to extend the low energy limits of measurements of most strange hadrons 4π strange hadron yields are needed for chemical equilibrium models to determine T and μ_B ## Hypernuclei Perfect energy range to map out the production of $^3_\Lambda H$ and $^4_\Lambda H$ Previously only measured at two energies Dynamic range will exclude searches for doubly strange hypernuclei # Quark-Gluon Plasma **Femperature** Critical Point First Order Hadronic Gas ## Baryon Chemical Potential μ_{B} ### **Conclusions:** - BES program is designed to study the phase diagram of QCD matter - Need to access lower energy range to study all region of the phase diagram - Fixed Target program along with key upgrades allows us to scan from 19.6 to 3.0 GeV (200-720 MeV in $\mu_{\rm B}$) ## Extra Slides # The ### 2015 Test Run data are all still "Preview Data" → There are known issues ## Low Energy Electron Cooling at RHIC Electron Cooling can raise the luminosity by a factor of 3-10 in the range from 5 – 20 GeV Long Bunches increase luminosity by factor of 2-5 energy correction cavity 31 of 28 gun ## Energy Loss in TPC ## **Energy Loss in TPC** TOF $1/\beta$ Workshop of STAR Upgrades USTC, Hefei, China 09/21/2015 Workshop of STAR Upgrades USTC, Hefei, China ## **Energy Loss in TPC** # Pion Ratios $$(1) E_f = E_i \pm V_C$$ **Coulomb Potential** Jacobian (2) $$R_f(E_f) = \frac{E_f - V_C}{E_f + V_C} \frac{\sqrt{(E_f - V_C)^2 - m^2}}{\sqrt{(E_f + V_C)^2 - m^2}} \frac{n^+ (E_f - V_C)}{n^- (E_f + V_C)}$$ (3) $$\frac{n^{+}(E_{f}-V_{C})}{n^{-}(E_{f}+V_{C})} = \frac{A^{+}(e^{(E_{f}+V_{C})/T_{\pi}}-1)}{A^{-}(e^{(E_{f}-V_{C})/T_{\pi}}-1)}$$ Bose-Einstein Formulae (4) $V_{eff} = V_C (1 - e^{-E_{\text{max}}/T_p})$ $$E_{\text{max}} = \sqrt{(m_p p_{\pi} / m_{\pi})^2 + m_p^2 - m_p}$$ Energy where the proton is faster then the pions with a given momentum $$V_C = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$$ Glauber 0-5% Au+Au → Coulomb potential of 68+68 within a radius of 7 fm = 28 MV Glauber 0-10% Au+Al → Coulomb potential of 22+13 within a radius of 3.4 fm = 15 MV There are 22 protons from gold in the overlap region | Experiment | System | Energy
(GeV) | Coulomb
Potential | Initial Pion Ratio | | | |------------|--------|-----------------|----------------------|--------------------|--|--| | KaoS | Au+Au | 2.2 | 27.8 +/- 1.3 | 0.469 +/-0.011 | | | | E866 | Au+Au | 4.8 | 16.3 +/- 1.9 | 0.771 +/- 0.011 | | | | WA98 | Pb+Pb | 17.3 | 9.8 +/- 0.6 | 0.934 +/- 0.004 | | | | STAR | Au+Au | 39 | 6.6 +/- 8.7 | 0.977 +/- 0.021 | | | | STAR | Au+Al | 4.5 | 8.0 +/- 1.2 | 0.910 +/- 0.005 | | | | STAR | Au+Al | 3.5 | 11.5 +/- 0.7 | 0.878 +/- 0.004 | | | | STAR | Au+Al | 3.0 | 14.4 +/- 1.2 | 0.830 +/- 0.008 | | | ## **Nucleonic Resonances and Pions** #### Consider the numbers: **Nucleon-Nucleon Interactions:** $$n + n \rightarrow 7(\Delta^{-} + p) : 1(\Delta^{0} + n)$$ $$p + p \rightarrow 7(\Delta^{++} + n) : 1(\Delta^{+} + p)$$ $$p + n \rightarrow 1(\Delta^0 + p) : 1(\Delta^+ + p)$$ Charged Pion Decay Channels: $$\Delta^{++} \rightarrow p + \pi^{+}$$ $$\Delta^+ \rightarrow n + \pi^+$$ $$\Delta^0 \rightarrow p + \pi^-$$ $$\Delta^{-} \rightarrow n + \pi^{-}$$ 0-5% Au +Au \rightarrow Glauber Model predicts $\langle N_{part} \rangle = 354$ \rightarrow more neutrons than protons, 218:136 More neutron interactions → more Pi-minus than Pi-plus (2.27:1) STAR Low p_T acceptance is dependent on the track quality cuts. Minimum of 10 hits for a track Quality tracks require at least 25 hits. Current TPC low p_T limit is 112.5 MeV/c iTPC low p_T limit is 71 MeV/c ## **Momentum Resolution** $$(\delta k)^2 = (\delta k_{res})^2 + (\delta k_{ms})^2$$ $$k \equiv 1/R$$ $$p\cos\lambda = p\sin\theta = p_T = 0.3qBR$$ p = momentum (MeV/c) $$\sigma_{\star}$$ = transverse resolutio $$\sigma_t$$ = transverse resolution $$\beta$$ = velocity **Tracking** Term Multiple Scattering For STAR, the predicted momentum resolution is 1.4% at p_T of 400 MeV at mid-rapidity (from res. and ms terms). From tracking the resolution gets about 0.8% worse for each additional GeV At STAR, resolution is 3% at 100 MeV Term 09/21/2015 ## The biggest effect -> Shifting the vertex USTC, Hefei, China # dE/dx Resolution From Allison and Cobb, Ann. Rev. Nucl. Part. Sci. 30, 253 (1980) $$\sigma_{dEdx} = 0.47 N^{-0.46} (Ph)^{-0.32} (dE/dx)_{trunc}$$ N = number of dEdx samples P = pressures in atomspheres h = pad length (in cm) $$\sigma_{dEdx} = 5.4(L)^{-0.37} \%$$ | Detector | N | h(cm) | P(atm) | expected | Observed | |----------|------------|-----------|--------|----------|----------| | PEP TPC | 183 | 0.4 | 8.5 | 2.9% | 3.4% | | MARK II | 72 | 0.83 | 1.0 | 7.0% | 7.2% | | ALEPH | 340 | 0.4 | 1.0 | 4.3% | 5.1% | | DELPHI | L = 0.76 m | | 1.0 | 6.0% | 5.5% | | EOS | 128 | 1.2 | 1.0 | 4.8% | 5.5% | | STAR | 44 | 1.15/1.95 | 1.0 | 6.8% | 7.0% | | ALICE | L = 1.65 m | | 1.0 | 5.5% | 5.7% | ## Tabulating dE/dx PID | eta | 0 | 0.5 | 0.9 | 1 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | |------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | dE/dx
length | 79.0 | 89.1 | 113.2 | 91.0 | 65.1 | 39.8 | 27.2 | 22.2 | 18.3 | | dE/dx
resolu. | 6.8% | 6.4% | 5.7% | 6.3% | 7.4% | 9.3% | 11.1% | 12.2% | 13.3% | | π/p sep. | 1.45 | 1.46 | 1.49 | 1.47 | 1.43 | 1.36 | 1.29 | 1.25 | 1.21 | | рТ | 1.45 | 1.30 | 1.04 | 0.95 | 0.86 | 0.75 | 0.66 | 0.58 | 0.52 | | rapidity (y) | - | 0.41 | 0.70 | 0.76 | 0.81 | 0.84 | 0.86 | 0.88 | 0.90 | | iTPC
length | 126.0 | 142.1 | 180.6 | 163.6 | 143.5 | 123.1 | 116.3 | 101.1 | 80.0 | | iTPC $\sigma_{\text{dE/dx}}$ | 6.4% | 6.0% | 5.4% | 5.7% | 6.0% | 6.5% | 6.6% | 7.1% | 7.9% | | π/p sep. | 1.47 | 1.48 | 1.50 | 1.49 | 1.48 | 1.46 | 1.46 | 1.44 | 1.41 | | рТ | 1.47 | 1.31 | 1.05 | 0.97 | 0.89 | 0.81 | 0.74 | 0.67 | 0.60 | | rapidity (y) | 0 | 0.41 | 0.70 | 0.77 | 0.82 | 0.87 | 0.92 | 0.95 | 0.98 | Daniel Cebra 09/21/2015 Workshop of STAR Upgrades USTC, Hefei, China ## Particle Identification by TOF $\Delta t = 50 \text{ ps}$ At η =0: π/k is 1.5 GeV/c k/p is 3.0 GeV/c Flight path varies with η ### **Proton Acceptance Limits** #### **Kaon Acceptance Limits** #### **Pion Acceptance Limits** ### 5.5 GeV Si + Au --- E802 Results ## Pion Rapidity Density Distributions #### Au+Al - Unfortunately, we can not really determine the location of the maximum. - We need to also have the inverse kinematics → Al+Au