W-exchange contribution to the decays $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+(\prime)}\pi^{+}$ using light-cone sum rule

Shi Yu-Ji 施瑀基 华东理工大学

2023年4月9日@合肥

Cooperated with Zhen-Xing Zhao, Ye Xing, and Ulf-G. Meissner Phys.Rev.D 106 (2022) 3, 034004

- Observation of doubly charmed baryon
- Status of the theoretical studies on $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+(\prime)}\pi^{+}$: W-emission and W-exchange contribution
- Light-cone sum rules calculation for the W-exchange diagram
- Numerical Results: Amplitudes and branching fraction

Motivation

Observation of doubly charmed baryon

Prediction from the quark model

Decuplet

Searching for the doubly charmed baryon

Searching for the doubly charmed baryon

It is firstly predicted by: F.-S. Yu, H.-Y. Jiang, R.-H. Li, C.-D. Lü, W. Wang and Z.-X. Zhao, Chin. Phys. C 42, 051001 (2018)

In 2018, the LHCb collaboration observed a two-body decay of Ξ_{cc}^{++} : Phys. Rev. Lett. 121, 162002 (2018)

$$\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+} \qquad \mathcal{R}(\mathcal{B}) \equiv \frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+}) \times \mathcal{B}(\Xi_{c}^{+} \to pK^{-} \pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}) \times \mathcal{B}(\Lambda_{c}^{+} \to pK^{-} \pi^{+})} = 0.035 \pm 0.009 (\text{stat}) \pm 0.003 (\text{syst})$$

Also predicted by: Chin. Phys. C 42, 051001 (2018)

In 2022, a similar two-body decay of Ξ_{cc}^{++} was observed by LHCb: JHEP 05 (2022) 038

$$\Xi_{cc}^{++} \to \Xi_{c}^{+\prime} \pi^{+} \qquad \frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+\prime} \pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+})} \equiv \frac{\mathcal{B}'}{\mathcal{B}} = 1.41 \pm 0.17 \pm 0.1$$

Not consistent with theoretical predictions

The weak decay of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+(\prime)} \pi^{+}$

 $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+(\prime)}\pi^{+}$ receives contributions from two topological diagrams: the W-emission diagram (left) and the W-exchange diagram (right):

Factorizable (fac)

Non-factorizable (nf)

Recently, the theoretical prediction show that:

				\frown	
	Method	$\mathcal{B}(\Xi_{cc}^{++}\to\Xi_c^+\pi^+)$	$\mathcal{B}(\Xi_{cc}^{++}\to\Xi_c^{+\prime}\pi^+)$	\mathcal{B}'/\mathcal{B}	
	LFQM+PM	0.69~%	4.65~%	6.74	Too small
fac + nf:	3LCQM	0.71~%	3.39%	4.77	or too large
	HQET+PM	6.64~%	5.39~%	0.81	/
	NRQM+PM	9.19%	7.34~%	0.8	8

The W-emission diagram

$$\langle \Xi_{c}^{+(\prime)}(p-q)\pi^{+}(q)|\mathcal{H}_{\rm eff}(0)|\Xi_{cc}^{++}(p)\rangle_{\rm fac,nf} = i \ \bar{u}(p-q) \big[A^{(\prime)\rm fac,nf} + B^{(\prime)\rm fac,nf}\gamma_{5} \big] u(p)$$

$\Xi_{cc}^{++} \to \Xi_c^{+(\prime)} \pi^+$	A^{fac}	B^{fac}	$A'^{ m fac}$	$B'^{ m fac}$
QCDSR	-8.74	16.76	-3.55	34.13
m LFQM	7.40	15.06	4.49	48.50
3LQM	-8.13	-12.97	-4.34	-37.59
NRQM	7.38	16.77	4.29	53.65
HQET	9.52	19.45	5.10	62.37

QCDSR: Y. J. Shi, W. Wang and Z. X. Zhao, Eur. Phys. J. C 80, no.6, 568 (2020)

- LFQM: H. Y. Cheng, G. Meng, F. Xu and J. Zou, Phys. Rev. D 101, no.3, 034034 (2020)
- 3LQM: T. Gutsche et al. Phys. Rev. D 99, no.5, 056013 (2019)

NRQM: HQET: R. Dhir and N. Sharma, Eur. Phys. J. C 78, no.9, 743 (2018)

The W-exchange diagram

H. Y. Cheng, G. Meng, F. Xu and J. Zou, Phys. Rev. D 101, no.3, 034034 (2020)

Theoretical Method

Light-cone sum rules

Proposed by: A. Khodjamirian for $B \rightarrow \pi\pi$: Nucl. Phys. B 605, 558-578 (2001)

The framework of light-cone sum rules

Hadron Level: insert Ξ_c

$$\Pi_{H}^{\mathcal{O}_{i}}(p,q,k)_{\mathrm{WE}} = i^{3} \int d^{4}x \ e^{-i(p-q)\cdot x} \sum_{\pm',\sigma'} \frac{1}{(p-k)^{2} - m_{\Xi_{c}}^{\pm'/2}} \times \lambda_{\Xi_{c}}^{\pm'} u^{\pm'}(p-k,\sigma') \langle p-k,\sigma',\pm'|\mathcal{O}_{i}(0)\bar{J}_{\Xi_{cc}}(x)|\pi^{-}(q)\rangle + \int_{s_{\Xi_{c}}}^{\infty} ds' \frac{\rho_{\Xi_{c}}(s',(p-q)^{2},P^{2})}{s'-(p-k)^{2}}, \qquad \text{Only depends on}$$
Excited states and $(p-q)^{2}$ and $P^{2} = (p-k-q)^{2}$, $p^{2} = k^{2} = 0$ $q^{2} = m_{\pi}^{2} \approx 0.$

Quark-Hadron duality

$$\Pi_{H}^{\mathcal{O}_{i}}(p,q,k)_{\mathrm{WE}} = \Pi_{QCD}^{\mathcal{O}_{i}}(p,q,k)_{\mathrm{WE}} = \frac{1}{\pi} \int_{(m_{c}+m_{s})^{2}}^{s_{\Xi_{c}}} ds' \frac{\mathrm{Im}\Pi_{QCD}^{\mathcal{O}_{i}}(s',(p-q)^{2},P^{2})_{\mathrm{WE}}}{s'-(p-k)^{2}} + \frac{1}{\pi} \int_{s_{\Xi_{c}}}^{\infty} ds' \frac{\mathrm{Im}\Pi_{QCD}^{\mathcal{O}_{i}}(s',(p-q)^{2},P^{2})_{\mathrm{WE}}}{s'-(p-k)^{2}} \int_{s_{\Xi_{c}}}^{\infty} ds' \frac{\rho_{\Xi_{c}}(s',(p-q)^{2},P^{2})}{s'-(p-k)^{2}} \mathbf{C} \text{anceled above } \mathbf{S}_{\Xi_{c}} - \mathbf{S}_{\Xi_{c}} > (m_{c} + m_{s})^{2}$$

Borel Transformation for $(p - k)^2$

$$\mathcal{B}_{T'^2}\left[(p-k)^{2n}\right] = 0$$

$$\mathcal{B}_{T'^2}\left[\frac{1}{[s'-(p-k)^2]^n}\right] = \frac{1}{(n-1)!} \frac{\exp[-s'/T'^2]}{(p-k)^{2(n-1)}}$$

Excited states (large s') can be suppressed

We have to move the pion to the final state

The sum rules equation:

$$\sum_{\pm',\pm,\sigma',\sigma} e^{-m_{\Xi_{c}}^{\pm'2}/T'^{2} - m_{\Xi_{c}c}^{\pm2}/T^{2}} \lambda_{\Xi_{c}}^{\pm'} \lambda_{\Xi_{cc}}^{\pm} \times u^{\pm'}(p-k,\sigma') \langle p-k,\sigma',\pm';\pi^{+}(-q)|\mathcal{O}_{i}(0)|p-q,\sigma,\pm\rangle_{\rm WE} | \bar{u}^{\pm}(p-q,\sigma) = \frac{1}{\pi^{2}} \int_{(m_{c}+m_{s})^{2}}^{s_{\Xi_{c}}} ds \; e^{-s'/T'^{2}} e^{-s/T^{2}} {\rm Im}^{2} \Pi_{QCD}^{\mathcal{O}_{i}}(s',s,P^{2}).$$
Only depends on P^{2}
Parameterizaed as:
$$i \; \bar{u}^{\pm'}(p-k,\sigma') \left[A_{1,i}^{\pm'\pm}(P^{2}) + B_{1,i}^{\pm'\pm}(P^{2})\gamma_{5} + A_{2,i}^{\pm'\pm}(P^{2}) \frac{q}{m_{\Xi_{cc}}^{\pm}} + B_{2,i}^{\pm'\pm}(P^{2}) \frac{q\gamma_{5}}{m_{\Xi_{cc}}^{\pm}} \right] u^{\pm}(p-q,\sigma)$$

Two extra terms due to the non-vanishing k

Quark-Gluon Level

Quark-Gluon Level: Double imaginary part

Numerical Results

Numerical Result: Borel parameters

$$\begin{split} i & \sum_{\pm \pm'} e^{-m_{\Xi_c}^{\pm'^2/T'^2} - m_{\Xi_{cc}}^{\pm 2}/T^2} \lambda_{\Xi_c}^{\pm'} \lambda_{\Xi_c}^{\pm} (\not\!\!\!\!/ p_2 + m_{\Xi_c}^{\pm'}) \left[A_{1,i}^{\pm'\pm} + B_{1,i}^{\pm'\pm} \gamma_5 + A_{2,i}^{\pm'\pm} \frac{\not\!\!\!/}{m_{\Xi_{cc}}^{\pm}} + B_{2,i}^{\pm'\pm} \frac{\not\!\!/ p_3}{m_{\Xi_{cc}}^{\pm}} \right] (\not\!\!\!\!/ p_1 + m_{\Xi_{cc}}) \\ = & \frac{1}{\pi^2} \int_{(m_c + m_s)^2}^{s_{\Xi_c}} ds' \int_{4m_c^2}^{s_{\Xi_{cc}}} ds \ e^{-s'/T'^2} e^{-s/T^2} \mathrm{Im}^2 \Pi_{QCD}^{\mathcal{O}_i} (s', s, P^2)_{\mathrm{WE}}, \end{split}$$

The choice of Borel parameter T, T' must satisfy:

Two assumptions :

(1) $\frac{T^2}{T'^2} \approx \frac{M_1^2 - m_1^2}{M_2^2 - m_2}$

 $M_{1(2)}$ is the mass of the initial (final) baryon and $m_{1(2)}$ is the mass of the quark before(after) the weak decay.

Used in the study of *D* meson decays

P. Ball, V. M. Braun and H. G. Dosch, Phys. Rev. D 44, 3567-3581 (1991)

Blue band: uncertainty of the $s_{\Xi_{cc}}$ and $s_{\Xi_{c}}$

Red band: uncertainty of MC integration

$$6 < T^{2} < 8 \text{ GeV}^{2} \text{ for } \Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} \pi^{+}$$

$$5 < T^{2} < 7 \text{ GeV}^{2} \text{ for } \Xi_{cc}^{++} \rightarrow \Xi_{c}^{+\prime} \pi^{+}$$

$$s_{\Xi_{cc}} = (4.1 \pm 0.1)^{2} \text{ GeV}^{2}$$

$$s_{\Xi_{c}} = (3.2 \pm 0.1)^{2} \text{ GeV}^{2}$$

$$s_{\Xi_{c}} = (3.3 \pm 0.1)^{2} \text{ GeV}^{2}$$
The uncertainties are used to evaluate the numerical error.

$\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$	Twist-2	Twist-3p	Twist- 3σ	Total
$A_{\rm WE}$	0.0084 ± 0.0024	-0.077 ± 0.01	-0.056 ± 0.002	-0.124 ± 0.011
$B_{\rm WE}$	-0.064 ± 0.01	0.052 ± 0.01	0.165 ± 0.025	0.153 ± 0.029
$\Xi_{cc}^{++} \to \Xi_c^{+\prime} \pi^+$	Twist-2	Twist- $3p$	Twist- 3σ	Total
$A'_{\rm WE}$	0.0027 ± 0.0005	0.0089 ± 0.002	-0.018 ± 0.0003	-0.0062 ± 0.002
$B'_{\rm WE}$	0.0023 ± 0.0006	0.052 ± 0.016	0.011 ± 0.003	0.066 ± 0.016

Numerical Result: W-exchange Amplitudes

$$\langle \Xi_{c}^{+(\prime)}(p-q)\pi^{+}(q)|\mathcal{H}_{\rm eff}(0)|\Xi_{cc}^{++}(p)\rangle_{\rm fac,nf} = i \ \bar{u}(p-q) \big[A^{(\prime)\rm fac,nf} + B^{(\prime)\rm fac,nf}\gamma_{5} \big] u(p)$$

	$\Xi_{cc}^{++}\to\Xi_c^+\pi^+$	A^{fac}	A^{nf}	A^{tot}	B^{fac}	B^{nf}	B^{tot}
(This work		-16.67 ± 1.41			20.47 ± 3.89	
	QCDSR	-8.74 ± 2.91			16.76 ± 5.36		
	LFQM + PM	7.40	-10.79	-3.38	15.06	-18.91	-3.85
	3LQM	-8.13	10.50	3.37	-12.97	18.53	5.56
	NRQM + PM	7.38	0	7.38	16.77	24.95	41.72
	HQET + PM	9.52	0	9.52	19.45	24.95	44.40
fac+nf ≺	$\Xi_{cc}^{++}\to\Xi_c^{+\prime}\pi^+$	$A'^{ m fac}$	$A'^{ m nf}$	$A'^{\rm tot}$	$B'^{ m fac}$	$B'^{ m nf}$	$B'^{ m tot}$
	This work		-0.83 ± 0.28			8.86 ± 2.16	
	QCDSR	-3.55 ± 0.68			34.13 ± 11.6		
	LFQM + PM	4.49	-0.04	4.45	48.50	-0.06	48.44
	3LQM	-4.34	-0.11	-4.45	-37.59	-1.37	-38.96
	NRQM + PM	4.29	0	4.29	53.65	0	53.65
	HQET + PM	5.10	0	5.10	62.37	0	62.37

in unit $10^{-2}G_F$ GeV²

"fac" from literature and "nf" from this work

Method	$A^{ m tot}$	B^{tot}	$\mathcal{B}(\Xi_{cc}^{++}\to\Xi_c^+\pi^+)$	$A'^{ m tot}$	$B'^{ m tot}$	$\mathcal{B}(\Xi_{cc}^{++}\to\Xi_c^{+\prime}\pi^+)$	$ \mathcal{B}'/\mathcal{B} $
QCDSR+LCSR	-25.4 ± 4.32	37.23 ± 9.25	$40\pm14~\%$	-4.38 ± 0.96	42.99 ± 13.76	$3.91{\pm}2.5~\%$	0.098 ± 0.14
LFQM+LCSR	-9.27 ± 1.41	35.53 ± 3.89	$7.54 \pm 2.22~\%$	3.66 ± 0.28	57.36 ± 2.16	$5.83 \pm 0.5~\%$	0.77 ± 0.42
3LCQM+LCSR	-24.8 ± 1.41	7.5 ± 3.89	$35.55 \pm 4.29~\%$	-5.17 ± 0.28	-28.73 ± 2.16	$2.75 \pm 0.35 \%$	0.08 ± 0.02
NRQM+LCSR	-9.29 ± 1.41	37.24 ± 3.89	$7.82 \pm 2.25~\%$	3.46 ± 0.28	62.51 ± 2.16	$6.70 \pm 0.54~\%$	0.85 ± 0.44
HQET+LCSR	-7.18 ± 1.41	39.92 ± 3.89	$6.22 \pm 1.94~\%$	4.27 ± 0.28	71.23 ± 2.16	$8.85 \pm 0.62~\%$	1.42 ± 0.78
LFQM+PM	-3.83	3.85	0.69~%	4.45	48.44	4.65~%	6.74
3LCQM	3.37	5.56	0.71~%	-4.45	-38.96	3.39~%	4.77
HQET+PM	7.38	41.72	6.64~%	4.29	53.65	5.39~%	0.81
NRQM+PM	9.52	44.40	9.19%	5.1	62.37	7.34~%	0.8
$\mathrm{FSR}(\eta=1.0)$			7.11%			4.72~%	0.66
$\mathrm{FSR}(\eta=1.5)$			8.48%			4.72~%	0.56
$\mathrm{FSR}(\eta=2.0)$			10.75%			4.74~%	0.44

Final state rescattering

Chin. Phys. C 45, no.5, 053105 (2021)

The interference between B^{fac} and B^{nf} tends to be constructive

Consistent with experiment

 $({\cal B}'/{\cal B})_{\rm expt} = 1.41 \pm 0.17 \pm 0.1$

- > The W-exchange amplitudes of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+(\prime)}\pi^{+}$ are calculated by light-cone sum rules.
- The possible branching fractions are obtained by combining our W-exchange amplitudes with the factorizable amplitudes from various theoretical works in the literature.
- > One of the possible branching fractions is consistent with the experimental result. The interference between B^{fac} and B^{nf} tends to be constructive.

Thank you for your attention !