

Input for y measurements from BESIII

Xiaokang Zhou Central China Normal University (CCNU) 2023.04.09

BESIII粲强子物理研讨会@合肥, 2023

Outline

- Introduction
- \clubsuit Method to measure γ
- Latest γ results @ LHCb
- Joint measurement by LHCb & BESIII
- Future prospect of γ
- Summary

Why measure γ

$$V_{\rm CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \longrightarrow \gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

Indirect measurement

- Extrapolate γ from measurement of α and β
- Measured using loop-level decays: sensitivity to NP
- CKMFitter latest: $\gamma = (65.5^{+1.1}_{-2.7})^{o}$

Disagreement = New Physics!

Direct measurement

- Measure γ directly using tree-level decays
- Theoretically clean(δγ/γ<10⁻⁷) [JHEP 1401(2014)051]
- HFLAV latest: $\gamma = (65.9^{+3.3}_{-3.5})^o$
- LHCb dominated: $\gamma = (63.8^{+3.5}_{-3.7})^{o}$ [LHCb-CONF-2022-003]

How to measure γ directly

- ♦ Interference between favoured $b \rightarrow c$ and suppressed $b \rightarrow u$ decay amplitude
- ♦ Ideal decays: $B \rightarrow DK$ (clean background, large branching fraction)

 r_B = magnitude ratio (~0.1) δ_B = strong-phase difference

Evolution of γ **results**

- LHCb dominates current world averages of direct γ measurements
- The focus of this talk:
 - Method to measure γ
 - LHCb latest results
 - Importance of the BESIII input

GLW method ^[1,2]

♦ D CP-even final states such as D→K⁺K⁻, $\pi^+\pi^-$, $\pi^+\pi^-\pi^0$

insert a factor of $(2F_+-1)$ before interference terms $(F_+=CP \text{ even} \text{ content})$, need charm input

 Use the yields of B+ and B- to construct observables related to γ

$$A^{hh} = \frac{N(B^- \to [hh]_D K^-) - N(B^+ \to [hh]_D K^+)}{N(B^- \to [hh]_D K^-) + N(B^+ \to [hh]_D K^+)} = \frac{2r_B \sin \delta_B \sin \gamma}{R^{hh}}$$
$$R^{hh} = \frac{N(B^- \to [hh]_D K^-) + N(B^+ \to [hh]_D K^+)}{N(B^- \to [K\pi]_D K^-) + N(B^+ \to [K\pi]_D K^+)} = 1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma$$

[1] M. Gronau and D. Wyler, Phys. Lett. B265 (1991) 172
 [2] M. Gronau and D. London, Phys. Lett. B253 (1991) 483

- Disadvantage:
 - Multiple solutions
 - Low statistic
 - Need input r_B/δ_B

ADS method^[1,2]

 Consider the Cabibbo-favored decay D⁰→K⁻π⁺ and doubly-Cabibbosuppressed decay D⁰→K⁺π⁻

* r_B/δ_B can be obtained directly, but external input r_D/δ_D

- Disadvantage:
 - r_D is small
 - For Kn π , coherence factor $\kappa_{Kn\pi}$ and $\delta_{K3\pi}$ averaged over phase space not good for whole space

[1] D. Atwood, I. Dunietz, and A. Soni, Phys. Rev. Lett. 78 (1997) 3257
 [2] D. Atwood, I. Dunietz, and A. Soni, Phys. Rev. D63 (2001) 036005

Dalitz method

- ◆ Golden mode: D→K_sππ/K_sKK (large statistic, large r_D)
 - Model-dependent method (not used now)
 - Model-independent binned method (BPGGSZ method^[1])
- Binned Dalitz plane according to δ_{D} , measure B[±] yields in each bins
 - Sensitivity from phase-space distribution, not overall asymmetries → not impacted by production/detection asymmetries
 - LHCb latest K_shh result: $\gamma = (68.7^{+5.2}_{-5.1})^o$ (uncertainty~1° from BESIII input)

γ from $B^{\pm} \rightarrow D[h^{\pm}h'^{\mp}\pi^0]h^{\pm}$ decays

- **GLW+ADS** method *
- π^0 reconstruction is challenge.. *
- Three D decays $\mathbf{\dot{v}}$
 - $D \rightarrow K\pi\pi^0$ (pictured)
 - $D \rightarrow \pi \pi \pi^0$
 - $\square D \to KK\pi^0$
- Two B decays
 - $\blacksquare B^+ \to DK^+$
 - $B^+ \rightarrow D\pi^+$
- Full Run 1&2 Data set •

 $(56^{+24}_{-19})^{\circ},$ $\delta_B = (122^{+19}_{-23})^{\circ},$ $= (9.3^{+1.0}_{-0.9}) \times 10^{-2}$ r_B

Charm input *

- $r_D = 0.0441 \pm 0.0011$
- $\delta_D = (196 \pm 11)^o$
- $\kappa_D = 0.79 \pm 0.04$

γ from $B^{\pm} \rightarrow D[K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}]h^{\pm}$ decays

Measure observables in 4 bins of D-decay phase-space (PLB 802(2020)135188)

LHCb y combination

- Best knowledge of γ comes from combination of many measurements
- Maximum likelihood fit
 - 173 observables
 - 52 free parameters
- Most precise determination of γ by a single experiment:

<i>B</i> decay	D decay	Ref.	Dataset	Status since
				Ref. [14]
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^-$	[29]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[30]	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	[18]	Run 1&2	New
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^- \pi^0$	[19]	Run 1&2	$\mathbf{Updated}$
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[31]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{ m S} K^{\pm} \pi^{\mp}$	[32]	Run 1&2	As before
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow h^+ h^-$	[29]	Run 1&2	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^+ h^-$	[33]	Run $1\&2(*)$	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[33]	Run $1\&2(*)$	As before
$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D ightarrow h^+ h^-$	[34]	Run 1	As before
$B^0 \rightarrow DK^{*0}$	$D ightarrow h^+ h^-$	[35]	Run $1\&2(*)$	As before
$B^0 \rightarrow DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[35]	Run $1\&2(*)$	As before
$B^0 \rightarrow DK^{*0}$	$D ightarrow K_{ m S}^0 \pi^+ \pi^-$	[36]	Run 1	As before
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^- \pi^+ \pi^+$	[37]	Run 1	As before
$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$	$D_s^+ ightarrow h^+ h^- \pi^+$	[38]	Run 1	As before
$B^0_s \to D^{\mp}_s K^{\pm} \pi^+ \pi^-$	$D_s^+ ightarrow h^+ h^- \pi^+$	[39]	Run 1&2	As before
D decay	Observable(s)	Ref.	Dataset	Status since
				Ref. [14]
$D^0 ightarrow h^+ h^-$	ΔA_{CP}	[24, 40, 41]	Run 1&2	As before
$D^0 \rightarrow K^+ K^-$	$A_{CP}(K^+K^-)$	[16, 24, 25]	Run 2	New
$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	[42]	Run 1	As before
$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	[15]	Run 2	New
$D^0 ightarrow h^+ h^-$	ΔY	[43-46]	Run 1&2	As before
$D^0 \to K^+ \pi^-$ (Single Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[47]	Run 1	As before
$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[48]	Run $1\&2(*)$	As before
$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	[49]	Run 1	As before
$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-$	x, y	[50]	Run 1	As before
$D^0 ightarrow K_{ m S}^0 \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[51]	Run 1	As before
$D^0 ightarrow K_{ m S}^0 \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[52]	Run 2	As before
$D^0 \to K_{\rm S}^0 \pi^+ \pi^- \ (\mu^- \ {\rm tag})$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[17]	Run 2	New

Quantum correlated DD measurement

• $\psi(3770)$ is a spin -1 states, therefore the amplitude of $\psi(3770) \rightarrow DD$:

 $(|D^0\rangle|\overline{D^0}\rangle - |\overline{D^0}\rangle|D^0\rangle)/\sqrt{2}$ [anti-symmetric wave function]

The amplitude for two D mesons to decay to states F and G is [D. Atwood and A. Soni, PRD68, 033003 (2003)]: $\Gamma(F|G) = \Gamma_0 \left[A_F^2 \bar{A}_C^2 + \bar{A}_F^2 A_C^2 - 2R_F R_C A_F \bar{A}_F A_C \bar{A}_C \cos[\delta_D^F - \delta_D^G] \right]$

The coherence factor $\kappa_{\rm F}$ and the strong phase difference $\delta_{\rm D}$ can be extracted

The DT mode K⁺K⁻ vs. K_s⁰ $\pi^+\pi^-$ is selected as an example.

- ✓ Single tag (ST) samples: decay products of only one D meson are reconstructed
- ✓ Double tag (DT) samples: decay products of both D mesons are reconstructed
- Some typical reconstructed D decay modes

Tag group	
Flavor	$K^{+}\pi^{-}, K^{+}\pi^{-}\pi^{0}, K^{+}\pi^{-}\pi^{-}\pi^{+}, K^{+}e^{-}\bar{\nu}_{e}$
CP-even	$K^+K^-, \pi^+\pi^-, K^0_S\pi^0\pi^0, K^0_L\pi^0, \pi^+\pi^-\pi^0$
CP-odd	$K^{0}_{S}\pi^{0}, K^{0}_{S}\eta, K^{0}_{S}\omega, K^{0}_{S}\eta', K^{0}_{L}\pi^{0}\pi^{0}$
Mixed-CP	$K^0_S \pi^+ \pi^-$

Unbinned model-independent method

- ✤ Basic idea: Bins → Events (Eur. Phys. J. C, 2018, 78(2))
 - Make most use of amplitude info in phase space
- Fourier expansion the amplitude by strong phase
 - Parameters definition similar to BPGGSZ method

•
$$\bar{a}_n^{B\pm} = \bar{h}_B \{ a_n^{D\mp} + r_B^2 a_n^{D\pm} + 2[x_+ a_n^C \pm y_+ a_n^S] \}$$
 • $x_{\pm} = r_B \cos(\delta_B \pm \gamma)$

$$\bar{b}_n^{B\pm} = \bar{h}_B \left\{ -b_n^{D\mp} + r_B^2 b_n^{D\pm} \pm 2[x_+ b_n^C - y_+ a_n^S] \right\} \quad \bullet \quad y_\pm = r_B \sin(\delta_B \pm \gamma)$$

- $a_n^{B\pm} = h_B \{ a_n^{D\pm} + r_B^2 a_n^{D\mp} + 2[x_- a_n^C \mp y_- a_n^S] \}$
- $b_n^{B\pm} = h_B \{ b_n^{D\pm} r_B^2 b_n^{D\mp} \pm 2[x_- b_n^C + y_- b_n^S] \}$

•
$$a_n^{\prime D\pm} = h_{D_f} \{ a_n^{D\pm} + r_D^2 a_n^{D\mp} - 2R_D r_D [\cos(\delta_D) a_n^C \pm \sin(\delta_D) a_n^S] \}$$
 • $\lambda_{CP} = 2F_+ - 2E_+ - 2E_+$

•
$$a_n^{CP\pm} = h_{CP}[a_n^{D\pm} + a_n^{D\mp} - 2\lambda_{CP}a_n^C]$$

• $a_{mn}^{DD\pm\pm} = h_{DD}[a_m^{D\pm}a_n^{D\mp} + a_m^{D\mp}a_n^{D\pm} - 2(a_m^C a_n^C \pm a_n^S a_m^S)]$ **D sector**

LHCb&BESIII joint analysis is ongoing

B sector

Future prospects for y @ LHCb

- Status now:
 - Error for γ is about 4°
 - BESIII contribute about 1°
- Around 2030
 - Less than 1° will be achieved
 - BESIII 20fb⁻¹ data \rightarrow improve the error to <0.5°
- ✤ (>)2035
 - LHCb upgradell → sensitivity <0.4°
 - Need more charm factory data (STCF)

数据来源	收集/预期积分亮度	达成年份	B实验γ角精度
LHCb Run1 (7,8TeV)	3 fb ⁻¹	2012	8°
LHCb Run2 (13TeV)	6 fb ⁻¹	2018	4º
BelleII Run	50 ab ⁻¹	2025	1-2°
LHCb upgrade (14TeV)	50 fb ⁻¹	2030	<1°
LHCb upgradeII (14TeV)	200 fb ⁻¹	(>)2035	<0.4°

Summary

- ✤ 10 years of measurements have been game changing for flavor physics
- γ no longer the least precisely known of the weak phases!
- Now precision of < 4°, many more modes still to add!</p>
- ✤ BESIII (STCF) will play important roles for the charm inputs

Thank you!

Input parameters

Decay	Parameters	Source	Ref.	Status since
				Ref. [14]
$B^\pm \to D K^{*\pm}$	$\kappa_{B^{\pm}}^{DK^{*\pm}}$	LHCb	[33]	As before
$B^0 \to DK^{*0}$	$\kappa^{DK^{*0}}_{B^0}$	LHCb	[53]	As before
$B^0 \to D^{\mp} \pi^{\pm}$	β	HFLAV	[13]	As before
$B^0_s \to D^\mp_s K^\pm(\pi\pi)$	ϕ_s	HFLAV	[13]	As before
$D \to K^+ \pi^-$	$\cos \delta_D^{K\pi}, \sin \delta_D^{K\pi}, (r_D^{K\pi})^2, x^2, y$	CLEO-c	[27]	New
$D \to K^+ \pi^-$	$A_{K\pi}, A_{K\pi}^{\pi\pi\pi^{0}}, r_{D}^{K\pi} \cos \delta_{D}^{K\pi}, r_{D}^{K\pi} \sin \delta_{D}^{K\pi}$	BESIII	[28]	New
$D \to h^+ h^- \pi^0$	$F^+_{\pi\pi\pi^0}, F^+_{KK\pi^0}$	CLEO-c	[54]	As before
$D \to \pi^+\pi^-\pi^+\pi^-$	$F_{4\pi}^+$	CLEO-c+BESIII	[26, 54]	Updated
$D \to K^+ \pi^- \pi^0$	$r_D^{K\pi\pi^0}, \delta_D^{K\pi\pi^0}, \kappa_D^{K\pi\pi^0}$	$\rm CLEO\text{-}c\text{+}LHCb\text{+}BESIII$	[55-57]	As before
$D \to K^\pm \pi^\mp \pi^+ \pi^-$	$r_D^{K3\pi}, \delta_D^{K3\pi}, \kappa_D^{K3\pi}$	CLEO-c+LHCb+BESIII	[49, 55-57]	As before
$D \to K^0_{\rm S} K^\pm \pi^\mp$	$r_D^{K_{\rm S}^0 K \pi}, \delta_D^{K_{\rm S}^0 K \pi}, \kappa_D^{K_{\rm S}^0 K \pi}$	CLEO	[58]	As before
$D \to K^0_{\rm S} K^\pm \pi^\mp$	$r_D^{K_{ m S}^0K\pi}$	LHCb	[59]	As before