

Charmonium-like states in the $D\bar{D} - D_s\bar{D}_s$ coupled-channel system

Pan-Pan Shi

Institute of Theoretical Physics, Chinese Academy of Sciences

BESIII 粲强子物理研讨会@中国科学技术大学 2023-04-09

PPS, Miguel Albaladejo, Meng-Lin Du, Feng-Kun Guo, Juan Nieves, in preparation.

outline

1 Introduction

Spectrum of mesons on the hidden charm region

Categorization of hadrons

• The debates about the nature of exotics still exist Ordinary hadrons Exotic hadrons

H.-X. Chen, et al., Rept. Prog. Phys. 86 (2023) 2, 026201

Pan-Pan Shi (ITP,CAS) Charmonium-like states in the $D\bar{D}$ –

X(3960)

• LHCb Collaboration obserbed a new state X(3960) in $B^+ \to D^+_s D^-_s K^+$ process, whose significance is greater than 12 σ LHCb, arXiv:2210.15153, 2211.05034

 $M = (3956 \pm 5 \pm 10) \text{ MeV}, \ \Gamma = (43 \pm 13 \pm 8) \text{ MeV}, \ J^{PC} = 0^{++}.$

- X(3960) is a virtual state below $D_s \overline{D}_s$ threshold Teng Ji, et al., PRD 106(2022)094002; arXiv:2212.00631 (2022)
- Based on the $D\bar{D} D_s\bar{D}_s$ coupled-channel analysis, two bound states are found below $D\bar{D}$ and $D_s\bar{D}_s$ threshold M.

Bayar, et al., PRD 107 034007 (2023)

- With the OBE potential, $D^*\bar{D}^*$ and $D^*_s\bar{D}^*_s$ are important to the formation of X(3960) Rui Chen, et al., 2209.05180 (2022)
- X(3960) is a $D_s^+D_s^-$ molecule with QCD sum rules Qi Xin, et al.,

AAPPS Bull. 32 (2022) 1, 37; Halil Mutuk, EPJC 82 (2022)12, 1142

• The production $D_s\bar{D}_s$ molecule via the B decay process (10^{-4}) Jia-Ming Xie, et al. Phys.Rev.D 107 (2023) 1, 016003

Pan-Pan Shi (ITP,CAS)

Charmonium-like states in the $D\bar{D}$ –

Lattice Data

										E	calc [GeV], A ₁ ⁺ P=0	1	E ^{calc} [Ge\	/], A ₁ P ² =1		E ^{calc} [GeV], A ₁ P ² =2	2	E _{cm} [GeV]	, B ₁ P ² =1
										Γ	\mathbb{Z}				<u></u>	-					
										4.1	× F		4.1+			4.1-			4.1+	\sim	
	$ \vec{P} ^2$	$\Lambda^{(P)C}$	0	$N_{\rm ops}$		$ \vec{P} ^2$	$\Lambda^{(P)C}$	0	$N_{\rm ops}$.	\sim			_1	<	·				I	
O_h	0	A_1^{++}	ēc	7	Dic_4	1	B_1^+	ōc -	11	4.+		+	4.+	*		4		100	4. +	I	
			$D(0)\overline{D}(0)$	2				$D(2)\bar{D}(1)$	1		Ť,	-		-	+*		-				
			$D(1)\bar{D}(1)$	1	Dic_2	2	A_{1}^{+}	õc.	28	3.9+	Ť		3.9+			3.9-	- T		- 3.9+		
			$D_s(0)\bar{D}_s(0)$	2				$D(2)\overline{D}(0)$	2	-		•			•		I	•		I	+
			$D^*(0)\bar{D}^*(0)$	2				$D(1)\overline{D}(1)$	2	3.8-			3.8+			3.8-	- I		3.8-	1	
			$J/\psi(0)\omega(0)$	2				$D(2)\overline{D}(2)$	1												
Dic ₄	1	A_1^+	ēc.	17				$D(3)\bar{D}(1)$	1	3.7 -			3.7+			3.7-	-		3.7 -		
			$D(1)\overline{D}(0)$	2				$D_s(2)\overline{D}_s(0)$	1												
			$D(2)\bar{D}(1)$	1				$D_s(1)\overline{D}_s(1)$	1	26			261			26			26		
			$D_s(1)\overline{D}_s(0)$	2				$J/\psi(2)\omega(0)$	3	3.0			5.0			5.0		•.	5.0		
			$J/\psi(1)\omega(0)$	2						2.6			2.5	•			••		2.5	•	
										3.5+			3.5+			3.5-	-		3.5+		
											•	- T.		•	· ·		•	- C			
										3.4			- 3.4⊥			- 3.4-			- 3.4		
											24	32		24	32		24	32		24	32

Ha

• Single channel:

 $D\overline{D}$ channel: levels n=2(3) from $|\vec{P}| = 0(1)$; $D_s\overline{D}_s$ channel: levels n=3, 4 for $|\vec{P}| = 0(1)$ and $N_L = 24$, and n=4, 7 for $|\vec{P}| = 1(2)$ and $N_L = 32$;

1/a

Ha

• Coupled channel: 14(13) bins for $E_{cm} \approx 3.93 - 4.13 \text{ GeV}$ (n=6 for $|\vec{P}| = 1$ and $N_L = 24$ is dominated by $c\bar{c}^{[J=2]}$).

S. Prelovsek, et al., JHEP 06 (2021) 035.

L/a

 χ_{c2} is likely related to conventional $\chi_{c2}(3930)$ in L = 2 DD scattering; χ'_{c0} is likely related to $\chi_{c0}(3860)$; $\chi^{D_s \bar{D}_s}_{c0}$ is possibly related to $\chi_{c0}(3930)/X(3915)$.

T-Matrix in the infinite and finite volumes

• T-matrix in infinite and finite volume E. Cincioglu, EPJC 76(2016)10, 576

$$T = F_{\Lambda}(k) \frac{V(E)}{1 - V(E)G(E)} F_{\Lambda}(k), \quad \tilde{T} = F_{\Lambda}(k) \frac{V(E)}{1 - V(E)\tilde{G}(E)} F_{\Lambda}(k),$$

with Gaussian matrix of form factor

$$F_{\Lambda}(k) = \begin{pmatrix} \mathsf{diag}[f_{\lambda}(k)]_{n imes n} & 0 \\ 0 & 1 \end{pmatrix}, \text{ and } f_{\lambda}(k) = e^{-k^2/\Lambda}.$$

• Potential for the $D\bar{D} - D_s\bar{D}_s$ coupled-channel system

$$V(E) = \begin{pmatrix} C_{0a} & \frac{\sqrt{2}}{2} \left(C_{0a} - C_{1a} \right) & -\frac{\sqrt{3}}{2} d \\ \frac{\sqrt{2}}{2} \left(C_{0a} - C_{1a} \right) & \frac{1}{2} \left(C_{0a} + C_{1a} \right) & -\frac{\sqrt{3}}{2} d \\ -\frac{\sqrt{3}}{2} d & -\frac{\sqrt{3}}{2} d & 0 \end{pmatrix},$$

The potential includes the contact term and the contribution of a bare charmonium.

Pan-Pan Shi (ITP,CAS)

Charmonium-like states in the $D\bar{D}$ –

Green's function in the infinite and finite volume

$$G(E) = \begin{pmatrix} [G(E)]_{2 \times 2} & 0\\ 0 & \frac{1}{E^2 - \overset{\circ}{m}_{\chi_{c0}}^2} \end{pmatrix}, \\ \tilde{G}(E) = \begin{pmatrix} [\tilde{G}(E)]_{2 \times 2} & 0\\ 0 & \frac{1}{E^2 - \overset{\circ}{m}_{\chi_{c0}}^2} \end{pmatrix}$$

Green's function in the infinite volume

$$G_{ii}(E) = \int \frac{d^3q}{(2\pi)^3} \frac{(w_{i1} + w_{i2})e^{-2q^2/\Lambda^2}}{2w_{i1}w_{i2}\left[E - (w_{i1} + w_{i2})^2 + i\epsilon\right]},$$

• Green's function in the finite volume M. Gockeler, et al., PRD 86(2012)094513

$$\begin{split} \tilde{G}_{ii}^{d}(E,L) &= \frac{1}{L^{3}} \sum_{\vec{q}_{n} \in \Gamma_{d}} \frac{\left(\tilde{w}_{1} + \tilde{w}_{2}\right) e^{-2\vec{q}_{n}^{2}/\Lambda^{2}}}{2\tilde{w}_{1}\tilde{w}_{2} \left[E^{2} - \left(\tilde{w}_{1} + \tilde{w}_{2}\right)^{2}\right]}, \\ \text{where } \Gamma_{d} &= \left\{ \frac{\vec{q}_{n}|\vec{q}_{n} = \frac{2\pi}{L} \left[\frac{\vec{n} - \frac{\vec{d}}{2} \left(1 + \frac{m_{1}^{2} - m_{2}^{2}}{s}\right) \right], \quad \vec{n} \in \mathbb{Z}^{3} \right\}. \\ \text{In above, } \tilde{w}_{i1(2)} &= \sqrt{\vec{q}^{2} + m_{i1(2)}^{2}} \text{ and } \tilde{w}_{i1(2)} = \sqrt{\vec{q}_{n}^{2} + m_{i1(2)}^{2}}. \end{split}$$

Fit the lattice data

We fit the lattice data with four methods: the lattice data in the rest frame with cutoff $\Lambda = 0.5$ GeV (Fit 1) and $\Lambda = 1.0$ GeV (Fit 2); the lattice data both in the rest and moving frames with cutoff $\Lambda = 0.5$ GeV (Fit 3) and $\Lambda = 1.0$ GeV (Fit 4).

	$\stackrel{\circ}{m}_{\chi_{c0}}$ [GeV]	d [fm ^{1/2}]	C_{0a} [fm ²]	C_{1a} [fm ²]	$\chi^2/{\sf d.o.f.}$
Fit 1	3.95(2)	0.77(20)	-0.46(48)	-0.49(30)	1.30
Fit 2	4.06(10)	0.57(32)	-0.47(22)	-0.36(13)	1.63
Fit 3	3.99(1)	0.35(29)	-1.32(30)	-0.93(22)	3.40
Fit 4	4.11(5)	0.36(11)	-0.54(7)	-0.52(6)	3.23

Table 1: Parameters fitted from lattice data.

- For Fit 1 and Fit 2, the bare masses of charmionium are above the $D_s \overline{D}_s$ threshold about -17 and 97 MeV; For Fit 3 and Fit 4, the bare masses of charmonium are above the $D_s \overline{D}_s$ about 30 and 145 MeV;
- Because of the contribution of bare charmonium (~ $d^2/[E^2 (\overset{\circ}{m}_{\chi_{c0}})^2]$), $|C_{0a}|$ is not much larger than $|C_{1a}|$.

Energy levels

Figure 1: The left (right) panel is relative to $\Lambda = 0.5$ GeV ($\Lambda = 1.0$ GeV).

Pan-Pan Shi (ITP,CAS)

Figure 2: Volume dependence of the energy levels in the moving frame. The left (right) panel is relative to $\Lambda = 0.5$ GeV ($\Lambda = 1.0$ GeV).

Poles in the infinite-volume *T***-matrix**

Table 2: Poles information of the $D\bar{D} - D_s\bar{D}_s$ coupled-channel system for the Fit 1.

Pole [MeV]	3852.8 - 0i	3942.2 - 18.9i	4020.1 - 49.2i	4006.5 - 42.1i	
RS	(+,+)	(-,+)	(-, -)	(+, -)	
Channel		Couplin	g $g_{i,r}$ [GeV]		
$D\bar{D}$	6.44 + 0i	4.55 + 3.28i	2.29 + 1.85i	3.21 + 1.82i	
$D_s \bar{D}_s$	4.96 + 0i	16.62 + 6.64i	3.63 + 5.08i	4.06 + 6.30i	
Channel		Wei	ght $P_{i,r}$		
$D\bar{D}$	0.92	0.05	0.01	0.02	
$D_s \overline{D}_s$	0.01	-3.75	0.18	0.32	

- A bound state below $D\bar{D}$ threshold with $E_B = -1.0$ MeV; a pole on the second RS with binding energy $E_B = -(20 + 18.9i)$ MeV;
- the pole on the fourth RS is a shadow pole of the pole on the third RS. R.J. Eden, et al., Phys.Rev. 133(1964)B1575-B1580.

Table 3: Poles information of the $D\bar{D} - D_s\bar{D}_s$ coupled-channel system for the Fit 2.

Pole [MeV]	3850.7 - 0i	3969.6 - 8.3i	4125.4 - 72.1i	4090.6 - 25.1i		
RS	(+,+)	(-,+)	(-, -)	(+, -)		
Channel	Coupling $g_{i,r}$ [GeV]					
$D\bar{D}$	8.37 + 0i	0.61 + 5.80i	3.43 + 3.31i	7.05 - 0.91i		
$D_s \bar{D}_s$	5.38 + 0i	9.01 + 7.54i	4.12 + 5.13i	7.64 + 6.20i		
Channel		We	eight $P_{i,r}$			
$D\bar{D}$	0.91	0.08	0.03	-0.06		
$D_s \bar{D}_s$	0.02	-1.06	0.08	0.01		

- A bound state below $D\bar{D}$ threshold with $E_B = -3.1$ MeV; a pole on the second RS with binding energy $E_B = (7.5-8.3i)$ MeV;
- the pole on the fourth RS is a shadow pole.

Table 4: Poles information of the $D\overline{D} - D_s\overline{D}_s$ coupled-channel system for the Fit 3.

Pole [MeV]	3853.4 - 0i	3961.2 - 0.6i	4001.9 - 9.5i	4000.1 - 6.5i	
RS	(+, +)	(-,+)	(-, -)	(+, -)	
Channel		Couplin	g $g_{i,r}$ [GeV]		
$D\bar{D}$	5.21 - 0i	0.91 + 0.52i	1.35 + 0.70i	1.67 + 0.10i	
$D_s \bar{D}_s$	1.80 + 0i	6.80 + 1.17i	2.65 + 3.28i	3.22 + 3.32i	
Channel		Wei	ght $P_{i,r}$		
$D\bar{D}$	0.99	0.93×10^{-3}	1.92×10^{-3}	0.57×10^{-3}	
$D_s \bar{D}_s$	0.86×10^{-3}	-1.68	0.04	0.03	

- A bound state below $D\overline{D}$ threshold with $E_B = -0.4$ MeV; a pole on the second RS with binding energy $E_B = -(1.0 + 0.6i)$ MeV;
- the pole on the fourth RS is a shadow pole.

Table 5: Poles information of the $D\bar{D} - D_s\bar{D}_s$ coupled-channel system for the Fit 4.

Pole [MeV]	3853.7 - 0i	3962.2 - 0.1i	4128.3 - 28.3i	4124.2 - 6.3i	
RS	(-,+)	(-,+)	(-, -)	(+, -)	
Channel		Couplir	ng $g_{i,r}$ [GeV]		
$D\bar{D}$	0 + 3.47i	0.12 + 0.65i	2.88 + 1.82i	3.44 - 1.32i	
$D_s \bar{D}_s$	0 + 1.02i	3.17 + 1.97i	3.41 + 3.21i	4.13 + 2.98i	
Channel		We	ight $P_{i,r}$		
$D\bar{D}$	1.00	0.91×10^{-3}	0.01	-0.01	
$D_s \bar{D}_s$	0.02	-1.05	0.01	-0.76×10^{-3}	

- A virtual state below $D\overline{D}$ threshold with $E_B = -0.1$ MeV; a pole on the second RS with binding energy $E_B = (0.1-0.1i)$ MeV.
- the pole on the fourth RS is a shadow pole.

- Since the low-energy constants is fitted by lattice data in both rest and moving frames with $\Lambda = 1.0$ GeV, the virtual state is present below $D\bar{D}$ threshold; in other cases, that state is relative to a loosely bound state.
- A pole close to $D_s \overline{D}_s$ threshold is on the 2th Riemann sheet.
- Poles located at 3th and 4th Riemann sheets are above $D_s \bar{D}_s$ threshold. The pole on the 4th Riemann sheet is a shadow pole of the 3th Riemann sheet.

Thanks for your attention!