

Fixed Target Physics in BES II with Detector Upgrades

Daniel Cebra University of California - Davis

History of Low Energy Running at RHIC

RHIC Runs at or Below Nominal Injection Energy:

1. Au+Au 19.6 GeV 2001

2. Cu+Cu 22.4 GeV 2005

3. Au+Au 9.0 GeV 2007

4. Au+Au 9.2 GeV 2008

5. Au+Au 7.7 GeV 2010

6. Au+Au 11.5 GeV 2010

7. Au+Au 5.5 GeV 2010

8. Au+Au 19.6 GeV 2011

9. Au+Au 5.0 GeV 2011

10. Au+Au 14.5 GeV 2014

100 k events

250 k events

0 events

7 k events

4 M events

12 M events

0 events

36 M events

1 event

20 M events

History of Fixed-Target Analysis

- Analysis of the background triggers began in 2008.
- Developing the Beam Energy Scan I Proposal → could not afford to seriously miscalculate the number events.
- Effort was aimed at understanding the background.
- Later realized we could develop a physics program.
- In 2014, we installed an internal gold target.
- Parasitic tests in 2014. Directed beam tests in 2015.

Glauber Model of Au+Al -- Centrality

35 protons with a radius of 3.4 fm

→ Coulomb Potential = 15 MeV

For top 10% central collisions:

- 13 protons from Al
- 14 neutrons from Al
- 22 protons from Au
- 33 neutrons from Au

Physics Results: Spectra, Ratios, and Coulomb Analysis

RHIC Fixed-Target Test Runs 2014 and 2015

Workshop of STAR Upgrades USTC, Hefei, China

Imaging the Gold Target - 2014

Centrality Determination - 2014

Physics Results: Spectra, Ratios, and Coulomb Analysis

Workshop of STAR Upgrades USTC, Hefei, China

Physics results: Fluctuations and Correlations

Fixed Target Physics in BES II with Detector Upgrades

Upgrade Capabilities

- Low p_{T} acceptance \rightarrow Determined by the minimum hit requirement (10)
 - Current TPC $p_{T} > 120 \text{ MeV/c}$
 - iTPC $-p_T > 70 \text{ MeV/c}$
- Momentum Resolution:
 - Mostly determined by track length, only improves with the square root of samples
- Pseudorapidity Acceptance
 Limited by 10 hit requirements
- Particle Identification:
 - •dE/dx Resolution

$$\sigma_{dEdx} = 0.47 N^{-0.46} (Ph)^{-0.32} (dE/dx)_{trunc}$$

ToF Resolution

$$TOF = d / \beta c$$

$$t + \Delta t = \frac{d}{c} \left(\frac{1}{\beta} + \delta \frac{1}{\beta} \right)$$

Conversion of psuedorapidity to rapidity -- Protons

Collider Energy	Fixed- Target Energy	Single beam AGeV	Center- of-mass Rapidity	μ _в (MeV)
62.4	7.7	30.3	2.10	420
39	6.2	18.6	1.87	487
27	5.2	12.6	1.68	541
19.6	4.5	8.9	1.52	589
14.5	3.9	6.3	1.37	633
11.5	3.5	4.8	1.25	666
9.1	3.2	3.6	1.13	699
7.7	3.0	2.9	1.05	721

The Onset of Deconfinement:

- High p_⊤ suppression
- N_{CO} scaling of Elliptic Flow
- LPV through three particle correlators (CME)
- Balance Functions
- Strangeness Enhancement

<u>Compressibility → First Order Phase Transition</u>

- Directed flow
- Tilt angle of the HBT source
- The Volume of the HBT source
- The width of the pion rapidity distributions (Dale)
- The zero crossing of the elliptic flow (~6 AGeV)
- Volume measures from Coulomb Potential

Criticality:

- Higher moments
- Particle Ratio Fluctuations

Chirality:

• Dilepton studies

No measurements in this energy range

BESII FXT Physics Program

Hypernuclei:

• ³ _^ H Lifetime and excitation function

Daniel Cebra

24 of 28

Search for the Critical Point – $\kappa\sigma^2$

Daniel Cebra 09/21/2015

Workshop of STAR Upgrades USTC, Hefei, China

25 of 28

Yields of Hadrons → Mapping the Phase Boundary

Acceptance of π , K, p is good to midrapidity at all FXT energies. Acceptance for weak decay parents should be good as well.

Measurements can be extrapolated to 4π

Will be able to extend the low energy limits of measurements of most strange hadrons

 4π strange hadron yields are needed for chemical equilibrium models to determine T and μ_B

Hypernuclei

Perfect energy range to map out the production of $^3_\Lambda H$ and $^4_\Lambda H$

Previously only measured at two energies

Dynamic range will exclude searches for doubly strange hypernuclei

Quark-Gluon Plasma **Femperature** Critical Point First Order Hadronic Gas

Baryon Chemical Potential μ_{B}

Conclusions:

- BES program is designed to study the phase diagram of QCD matter
- Need to access lower energy range to study all region of the phase diagram
- Fixed Target program along with key upgrades allows us to scan from 19.6 to 3.0 GeV (200-720 MeV in $\mu_{\rm B}$)

Extra Slides

The

2015 Test Run data are all still "Preview Data" → There are known issues

Low Energy Electron Cooling at RHIC

Electron Cooling can raise the luminosity by a factor of 3-10 in the range from 5 – 20 GeV

Long Bunches increase luminosity by factor of 2-5

energy correction cavity

31 of 28

gun

Energy Loss in TPC

Energy Loss in TPC

TOF $1/\beta$

Workshop of STAR Upgrades USTC, Hefei, China

09/21/2015

Workshop of STAR Upgrades USTC, Hefei, China

Energy Loss in TPC

Pion Ratios

$$(1) E_f = E_i \pm V_C$$

Coulomb Potential

Jacobian

(2)
$$R_f(E_f) = \frac{E_f - V_C}{E_f + V_C} \frac{\sqrt{(E_f - V_C)^2 - m^2}}{\sqrt{(E_f + V_C)^2 - m^2}} \frac{n^+ (E_f - V_C)}{n^- (E_f + V_C)}$$

(3)
$$\frac{n^{+}(E_{f}-V_{C})}{n^{-}(E_{f}+V_{C})} = \frac{A^{+}(e^{(E_{f}+V_{C})/T_{\pi}}-1)}{A^{-}(e^{(E_{f}-V_{C})/T_{\pi}}-1)}$$

Bose-Einstein Formulae

(4) $V_{eff} = V_C (1 - e^{-E_{\text{max}}/T_p})$

$$E_{\text{max}} = \sqrt{(m_p p_{\pi} / m_{\pi})^2 + m_p^2 - m_p}$$

Energy where the proton is faster then the pions with a given momentum

$$V_C = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$$

Glauber 0-5% Au+Au → Coulomb potential of 68+68 within a radius of 7 fm = 28 MV

Glauber 0-10% Au+Al → Coulomb potential of 22+13 within a radius of 3.4 fm = 15 MV

There are 22 protons from gold in the overlap region

Experiment	System	Energy (GeV)	Coulomb Potential	Initial Pion Ratio		
KaoS	Au+Au	2.2	27.8 +/- 1.3	0.469 +/-0.011		
E866	Au+Au	4.8	16.3 +/- 1.9	0.771 +/- 0.011		
WA98	Pb+Pb	17.3	9.8 +/- 0.6	0.934 +/- 0.004		
STAR	Au+Au	39	6.6 +/- 8.7	0.977 +/- 0.021		
STAR	Au+Al	4.5	8.0 +/- 1.2	0.910 +/- 0.005		
STAR	Au+Al	3.5	11.5 +/- 0.7	0.878 +/- 0.004		
STAR	Au+Al	3.0	14.4 +/- 1.2	0.830 +/- 0.008		

Nucleonic Resonances and Pions

Consider the numbers:

Nucleon-Nucleon Interactions:

$$n + n \rightarrow 7(\Delta^{-} + p) : 1(\Delta^{0} + n)$$

$$p + p \rightarrow 7(\Delta^{++} + n) : 1(\Delta^{+} + p)$$

$$p + n \rightarrow 1(\Delta^0 + p) : 1(\Delta^+ + p)$$

Charged Pion Decay Channels:

$$\Delta^{++} \rightarrow p + \pi^{+}$$

$$\Delta^+ \rightarrow n + \pi^+$$

$$\Delta^0 \rightarrow p + \pi^-$$

$$\Delta^{-} \rightarrow n + \pi^{-}$$

0-5% Au +Au \rightarrow Glauber Model predicts $\langle N_{part} \rangle = 354$

 \rightarrow more neutrons than protons, 218:136

More neutron interactions → more Pi-minus than Pi-plus

(2.27:1)

STAR Low p_T acceptance is dependent on the track quality cuts.

Minimum of 10 hits for a track

Quality tracks require at least 25 hits.

Current TPC low p_T limit is 112.5 MeV/c

iTPC low p_T limit is 71 MeV/c

Momentum Resolution

$$(\delta k)^2 = (\delta k_{res})^2 + (\delta k_{ms})^2$$

$$k \equiv 1/R$$

$$p\cos\lambda = p\sin\theta = p_T = 0.3qBR$$

p = momentum (MeV/c)
$$\sigma_{\star}$$
 = transverse resolutio

$$\sigma_t$$
 = transverse resolution

$$\beta$$
 = velocity

Tracking Term

Multiple Scattering

For STAR, the predicted momentum resolution is 1.4% at p_T of 400 MeV at mid-rapidity (from res. and ms terms). From tracking the resolution gets about 0.8% worse for each additional GeV

At STAR, resolution is 3% at 100 MeV

Term

09/21/2015

The biggest effect -> Shifting the vertex

USTC, Hefei, China

dE/dx Resolution

From Allison and Cobb, Ann. Rev. Nucl. Part. Sci. 30, 253 (1980)

$$\sigma_{dEdx} = 0.47 N^{-0.46} (Ph)^{-0.32} (dE/dx)_{trunc}$$

N = number of dEdx samples

P = pressures in atomspheres

h = pad length (in cm)

$$\sigma_{dEdx} = 5.4(L)^{-0.37} \%$$

Detector	N	h(cm)	P(atm)	expected	Observed
PEP TPC	183	0.4	8.5	2.9%	3.4%
MARK II	72	0.83	1.0	7.0%	7.2%
ALEPH	340	0.4	1.0	4.3%	5.1%
DELPHI	L = 0.76 m		1.0	6.0%	5.5%
EOS	128	1.2	1.0	4.8%	5.5%
STAR	44	1.15/1.95	1.0	6.8%	7.0%
ALICE	L = 1.65 m		1.0	5.5%	5.7%

Tabulating dE/dx PID

eta	0	0.5	0.9	1	1.1	1.2	1.3	1.4	1.5
dE/dx length	79.0	89.1	113.2	91.0	65.1	39.8	27.2	22.2	18.3
dE/dx resolu.	6.8%	6.4%	5.7%	6.3%	7.4%	9.3%	11.1%	12.2%	13.3%
π/p sep.	1.45	1.46	1.49	1.47	1.43	1.36	1.29	1.25	1.21
рТ	1.45	1.30	1.04	0.95	0.86	0.75	0.66	0.58	0.52
rapidity (y)	-	0.41	0.70	0.76	0.81	0.84	0.86	0.88	0.90
iTPC length	126.0	142.1	180.6	163.6	143.5	123.1	116.3	101.1	80.0
iTPC $\sigma_{\text{dE/dx}}$	6.4%	6.0%	5.4%	5.7%	6.0%	6.5%	6.6%	7.1%	7.9%
π/p sep.	1.47	1.48	1.50	1.49	1.48	1.46	1.46	1.44	1.41
рТ	1.47	1.31	1.05	0.97	0.89	0.81	0.74	0.67	0.60
rapidity (y)	0	0.41	0.70	0.77	0.82	0.87	0.92	0.95	0.98

Daniel Cebra 09/21/2015

Workshop of STAR Upgrades USTC, Hefei, China

Particle Identification by TOF

 $\Delta t = 50 \text{ ps}$

At η =0:

 π/k is 1.5 GeV/c k/p is 3.0 GeV/c

Flight path varies with η

Proton Acceptance Limits

Kaon Acceptance Limits

Pion Acceptance Limits

5.5 GeV Si + Au --- E802 Results

Pion Rapidity Density Distributions

Au+Al

- Unfortunately, we can not really determine the location of the maximum.
- We need to also have the inverse kinematics → Al+Au

