

Theoretical study of heavy flavor physics

Cai-Dian Lü(吕才典)

CFHEP, Institute of High Energy Physics, Beijing

Outline

- Introduction/Overview
- Theory of non-leptonic B decays
- Polarizations
- Factorization assisted topological diagram approach for hadronic B/D decays
- Summary

Flavor physics is important

Progress in flavour physics may help understand open questions in cosmology -SM CPV insufficient to explain matter/antimatter asymmetry

Flavour physics is a proven tool of discovery:

- BR(K⁰_L \rightarrow µµ) & GIM \rightarrow prediction of charm
- \bullet CP violation \rightarrow need for a third generation
- \bullet B mixing \rightarrow mass of top is very heavy

Lesson from history: precise measurements of processes suppressed in existing theories have high sensitivity to new physics (NP) contributions. An excellent way to look for the NP expected at the TeV scale!

CKM triangle measurement

The CKM (Cabibbo·Kobayashi·Maskawa) matrix

Another possible parametrisations (Chau and Keung parametrisation, adopted by PDG):

rancis naukas co

New physics probes

Search for deviations from SM predictions from virtual contributions of new heavy particles in loop processes

- Measure CP violating phases and study rare decays of heavy quarks
- Compare to very precise predictions of the SM

▷ Uncertainties from QCD is main problem

 Most interesting processes those where SM contribution is suppressed (e.g FCNC)

▷ Effects of New Physics (NP) are large

 Discovery potential for NP extends to mass scales >> centre-of-mass energy of collision

$\bar{B} ightarrow D^{(*)} au ar{ u}$ Br ~ 0.7+1.3 % in the SM

Not rare, but two or more missing neutrinos Data available since 2007 (Belle, BABAR, LHCb)

Theoretical motivation

W.S. Hou and B. Grzadkowski (1992)

SM: gauge coupling lepton universality

Type-II 2HDM (SUSY) Yukawa coupling $\propto m_b m_\tau \tan^2 \beta$

$$R(X) = \frac{\Gamma(B \to X\tau\bar{\nu})}{\Gamma(B \to X(e/\mu)\bar{\nu})}$$

Experiments

 $R(D) = 0.421 \pm 0.058$ $R(D^*) = 0.337 \pm 0.025$ ~3.5 σ Y. Sakaki, MT, A. Tayduganov, R. Watanabe

 $R(D) = 0.391 \pm 0.041 \pm 0.028$ $R(D^*) = 0.322 \pm 0.018 \pm 0.012$ $\sim 3.9\sigma \qquad \text{HFAG}$

Standard model predictions

Theoretical uncertainty: form factors data from $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu} \ (\ell = e, \mu)$ + HQET or pQCD + lattice QCD

$$\begin{split} R(D) &= 0.296 \pm 0.016 \text{ (Fajfer, Kamenik, Nisandzic)} \\ &= 0.302 \pm 0.015 \text{ (Sakaki, MT, Tayduganov, Watanabe)} \\ &= 0.299 \pm 0.011 \text{ (Bailey et al.)} \\ &= 0.337^{+0.038}_{-0.037} \text{ (Fan, Xiao, Wang, Li)} \\ &= 0.391 \pm 0.041 \pm 0.028 \text{ (Exp. HFAG)} \end{split}$$

$$\begin{split} R(D^*) &= 0.252 \pm 0.003 \text{ (Fajfer, Kamenik, Nisandzic)} \\ &= 0.252 \pm 0.004 \text{ (Sakaki, MT, Tayduganov, Watanabe)} \\ &= 0.269^{+0.021}_{-0.020} \quad \text{(Fan, Xiao, Wang, Li)} \\ &= 0.322 \pm 0.018 \pm 0.012 \text{ (Exp. HFAG)} \end{split}$$

Rich physics in hadronic B decays

How can we test the standard model without solving QCD?

Perturbative calculations

- In principle, all hadronic physics should be calculated by QCD
- In fact, you can always use QCD to calculate any process,
- provided you can renormalize the infinities and do all order calculations.

Divergences

- Perturbation calculation means order by order
- Involving loop diagrams
- Therefore divergences unavoidable
- Ultraviolet divergences \rightarrow renormalization
- Infrared divergences ? Infrared divergence in virtual corrections should be canceled by real emission
- In exclusive QCD processes \rightarrow factorization

It is very difficult for exclusive processes

- infrared finite seems not possible, no free gluon can be emitted
- Infrared divergence should be absorbed into meson wave function (distribution amplitude)
- This is called factorization

Factorization can only be proved in power expansion by operator product expansion. To achieve that, we need a hard scale Q

- In the certain order of 1/Q expansion, the hard dynamics characterized by Q and the soft dynamic factorize
- The former into hard kernals H and the latter into distribution amplitude $\boldsymbol{\varphi}$
- Factorization theorem holds up to all oders in $\alpha_{s},$ but to cerntain power in 1/Q
- H is process-dependent, but calculable
- \$\$\$ are universal (process-independent)
 \$\$ predictive
 power of factorization theorem
 \$\$
- In B decays the hard scale Q is just the b quark mass

Hadronic matrix elements calculations

- QCD-methods based on factorization work well for many processes
 - Perturbative QCD approach based on *k*_T factorization [Keum, Li, Sanda, 00'; Lu, Ukai, Yang, 00']
 - collinear QCD Factorization approach [Beneke, Buchalla, Neubert, Sachrajda, 99']
 - Soft-Collinear Effective Theory [Bauer, Pirjol, Stewart, 01']
 - Unavailable for 1/mb power corrections
- Topological diagrammatic approach

[Chau, Cheng, et al, 91'; Chiang, Rosner, et al, 04']

* Work well for most of charmless B decays, except for pi K puzzle etc.

Recently many CP measurements for 3-body B decays

W.F Wang, H.n. Li, Wei Wang, CDL, PRD91 (2015) 9, 094024

In perturbative QCD approach

$$B^{0}_{(s)} \to J/\Psi \pi^{+} \pi^{-}$$

S-wave resonant states

CP Violation in $B \rightarrow \pi \pi (K)$ (real prediction before exp.)						
				(2001)	(2004)	
	CP(%)	FA	BBNS	PQCD	Exp	

 $+5\pm9$

 $\pi^+ K^-$

 $+9\pm3$

A •	Annihilation type diagram play a very important role						
	$\pi^{+}\pi^{-}$	- 5 ±3	-6 ±12	+30±10	+38±7		

 -17 ± 5

in direct CP violation of B decays by providing the necessary strong phase. (Phys.Lett. B504 (2001) 6; Phys.Rev. D63 (2001) 074009)

 -9.7 ± 1.2

For (V-A)(V-A), left-handed current

pseudo-scalar B requires spins in opposite directions, namely, helicity conservation

Annihilation suppression ~ $1/m_B$ ~ 10%

Annihilation-Type diagrams

Pure annihilation type decay Bs $\rightarrow \pi^+\pi^-$

 Very rare decay predicted in PRD76, 074018 (2008)
 BR=(5.7 ± 1.7)x10⁻⁷
 No one expected to be measured

Agreement with pQCD: 0.57^{+0.18}-0.16 PRD 76, 074018(2008), and 0.42± 0.06 from Y Li et al., PRD 70, 034009 (2004)

Counting Rules for $B \rightarrow VV$ Polarization

- The measured longitudinal fractions R_L for $B \rightarrow \rho \rho$ are close to 1.
- R_L~ 0.5 in \(\phi\) K^{*} dramatically differs from the counting rules.
- Are the ϕK^* polarizations understandable?
- Starting point: left-handed current in weak interaction

 $\bigstar \overline{H}_{00} : \overline{H}_{--} : \overline{H}_{++} \sim \mathcal{O}(1) : \mathcal{O}(1/m_b) : \mathcal{O}(1/m_b^2)$ 00, --, ++ stand for longitudinal, negative, positive helicity

 $\overline{H}_{--}/\overline{H}_{00} = \mathcal{O}(m_{\phi}/m_b)$: the helicity flip for \overline{s} in the ϕ meson is required

$$R_L = \Gamma_L / \Gamma_{total} = \mathcal{O}(1), R_N \sim R_T = \mathcal{O}(m_V^2 / m_B^2)$$

The (S+P)(S-P) current can break the counting rule,

The annihilation diagram contributes equally to the three polarization amplitudes

	Branching ratio(10 ⁻⁶)			Polarizations \boldsymbol{f}_L		
	QCDF	PQCD	Expt	QCDF	PQCD	Expt
Bs→K ^{*+} K ^{*-}	7.6	5.5		0.52	0.41	
Bs→K ^{*0} <u>K^{*0}</u>	6.6	5.4	28.1±4.6±5.6	0.56	0.38	0.31±0.13
Bs → ρ⁰Φ	0.18	0.23		0.88	0.86	
$Bs \rightarrow \omega \Phi$	0.18	0.17		0.95	0.69	
Bs → ΦΦ	16.7	16.7	19±5	0.36	0.35	0.36±0.02
Bs → <u>K^{*0}</u> Φ	0.37	0.39	1.1±0.29	0.43	0.50	0.51±0.17

Phys.Rev. D91 (2015) 054033

More obsevables

Modes	$Br(10^{-6})$	$f_L(\%)$	f_{\perp} (%)	$\phi_{\parallel}(\mathrm{rad})$
$B^0 \to K^{*0} \phi$	$9.8^{+4.9}_{-3.8}$	$56.5^{+5.8}_{-5.9}$	$21.3^{+2.8}_{-2.9}$	$2.15_{-0.19}^{+0.22}$
Exp	9.8 ± 0.6	48 ± 3	24 ± 5	2.40 ± 0.13
$B^+ \to K^{*+} \phi$	$10.3^{+4.9}_{-3.8}$	$57.0^{+6.3}_{-5.9}$	$21.0^{+3.0}_{-3.0}$	$2.18^{+0.23}_{-0.19}$
Exp	10.0 ± 2.0	50 ± 5	20 ± 5	2.34 ± 0.18
$B_s \to \phi \phi$	$16.7^{+8.9}_{-7.1}$	$34.7^{+8.9}_{-7.1}$	$31.6^{+3.5}_{-4.4}$	$2.01_{-0.23}^{+0.23}$
Exp	19 ± 5	34.8 ± 4.6	$36.5 \pm 4.4 \pm 2.7$	$2.71^{+0.31}_{-0.36}\pm0.22$
$B_s \to \bar{K}^{*0} \phi$	$0.39_{-0.17}^{+0.20}$	$50.0^{+8.1}_{-7.2}$	$24.2^{+3.6}_{-3.9}$	$1.95_{-0.22}^{-0.21}$
Exp^{a}	1.10 ± 0.29	$51\pm15\pm7$	$28\pm11\pm2$	$1.75 \pm 0.58 \pm 0.30$
$B_s \to K^{*0} \bar{K}^{*0}$	$5.4^{+3.0}_{-2.4}$	$38.3^{+12.1}_{-10.5}$	$30.0^{+5.3}_{-6.1}$	$2.12\substack{+0.21 \\ -0.25}$
Exp 2	$8.1 \pm 4.6 \pm 5.6$	$31 \pm 12 \pm 4$	$38\pm11\pm4$	

More obsevables

Modes	$Br(10^{-6})$	$f_L(\%)$	f_{\perp} (%)	$\phi_{\parallel}(\mathrm{rad})$
$B^0 \to K^{*0} \phi$	$9.8^{+4.9}_{-3.8}$	$56.5^{+5.8}_{-5.9}$	$21.3^{+2.8}_{-2.9}$	$2.15_{-0.19}^{+0.22}$
Exp	9.8 ± 0.6	48 ± 3	24 ± 5	2.40 ± 0.13
$B^+ \to K^{*+} \phi$	$10.3^{+4.9}_{-3.8}$	$57.0^{+6.3}_{-5.9}$	$21.0^{+3.0}_{-3.0}$	$2.18^{+0.23}_{-0.19}$
Exp	10.0 ± 2.0	50 ± 5	20 ± 5	2.34 ± 0.18
$B_s \to \phi \phi$	$16.7^{+8.9}_{-7.1}$	$34.7^{+8.9}_{-7.1}$	$31.6^{+3.5}_{-4.4}$	$2.01_{-0.23}^{+0.23}$
Exp	19 ± 5	34.8 ± 4.6	$36.5 \pm 4.4 \pm 2.7$	$2.71^{+0.31}_{-0.36}\pm0.22$
$B_s \to \bar{K}^{*0} \phi$	$0.39\substack{+0.20\\-0.17}$	$50.0^{+8.1}_{-7.2}$	$24.2_{-3.9}^{+3.6}$	$1.95_{-0.22}^{-0.21}$
Exp^{a}	1.10 ± 0.29	$51\pm15\pm7$	$28\pm11\pm2$	$1.75 \pm 0.58 \pm 0.30$
$B_s \to K^{*0} \bar{K}^{*0}$	$5.4^{+3.0}_{-2.4}$	$38.3^{+12.1}_{-10.5}$	$30.0^{+5.3}_{-6.1}$	$2.12_{-0.25}^{+0.21}$
LHCb(new)	10.5 ± 2.2	20.1 ± 7.0	21.5 =	⊧4.8(f)

Hadronic decays with charm quark in the final states or initial state

- High precision measurements of *B/D* decays already by BaBar, Belle, BESIII and LHCb, and to be pushed by LHCb upgrade and Belle-II.
- High precision in theoretical calculation is urged
- Theoretically, it is not satisfied, since there are mostly model calculations, some QCD sum rules calculation or rely on Lattice QCD: an ultimate tool but a formidable task now
- Charm quark mass is not large enough for heavy quark expansion

Topological diagrammatic approach

[Chiang, Senaha, 07']

- Distinct by weak interaction and flavor flows with all strong interaction encoded, including non-perturbative ones. Model-independent
- Based on flavor SU(3) symmetry. Amplitudes with strong phases extracted from data. SU(3) breaking was lost.
- DP, D*P and DV fitted separately, 5 parameters for each category of decay modes. Less predictive.

For the color favored diagram (T), it is proved factorization to all order of α_s expansion in soft -collinear effective theory,

The decay amplitudes is just the decay constants and
form factors times Wilson coeficients of four quark
operators. The SU(3) breaking effect is
automatically keptNo free parameter

$$T_c^{DP} = i \frac{G_F}{\sqrt{2}} V_{cb} V_{uq}^* a_1(\mu) f_P(m_B^2 - m_D^2) F_0^{B \to D}(m_P^2),$$

For other diagrams, we extract the amplitude and strong phase from experimental data by χ^2 fit

We factorize out the decay constants and form factor to keep the SU(3) breaking effect

$$\begin{split} C_{c}^{DP} &= i \frac{G_{F}}{\sqrt{2}} V_{cb} V_{uq}^{*} f_{D} (m_{B}^{2} - m_{P}^{2}) F_{0}^{B \to P} (m_{D}^{2}) \chi_{c}^{C} e^{i\phi_{c}^{C}}, \\ E_{c}^{DP} &= i \frac{G_{F}}{\sqrt{2}} V_{cb} V_{uq}^{*} m_{B}^{2} f_{B} \frac{f_{D_{(s)}} f_{P}}{f_{D} f_{\pi}} \chi_{c}^{E} e^{i\phi_{c}^{E}}, \end{split}$$

Global Fit for all B→DP, D*P and DV decays (PRD92, 094016 (2015))

• 31 measured modes induced by $b \rightarrow c$ transitions $\chi_c^C = 0.48 \pm 0.01, \quad \phi_c^C = (56.6^{+3.2}_{-3.8})^{\circ},$ $\chi_c^E = 0.024^{+0.002}_{-0.001}, \quad \phi_c^E = (123.9^{+3.3}_{-2.2})^{\circ},$ $\chi^2/d.o.f. = 1.4 |\chi^2$ is much smaller than previous topology diagram approach **Topological amplitudes** $|T_c^{DP}| : |C_c^{DP}| : |E_c^{DP}| \sim 1 : 0.45 : 0.1$

$B \rightarrow DP$

Meson	Mode	Amplitudes	$\mathcal{B}_{ ext{exp}}(imes 10^{-4})$	$\mathcal{B}_{ m th}(imes 10^{-4})$
	Cabibbo-favored	$V_{cb}V_{ud}^{*}$		
\overline{B}^0	$D^+\pi^-$	T + E	26.8 ± 1.3	$24.7^{+0.2}_{-0.1}\pm5.1\pm0.1$
	$D^0\pi^0$	$\frac{1}{\sqrt{2}}(E-C)$	2.6 ± 0.1	$2.5^{+0.1}_{-0.2}\pm0.5\pm0.1$
	$D^0\eta$	$\frac{1}{\sqrt{2}}(C+E)\cos\phi$	2.4 ± 0.3	$1.9 \pm 0.1 \pm 0.4 \pm 0.1$
	$D^0\eta^\prime$	$\frac{1}{\sqrt{2}}(C+E)\sin\phi$	1.38 ± 0.16	$1.3 \pm 0.1 \pm 0.2 \pm 0.1$
	$D_s^+K^-$	\dot{E}	$0.345{\pm}0.032$	$0.30^{+0.04}_{-0.02}\pm0.00\pm0.03$
B^-	$D^0\pi^-$	T+C	48.1 ± 1.5	$49.0^{+1.4}_{-1.7}\pm7.6\pm0.6$
\overline{B}_{s}^{0}	$D_s^+\pi^-$	T	30.4 ± 2.3	$30.2\pm 0.0\pm 6.0\pm 0.1$
	D^0K^0	C		$5.9 \pm 0.3 \pm 1.2 \pm 0.3$
	Cabibbo-suppressed	$V_{cb}V_{us}^*$		
\overline{B}^0	D^+K^-	Т	1.97 ± 0.21	$2.1 \pm 0.0 \pm 0.4 \pm 0.0$
	$D^0 \overline{K}^0$	C	0.5 ± 0.1	$0.4 \pm 0.0 \pm 0.1 \pm 0.0$
B^-	D^0K^-	T + C	3.70 ± 0.17	$3.8 \pm 0.1 \pm 0.6 \pm 0.1$
\overline{B}_{s}^{0}	$D_s^+K^-$	T + E		$2.1 \pm 0.0 \pm 0.4 \pm 0.0$
	$D^0\eta$	$\frac{1}{\sqrt{2}}E\cos\phi - C\sin\phi$	6	$0.14\pm 0.01\pm 0.03\pm 0.01$
	$D^0\eta^\prime$	$\frac{1}{\sqrt{2}}E\sin\phi + C\cos\phi$	6	$0.21 \pm 0.01 \pm 0.04 \pm 0.01$
	$D^+\pi^-$	$\stackrel{,-}{E}$		$0.011 \pm 0.001 \pm 0.000 \pm 0.001$
	$D^0\pi^0$	$\frac{1}{\sqrt{2}}E$ X		$0.005^{+0.001}_{-0.000}\pm0.000\pm0.001$

$B \rightarrow D * P$

Meson	Mode	Amplitudes	$\mathcal{B}_{\exp}(\times 10^{-4})$	$\mathcal{B}_{ ext{th}}(imes 10^{-4})$
	Cabibbo-favored	$V_{cb}V_{ud}^{*}$		
\overline{B}^0	$D^{*+}\pi^-$	T+E	27.6 ± 1.3	$24.9^{+0.2}_{-0.1}\pm5.2\pm0.1$
	$D^{*0}\pi^0$	$\frac{1}{\sqrt{2}}(E-C)$	2.2 ± 0.6	$2.8 \pm 0.2 \pm 0.6 \pm 0.3$
	$D^{*0}\eta$	$\frac{1}{\sqrt{2}}(C+E)\cos\phi$	2.3 ± 0.6	$2.1 \pm 0.1 \pm 0.4 \pm 0.2$
	$D^{*0}\eta'$	$\frac{1}{\sqrt{2}}(C+E)\sin\phi$	1.40 ± 0.22	$1.4 \pm 0.1 \pm 0.2 \pm 0.1$
	$D_s^{*+}K^-$	E	0.219 ± 0.030	$0.22^{+0.03}_{-0.01}\pm 0.00\pm 0.03$
B^-	$D^{*0}\pi^-$	T+C	51.8 ± 2.6	$50.7^{+1.5}_{-1.8}\pm7.8\pm1.4$
\overline{B}_{s}^{0}	$D_s^{*+}\pi^-$	T	20 ± 5	$27.1 \pm 0.0 \pm 5.4 \pm 0.1$
	$D^{*0}K^0$	C		$6.6^{+0.3}_{-0.4}\pm1.3\pm0.7$
	Cabibbo-suppresse	d $V_{cb}V_{us}^*$		
\overline{B}^0	$D^{*+}K^{-}$	T	2.14 ± 0.16	$2.0 \pm 0.00 \pm 0.4 \pm 0.0$
	$D^{*0}\overline{K}^0$	C	0.36 ± 0.12	$0.45^{+0.02}_{-0.03}\pm0.09\pm0.05$
B^-	$D^{*0}K^{-}$	T+C	4.20 ± 0.34	$3.8 \pm 0.1 \pm 0.6 \pm 0.1$
\overline{B}_{s}^{0}	$D_{s}^{*+}K^{-}$	T+E		$1.9 \pm 0.0 \pm 0.4 \pm 0.0$
	$D^{*0}\eta$	$\frac{1}{\sqrt{2}}E\cos\phi - C\sin\phi$	ϕ	$0.15\pm 0.01\pm 0.03\pm 0.02$
	$D^{*0}\eta'$	$\frac{1}{\sqrt{2}}E\sin\phi + C\cos\phi$	ϕ	$0.23 \pm 0.01 \pm 0.04 \pm 0.02$
	$D^{*+}\pi^-$	\dot{E}	< 0.061	$0.008 \pm 0.001 \pm 0.000 \pm 0.001$
	$D^{*0}\pi^0$	$\frac{1}{\sqrt{2}}E$	<u></u>	$0.004^{+0.004}_{-0.000}\pm0.000\pm0.001$

$B \rightarrow DV$

Meson	Mode	Amplitudes	$\mathcal{B}_{ ext{exp}}(imes 10^{-4})$	$\mathcal{B}_{ m th}(imes 10^{-4})$
	Cabibbo-favored	$V_{cb}V_{ud}^*$		
\overline{B}^0	$D^+ ho^-$	T + E	78 ± 13	$65.3^{+0.5}_{-0.3}\pm13.5\pm6.6$
	$D^0 ho^0$	$\frac{1}{\sqrt{2}}(E-C)$	3.2 ± 0.5	$2.6 \pm 0.2 \pm 0.6 \pm 0.1$
	$D^0\omega$	$\frac{1}{\sqrt{2}}(E+C)$	2.54 ± 0.16	$2.7 \pm 0.2 \pm 0.5 \pm 0.1$
	$D_{s}^{+}K^{*-}$	Ē	0.35 ± 0.10	$0.38^{+0.05}_{-0.02}\pm0.00\pm0.06$
B^-	$D^0 ho^-$	T+C	134 ± 18	$105^{+2}_{-3}\pm18\pm9$
\overline{B}_{s}^{0}	$D_s^+ ho^-$	T	70 ± 15	$78.6 \pm 0.0 \pm 15.7 \pm 7.9$
	D^0K^{*0}	C	3.5 ± 0.6	$4.9^{+0.2}_{-0.3}\pm1.0\pm0.2$
	Cabibbo-suppresse	ed $V_{cb}V_{us}^*$		
\overline{B}^0	$D^{+}K^{*-}$	T	4.5 ± 0.7	$3.9 \pm 0.0 \pm 0.8 \pm 0.4$
	$D^0 \overline{K}^{*0}$	C	0.42 ± 0.06	$0.37 \pm 0.02 \pm 0.07 \pm 0.02$
B^-	$D^{0}K^{*-}$	T+C	5.3 ± 0.4	$6.0^{+0.1}_{-0.2}\pm1.0\pm0.5$
\overline{B}_{s}^{0}	$D_{s}^{+}K^{*-}$	T + E		$4.0^{+0.04}_{-0.03}\pm0.8\pm0.4$
	$D^0\phi$	C	0.24 ± 0.07	$0.31^{+0.01}_{-0.02}\pm0.06\pm0.02$
	$D^+ ho^-$	E		$0.019^{+0.002}_{-0.001}\pm0.000\pm0.003$
	$D^0 ho^0$	$\frac{1}{\sqrt{2}}E$		$0.010\pm 0.001\pm 0.000\pm 0.001$
	$D^0\omega$	$\frac{1}{\sqrt{2}}E$		$0.008 \pm 0.001 \pm 0.000 \pm 0.001$

Nonperturbative parameters χ^{C} , ϕ^{C} , χ^{E} , ϕ^{E}

are universal for all the *DP*, D^*P and *DV* modes

Meson	Mode	Amplitudes	$\mathcal{B}_{ m exp}(imes 10^{-5})$	$\mathcal{B}_{ m FAT}(imes 10^{-5})$
\overline{B}^0		$V_{cb}V_{ud}^{*}$		
	$D_s^+K^-$	E $\Box : E$	$3.45{\pm}0.32$	$3.0^{+0.4}_{-0.2}\pm 0.0\pm 0.3$
	$D_s^{*+}K^-$	$E~\propto \chi^E e^{i \phi^E}$	2.19 ± 0.30	$2.2^{+0.3}_{-0.1}\pm 0.0\pm 0.3$
	$D_s^+K^{*-}$	E	3.5 ± 1.0	$3.8^{+0.5}_{-0.2}\pm 0.0\pm 0.6$
\overline{B}^0		$V_{cb}V_{us}^{*}$		
	$D^0 \overline{K}^0$	C	5.2 ± 0.7	$4.0 \pm 0.0 \pm 1.0 \pm 0.0$
	$D^{*0}\overline{K}^0$	$C \propto \chi^C e^{i\phi^C}$	3.6 ± 1.2	$4.5^{+0.2}_{-0.3}\pm0.9\pm0.5$
	$D^0 \overline{K}^{*0}$	C	4.2 ± 0.6	$3.7 \pm 0.2 \pm 0.7 \pm 0.2$
Meson	Mode	Amplitudes	$\mathcal{B}_{\mathrm{exp}}(imes 10^{-3})$	$\mathcal{B}_{\mathrm{FAT}}(imes 10^{-3})$
\overline{B}_{s}^{0}		$V_{cb}V_{ud}^{*}$		
	$D_s^+\pi^-$	^T factorization	3.04 ± 0.23	$3.02\pm 0.00\pm 0.6\pm 0.01$
	$D_s^{*+}\pi^-$	T	2.0 ± 0.5	$2.71 \pm 0.00 \pm 0.54 \pm 0.01$
	$D_s^+ ho^-$	T	7.0 ± 1.5	$7.86 \pm 0.00 \pm 1.57 \pm 0.79$

Global fit for hadronic D decays (Phys.Rev. D86 (2012) 036012)

 12 free parameters are extracted from 28 experimental data of D->PP branching ratios

$$\begin{split} \Lambda &= 0.59 \ \text{GeV}, \ \chi_{nf} = -0.84, \ \chi_q^E = 0.09, \ \chi_s^E = 0.19, \ \chi_q^A = 0.10, \ \chi_s^A = 0.16, \\ S_\pi &= -0.66, \ \phi = -0.55, \ \phi_q^E = 4.90, \ \phi_s^E = 4.05, \ \phi_q^A = 3.73, \ \phi_s^A = 3.36, \end{split}$$

$$\chi^2/d.o.f = 8.1$$

- Λ describes the soft momentum in D meson
- The value of Glauber phase is consistent with the value extracted from B->πK data, resolving the puzzle for direct asymmetries in this mode
 [H.n Li, S. Mishima, 0901.1272]

Topology diagrams for BRs

- According to weak interactions and flavor flows
- Include all strong interaction effects, involving final state interaction (FSI) effects
- Magnitude and phase are introduced to each topology
- This is a complete set
- Penguins are neglected for BRs due to suppression of CKM matrix elements

(c) A

$$a_1(\mu) = C_2(\mu) + \frac{C_1(\mu)}{N_c},$$

$$a_2(\mu) = \left(C_1(\mu) + \frac{C_2(\mu)}{N_c}\chi_{nf}\right)e^{i\phi},$$

Evolution scale

- Important flavor SU(3) breaking effects
- Non-negligible mass ratios $m_{K,\eta^{(\prime)}}/m_D$
- Suggested by the PQCD approach, the scale is set to the energy release depending on masses of final states

$$\mu = \sqrt{\Lambda m_D (1 - r_2^2)}, \quad r_2 = m_{P_2}^2 / m_D^2$$

 ▲ A: the momentum of soft degrees of freedom, a free parameter to be determined

Singly Cabibbo-suppressed decays (10⁻³), better agreement with data

Modes	Br(FSI)	Br(diagram)	Br(pole)	Br(exp)	Br(this work)
$D^0 \to \pi^+ \pi^-$	1.59	$2.24{\pm}0.10$	2.2 ± 0.5	$1.45 {\pm} 0.05$	1.44 📛
$D^0 \to K^+ K^-$	4.56	$1.92 {\pm} 0.08$	3.0 ± 0.8	$4.07 {\pm} 0.10$	4.19 🛑
$D^0 \to K^0 \overline{K}^0$	0.93	0	0.3 ± 0.1	$0.320 {\pm} 0.038$	0.35
$D^0 \to \pi^0 \pi^0$	1.16	$1.35 {\pm} 0.05$	0.8 ± 0.2	$0.81 {\pm} 0.05$	0.55
$D^0 \to \pi^0 \eta$	0.58	$0.75 {\pm} 0.02$	1.1 ± 0.3	$0.68 {\pm} 0.07$	0.94
$D^0 \to \pi^0 \eta'$	1.7	$0.74 {\pm} 0.02$	0.6 ± 0.2	0.91 ± 0.13	0.64
$D^0 \to \eta \eta$	1.0	$1.44 {\pm} 0.08$	1.3 ± 0.4	$1.67 {\pm} 0.18$	1.48
$D^0 \to \eta \eta'$	2.2	$1.19 {\pm} 0.07$	1.1 ± 0.1	1.05 ± 0.26	1.52
$D^+ \to \pi^+ \pi^0$	1.7	$0.88 {\pm} 0.10$	1.0 ± 0.5	$1.18 {\pm} 0.07$	0.88
$D^+ \to K^+ \overline{K}^0$	8.6	$5.46 {\pm} 0.53$	8.4 ± 1.6	6.12 ± 0.22	5.97
$D^+ \to \pi^+ \eta$	3.6	$1.48 {\pm} 0.26$	1.6 ± 1.0	$3.54 {\pm} 0.21$	3.37
$D^+ \to \pi^+ \eta'$	7.9	$3.70 {\pm} 0.37$	5.5 ± 0.8	$4.68 {\pm} 0.29$	4.54
$D_S^+ \to \pi^0 K^+$	1.6	$0.86 {\pm} 0.09$	0.5 ± 0.2	0.62 ± 0.23	0.65
$D_S^+ \to \pi^+ K^0$	4.3	$2.73 {\pm} 0.26$	2.8 ± 0.6	2.52 ± 0.27	2.21
$D_S^+ \to K^+ \eta$	2.7	$0.78 {\pm} 0.09$	0.8 ± 0.5	$1.76 {\pm} 0.36$	1.00
$D_S^+ \to K^+ \eta'$	5.2	$1.07 {\pm} 0.17$	1.4 ± 0.4	1.8 ± 0.5	1.92

Branching ratios for Cabibbo-favored decays of $D \rightarrow PV(\%)$ San Star Br(FSI) Br(diagrammatic) Br(FAT) Br(pole)Modes diagrams Br(exp) $5.44_{-0.53}^{+0.70}$ $D^0 \rightarrow \pi^+ K^{*-}$ T_V, E_P 4.69 5.91 ± 0.70 3.1 ± 1.0 7.12 $D^0 \to \pi^0 \overline{K^*}^0$ 2.82 ± 0.34 3.44 ± 0.35 C_P, E_P 3.49 2.9 ± 1.0 3.51 $D^0 \rightarrow \overline{K}^0 \rho^0$ $1.26^{+0.14}_{-0.16}$ C_V, E_V 0.88 1.54 ± 1.15 1.7 ± 0.7 1.28 $D^0 \to \overline{K}^0 \omega$ C_V, E_V 2.162.23 2.22 ± 0.12 2.26 ± 1.38 2.5 ± 0.7 $D^0 \to \overline{K}^0 \phi$ E_P 0.90 0.868 ± 0.139 0.8 ± 0.2 0.818 0.834 ± 0.074 $D^0 \rightarrow K^- \rho^+$ T_P, E_V 11.19 10.8 ± 2.2 9.80 10.8 ± 0.7 8.8 ± 2.2 $D^0 \to \eta \overline{K^*}^0$ 0.51 0.7 ± 0.2 C_P, E_P, E_V 0.96 ± 0.32 1.00 0.96 ± 0.30 $D^0 \to \eta' \overline{K^*}^0$ C_P, E_P, E_V 0.016 ± 0.005 0.005 0.012 ± 0.003 0.015< 0.11 $D^+ \to \pi^+ \overline{K^*}^0$ C_P 0.64 1.83 ± 0.49 1.4 ± 1.3 1.81 1.51 ± 0.16 $D^+ \to \overline{K}^0 \rho^+$ T_P, C_V 11.77 9.2 ± 6.7 15.1 ± 3.8 6.0 9.6 ± 2.0 A_P, A_V 0.0800.026 $D_s^+ \rightarrow \pi^+ \rho^0$ 0.4 ± 0.4 0.02 ± 0.012 $D_s^+ \to \pi^+ \omega$ A_P, A_V 0.0 0.25 0.25 ± 0.07 0 4.38 ± 0.35 4.3 ± 0.6 3.1 T_V 2.89 4.5 ± 0.4 $D^+_{s} \rightarrow \pi^+ \phi$ $D_s^+ \to \pi^0 \rho^+$ 0.080 0.4 ± 0.4 0.026 A_P, A_V $D_s^+ \to K^+ \overline{K^*}^0$ C_P, A_V 4.12 3.95 ± 0.2 3.86 4.2 ± 1.7 $D_s^+ \to \overline{K}^0 K^{*+}$ 3.37 1.0 ± 0.6 4.4 C_V, A_P 5.4 ± 1.2 $D^+_{\circ} \to \eta \rho^+ \qquad T_P, A_P, A_V$ 9.49 8.3 ± 1.3 6.5 8.9 ± 0.8 3.0 ± 0.5 $D_s^+ \to \eta' \rho^+ \qquad T_P, A_P, A_V$ 12.5 ± 2.2 2.612.3

Phys.Rev. D89 (2014) 5, 054006

Penguin parameterization

- Use the long-distance hadronic parameters fixed by the data of branching ratios
- Try to formulate penguin contribution without introducing additional free parameters
- The tree operators are all (V-A)(V-A)
- For penguins, the hadronic matrix elements with (V-A)(V-A) operators are the same as tree level operators

Predictions of Direct CP asymmetries

જુલ્દી લેવે	Modes	$a_{\rm CP}({ m FSI})$	$a_{\rm CP}({ m diagram})$	$a_{\mathrm{CP}}^{\mathrm{tree}}$	$a_{\mathrm{CP}}^{\mathrm{tot}}(imes 10^{-3})$
	$D^0 \to \pi^+ \pi^-$	$0.02{\pm}0.01$	0.86	0	0.74 🛑
	$D^0 \to K^+ K^-$	$0.13{\pm}0.8$	-0.48	0	-0.54
	$D^0 \to \pi^0 \pi^0$	$-0.54 {\pm} 0.31$	0.85	0	0.26
	$D^0 \to K^0 \overline{K}^0$	-0.28 ± 0.16	0	0.69	0.90
	$D^0 o \pi^0 \eta$	$1.43 {\pm} 0.83$	-0.16	-0.29	-0.61
	$D^0 o \pi^0 \eta^\prime$	$-0.98 {\pm} 0.47$	-0.01	0.43	1.67
	$D^0 o \eta \eta$	$0.50{\pm}0.29$	-0.71	0.29	0.18
	$D^0 o \eta \eta^\prime$	0.28 ± 0.16	0.25	-0.30	0.97
	$D^+ \to \pi^+ \pi^0$		0	0	-0.23
	$D^+ \to K^+ \overline{K}^0$	$-0.51 {\pm} 0.30$	-0.38	-0.08	-0.93
	$D^+ \to \pi^+ \eta$		-0.65	-0.46	0.63
	$D^+ \to \pi^+ \eta'$		0.41	0.30	1.28
\bigcap	$D_S^+ \to \pi^0 K^+$		0.88	0.17	0.76
	$D_S^+ \to \pi^+ K^0$		0.52	-0.01	0.87
	$D_S^+ \to K^+ \eta$		-0.19	0.75	0.76
	$D_S^+ \to K^+ \eta'$		-0.41	-0.48	1.83

LHCb combination

LHCb-PAPER-2013-003

LHCb-CONF-2013-003

Semileptonic:
$$\Delta A_{CP} = (+0.49 \pm 0.30(stat.) \pm 0.14(syst.)) \%$$

Prompt:
(preliminary) $\Delta A_{CP} = (-0.34 \pm 0.15(stat.) \pm 0.10(syst.)) \%$

- The two measurement are compatible at the 3 % level
 - χ2 = 4.85
- Naive average (neglecting indirect CP violation)

$$\Delta A_{CP,LHCb} = (-0.15 \pm 0.16) \%$$

Search for new physics in hadronic B decays-1example

K. Huitu, C.D. Lü, P. Singer D.X. Zhang, Phys. Rev. Lett. 81, 4313 (1998), hep-ph/9809566.

 $b \rightarrow ssd$ transition (a) SM, (b) MSSM, (c) MSSM with R-parity violating coupling SM BRs: ~ 10⁻¹⁴, New physics can reach 10⁻⁶

Experimental search starting from OPAL @ LEP, phys. Lett. B 476 (2000) 233, later searched also by Belle/Babar

BABAR collaboration, Phys. Rev. D 78 (2008) 091102 [arXiv:0808.0900]

A search for the decay $B^- \rightarrow K^- K^- \pi^+$, Using a sample of $(467 \pm 5) \times 10^6 B\overline{B}$ pairs collected with the BABAR detector.

Result : No evidence for these decays was found and a upper limit was set as

$$\mathcal{B}(B^- \to K^- K^- \pi^+) < 1.6 \times 10^{-7}$$

Experimental search starting from OPAL @ LEP, phys. Lett. B 476 (2000) 233, later searched also by Belle/Babar

BABAR collaboration, Phys. Rev. D 78 (2008) 091102 [arXiv:0808.0900]

A search for the decay $B^- \rightarrow K^- K^- \pi^+$, Using a sample of $(467 \pm 5) \times 10^6 B\overline{B}$ pairs collected with the BABAR detector.

Result : No evidence for these decays was found and a upper limit was set as

 $\mathcal{B}(B^- \rightarrow K^- K^- \pi^+) < 1.6 \times 10^{-7}$

LHCb?

Summary

- High-energy QCD processes must involve both perturbative and nonperturbative dynamics.
- At leading power, the two dramatically different dynamics factorize.
- Theoretical study of non-leptonic D/B meson decays making great improvement with helping from rich experimental data
- Flavor sector has only been tested at the 10% level and can be done much better
- We are still waiting for a clear New physics signal in the heavy flavor sector

Thanks !