

Charm physics at Belle (II)

BESIII粲强子物理研讨会,合肥 2023年4月9日

Belle II Detector

Belle II Vertex Detector (VXD)

- Pixel Detector (PXD): 2 Layers of DEPFET
- Silicon Vertex Detector (SVD): 4 Layers of Double Sided

The impact parameter resolution is ×2 better than Belle.

2

Belle II data

In June 2022

Nano-beam design

 Collected ~428 fb⁻¹ around Υ(4S) until now

Selected topics

- $\Lambda_{C}^{+} \rightarrow \Lambda h^{+}$, $\Sigma^{O} h^{+} (A_{CP}^{dir}/Br/\alpha/A_{CP}^{\alpha})$ [Belle]
- Observation of $\Lambda_{c}(2910)^{+} \rightarrow \Sigma_{c}(2455)^{0/++} \pi^{\pm}$ [Belle]
- Evidence for $\Omega_c^0 \to \Xi^- K^+$
- *D lifetime* [Belle II]
- Λ⁺_c *lifetime* [Belle II]
- Ω_c^0 lifetime [Belle II]

$\Lambda^+_{\mathcal{C}} \rightarrow \Lambda h^+, \Sigma^{\mathcal{O}} h^+ (A^{dir}_{CP}/Br)$

- To date, CPV has been observed in the open-flavored meson sector (i.e. K, D and B mesons), but not yet established in the baryon sector.
- Experimentally, no direct CPV searches in two-body SCS decays of charm baryons have been made to date.

• The raw asymmetry in the decays:
$$A_{\text{raw}} = \frac{N_{\text{sig}}(\Lambda_c^+ \to f) - N_{\text{sig}}(\overline{\Lambda}_c^- \to \overline{f})}{N_{\text{sig}}(\Lambda_c^+ \to f) + N_{\text{sig}}(\overline{\Lambda}_c^- \to \overline{f})}$$

• Several sources contribute to the raw asymmetry:

$$A_{\rm raw}(\Lambda_c^+ \to \Lambda K^+) \approx A_{CP}^{\Lambda_c^+ \to \Lambda K^+} + A_{CP}^{\Lambda \to p\pi^-} + A_{\varepsilon}^{\Lambda} + A_{\varepsilon}^{K^+} + A_{FB}^{\Lambda_c^+}$$

• The reference mode is used.

 $A_{\rm raw}^{\rm corr}(\Lambda_c^+ \to \Lambda K^+) - A_{\rm raw}^{\rm corr}(\Lambda_c^+ \to \Lambda \pi^+) = A_{CP}^{\rm dir}(\Lambda_c^+ \to \Lambda K^+) - A_{CP}^{\rm dir}(\Lambda_c^+ \to \Lambda \pi^+) = A_{CP}^{\rm dir}(\Lambda_c^+ \to \Lambda K^+)$

 $\Lambda_{C}^{+} \rightarrow \Lambda h^{+}, \Sigma^{O} h^{+} (A_{CP}^{dir}/Br)$

All Belle data, 980 fb⁻¹

• Simultaneous fit on the $A_{\varepsilon}^{h^+}$ -weighted Λ_{c}^{\pm} samples gives $\mathcal{A}_{CP}^{\mathrm{dir}}(\Lambda_c^+
ightarrow \Lambda K^+) = (+2.1 \pm 2.6 \pm 0.1)\%$ $A_{CP}^{\rm dir}(\Lambda_c^+ \to \Sigma^0 K^+) = (+2.5 \pm 5.4 \pm 0.4)\%,$ first CPV result of charmed baryon SCS two-body decays. • Based on $M(\Lambda_c^+)$ fit on the combined Λ_c^\pm sample and the efficiencies based on signal MC produced with our measured angular distribution, we measure $\frac{B_{\text{sig}}}{B_{\text{ref}}} = \frac{N_{\text{sig}}/\varepsilon_{\text{sig}}}{N_{\text{ref}}/\varepsilon_{\text{ref}}}$. $rac{\mathcal{B}(\Lambda_c^+ o \Lambda K^+)}{\mathcal{B}(\Lambda_c^+ o \Lambda \pi^+)} = (5.05 \pm 0.13 \pm 0.09)\%;$ (Vs. PDG: 4.7 ± 0.9)%; BESIII recent result: (4.78 ± 0.39) %.) $rac{\mathcal{B}(\Lambda_c^+
ightarrow \Sigma^0 K^+)}{\mathcal{B}(\Lambda_c^+
ightarrow \Sigma^0 \pi^+)} = (2.78 \pm 0.15 \pm 0.05)\%.$ (Vs. PDG: (4.0 ± 0.6) %; BESIII recent result: (3.61 ± 0.73) %.) • Using the W.A. $\mathcal{B}(\Lambda_c^+ \to (\Lambda, \Sigma^0)\pi^+)$, we have ${\cal B}(\Lambda_c^+ o \Lambda K^+) = (6.57 \pm 0.17 \pm 0.11 \pm 0.35) imes 10^{-4}$ $\mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+) = (3.58 \pm 0.19 \pm 0.06 \pm 0.19) \times 10^{-4}.$ (Vs. PDG: 6.1 ± 1.2)% and 5.2 ± 0.8)%)

Both are consistent with W.A. but with significantly improved precision.

$\Lambda^+_C \rightarrow \Lambda h^+, \Sigma^O h^+ (A^{dir}_{CP}/Br)$

- The decay asymmetry parameter α was introduced by Lee and Yang to study the parity-violating and parity-conserving amplitudes in weak hyperon decays.
- For $\Lambda_{C}^{+} \rightarrow \Lambda h^{+}$ decays, the differential decay rate depends on α parameters and one helicity angle as:

$$\frac{dN(\Lambda_c^+ \to \Lambda h^+)}{d\cos\theta_{\Lambda}} \propto 1 + \alpha_{\Lambda_c^+} \alpha_- \cos\theta_{\Lambda}$$

• For $\Lambda_{C}^{+} \rightarrow \Sigma^{O} h^{+}$ decays, considering $\alpha(\Sigma^{o} \rightarrow \gamma \Lambda)$ is zero due to parity conservation for an electromagnetic decay, the differential decay rate related to the α parameters and helicity angles is given by

$$\frac{dN(\Lambda_c^+ \to \Sigma^0 h^+)}{d\cos\theta_{\Sigma^0} d\cos\theta_{\Lambda}} \propto 1 - \alpha_{\Lambda_c^+} \alpha_- \cos\theta_{\Sigma^0} \cos\theta_{\Lambda}$$

• Since α is CP-odd, the α -induced CP asymmetry:

$$A^{\alpha}_{CP} \equiv \frac{\alpha_{\Lambda^+_c} - \widehat{CP} \alpha_{\Lambda^+_c} \widehat{CP}^{\dagger}}{\alpha_{\Lambda^+_c} + \widehat{CP} \alpha_{\Lambda^+_c} \widehat{CP}^{\dagger}} = \frac{\alpha_{\Lambda^+_c} + \alpha_{\overline{\Lambda}^-_c}}{\alpha_{\Lambda^+_c} - \alpha_{\overline{\Lambda}^-_c}}$$

$\Lambda^+_C \rightarrow \Lambda h^+, \Sigma^O h^+ (\alpha / A^{\alpha}_{CP})$

▶ $\cos \theta_{\Lambda}$ distributions of $\Lambda_c^+ \to \Lambda h^+$ after efficiency correction, fitted with $1 + \alpha_{\Lambda_c^+} \alpha_- \cos \theta_{\Lambda}$

▶ Using the fitted slope factors and the average α_{-} , we have

 $\begin{aligned} \alpha_{\text{avg}}(\Lambda_c^+ \to \Lambda K^+) &= -0.585 \pm 0.049 \pm 0.018 \\ \alpha_{\text{avg}}(\Lambda_c^+ \to \Lambda \pi^+) &= -0.755 \pm 0.005 \pm 0.003 \\ \text{(vs. PDG: } -0.84 \pm 0.09) \\ \alpha_{\text{avg}}(\Lambda_c^+ \to \Sigma^0 K^+) &= -0.55 \pm 0.18 \pm 0.09 \\ \alpha_{\text{avg}}(\Lambda_c^+ \to \Sigma^0 \pi^+) &= -0.463 \pm 0.016 \pm 0.008 \\ \text{(vs. PDG: } -0.73 \pm 0.18) \end{aligned}$

First α results of SCS decays for charm baryons; and significantly improved results of CF Λ_c^+ decays.

▶ $(\cos \theta_{\Lambda}, \cos \theta_{\Sigma^0})$ 2D distributions of $\Lambda_c^+ \to \Sigma^0 h^+$ after efficiency correction, fitted with $1 - \alpha_{\Lambda^+_c} \alpha_- \cos \theta_{\Sigma^0} \cos \theta_{\Lambda}$ $\Lambda_c^+ o \Sigma^0 \pi^+$ fit result ×10³ ×10³ 40 35 30 25 N 0.5 0.5 $\cos\theta_{\Lambda}$ $\cos \theta_{\Lambda}$ -0.5 -0.5 -1 -1 -1-1 -0.5 0.5 -0.5 0.5 0 0 1 $\cos\theta_{r^0}$ $\cos\theta_{r_0}$ ×10 0.2 0.2 0.15 0.1 0.1 0.05 [EEE0.15 [0.15] 0.1 Z_{0.05} overall cos0,... overall cos0, cose, <0 $\cos\theta_{\Lambda} < 0$ cose_>0 $\cos\theta_{\star}>0$ -0.5 0.5 -0.5 0.5 0 -1 0 -1 cos0, $\cos\theta_{r_0}$

$\Lambda^+_{\mathcal{C}} \rightarrow \Lambda h^+, \Sigma^{\mathcal{O}} h^+ (\alpha / A^{\alpha}_{CP})$

• No evidence of CPV in baryon decays (charmed baryon Λ_c^+ and hyperon Λ) is found.

$\Lambda_{\rm C}(2910)^+ \rightarrow \Sigma_{\rm C}(2455)^{0/++} \pi^{\pm}$

[PRL 130, 031901 (2023)]

- $\Lambda_c(2940) \rightarrow \Sigma_c(2455)\pi$: the highest excited Λ_c state
- LHCb favor the $J^{P} = \frac{3}{2}^{-}$, but other values can not be excluded [JHEP 05, 030 (2017)].
- The mass of $\Lambda_c(2940)$ lower than the traditional expectation of quark model

State	J^P	Present	9	10	11	16	[20]	21	PDG 1
2P	$\frac{1}{2}^{-}$	2.978	3.017	2.983	2.989	2.890		2.980	
2P	$\frac{3}{2}^{-}$	2.970	3.034	3.005	3.000	2.917		3.004	$2.9396^{+0.0014}_{-0.0015}$

[9] PLB 659, 612 (2008) [10] PRD 84, 014025 (2011) [11] PRD 91, 054034 (2015) [16] PRD 92, 114029 (2015) [21] EPJC 77, 154 (2017)

Similar to $\Lambda(1405)$, $D_s(2317)$, X(3872), D^*N contribute in $\Lambda_c(2940)$ => Mass of $\Lambda_c(\frac{1}{2}, 2P)$ inverse, and larger than $\Lambda_c(\frac{3}{2}, 2P)$ $\overline{B}^0 \rightarrow \Lambda_c^* \overline{p}$, $\Lambda_c^* \rightarrow \Sigma_c \pi$: Search for Λ_c excited states, also has constraint on J^P

 $\overline{B}^0 \rightarrow \Sigma_c (2455)^{0/++} \pi^{\pm} \overline{p}$

[PRL 130, 031901 (2023)]

Belle data, 711 fb⁻¹ on $\Upsilon(4S)$

Perform two-dimensional extended maximum likelihood fits:

Inclusion of charge conjugate states is implicit.

Signal yields			
$\overline{\mathrm{B}}{}^{0} \rightarrow \Sigma_{\mathrm{c}}(2455){}^{0}\pi^{+}\overline{\mathrm{p}}$	767 <u>+</u> 44		
$\overline{B}{}^0 \to \Sigma_{\rm c}(2455)^{++}\pi^-\overline{\rm p}$	1213 <u>+</u> 73		

Branching fraction			
$\overline{B}{}^0 \rightarrow \Sigma_c(2455)^0 \pi^+ \overline{p}$	$(1.09\pm0.06\pm0.07)\times10^{-4}$		
$\overline{\mathrm{B}}{}^{0} \rightarrow \Sigma_{\mathrm{c}}(2455)^{++}\pi^{-}\overline{\mathrm{p}}$	$(1.84\pm0.11\pm0.12)\times10^{-4}$		

These branching fractions are consistent with the previous measurements [PRD 66, 091101 (2002), PRD 75, 011101 (2007), PLB 669, 287 (2008), PRD 87, 092004 (2013)] with improved precision.

 $\Lambda_{\rm C}(2910)^+ \rightarrow \Sigma_{\rm C}(2455)^{0/++} \pi^{\pm}$

[PRL 130, 031901 (2023)]

 $M_{\Sigma_{c}(2455)^{0}\pi^{+}} + M_{\Sigma_{c}(2455)^{++}\pi^{-}}$

• A new structure in $M_{\Sigma_c \pi}$ spectrum is seen $m = (2913.8 \pm 5.6 \pm 3.8) \text{ MeV/c}^2$ $\Gamma = (51.8 \pm 20.0 \pm 18.8) \text{ MeV}$

- Statistic significance: 6.1σ
- Most conservative significance include syst. err.: 4.2 σ • Possible J^p = $\frac{1}{2}^{-}$, agrees with $\Lambda_c \left(\frac{1}{2}^{-}, 2P\right)$, named: $\Lambda_c(2910)$
- Need more study to confirm its nature

Branching fraction		
$\mathcal{B}(\overline{B}{}^0 \to \Lambda_c(2910)^+ \bar{p}) \times \\ \mathcal{B}(\Lambda_c(2910)^+ \to \Sigma_c(2455)^0 \pi^+)$	(9.5±3.6±1.6)×10 ⁻⁶	
$\begin{aligned} \mathcal{B}(\overline{B}^0 \to \Lambda_c(2910)^+ \bar{p}) \times \\ \mathcal{B}(\Lambda_c(2910)^+ \to \Sigma_c(2455)^{++} \pi^-) \end{aligned}$	(1.24±0.35±0.10)×10⁻⁵	

$e^+e^- \rightarrow \Sigma_c(2455) (\rightarrow \Lambda_c \pi)\pi$ + anything

Searching for the $\Lambda_c(2910)$ in different production mechanisms can further confirm its existence.

We will combine Belle and Belle II data and include more Λ_c decays modes to search for the $\Lambda_c(2910)$ in e⁺e⁻ inclusive decays.

Evidence for $\Omega_c^0 \to \Xi^- \pi^+$ *and search for* $\Omega_c^0 \to \Xi^- K^+$ *and* $\Omega^- K^+$ *decays*

- The theoretical study of hadronic weak decays of the Ω_c^0 has a long history. But due to the low production rate of Ω_c^0 and low detection efficiency for long-lived final states, our knowledge of the Ω_c^0 state is very limited.
- The singly Cabibbo-suppressed decay $\Omega_c^0 \to \Xi^- \pi^+$ and doubly Cabibbo-suppressed decay $\Omega_c^0 \to \Xi^- K^+$ decays have been studied systematically in various theoretical models. While, no experimental information are available for these decays.

Predicted ratios of branching fractions for using light-front quark model (LFQM), pole model, and current algebra (CA).

Branching fraction ratios	LFQM CPC 42,093101 (2018)	Pole model and CA PRD 101, 094033 (2020)	
$\mathcal{B}(\Omega_{c}^{0} \rightarrow \Xi^{-}\pi^{+})/\mathcal{B}(\Omega_{c}^{0} \rightarrow \Omega^{-}\pi^{+})$	1.96×10^{-3}	1.04×10^{-1}	
$\mathcal{B}(\Omega_{\rm c}^0 \to \Xi^- {\rm K}^+) / \mathcal{B}(\Omega_{\rm c}^0 \to \Omega^- \pi^+)$	1.74×10^{-4}	1.06×10^{-2}	

$$\begin{split} \mathcal{B}(\Omega_{\rm c}^{0} \to \Xi^{-}\pi^{+}) / \mathcal{B}(\Omega_{\rm c}^{0} \to \Omega^{-}\pi^{+}) &= 0.253 \pm 0.053 ({\rm stat.}) \pm 0.030 ({\rm syst.}) \\ \mathcal{B}(\Omega_{\rm c}^{0} \to \Xi^{-}{\rm K}^{+}) / \mathcal{B}(\Omega_{\rm c}^{0} \to \Omega^{-}\pi^{+}) < 0.070 \\ \mathcal{B}(\Omega_{\rm c}^{0} \to \Omega^{-}{\rm K}^{+}) / \mathcal{B}(\Omega_{\rm c}^{0} \to \Omega^{-}\pi^{+}) < 0.29 \end{split}$$

Charm and Charmed Baryon Lifetimes at Belle II

Motivation and status

- Heavy Quark Expansion (HQE) predict beauty and charm hadron lifetimes
 - Charm lifetime measurements allow for HQE validation and refinement increasing reliability and precision of SM predictions in flavor dynamics
 - Charm hadron lifetime prediction is challenging: significant higher order correction + QCD contributions
- The best measurements of charm-meson lifetimes date back to FOCUS; LHCb recently reported precise relative measurements of charm-baryon lifetimes
- The LHCb measurements changed the lifetime hierarchy of singly charmed baryons: $\tau(\Omega_c^0) < \tau(\Xi_c^0) < \tau(\Lambda_c^+) < \tau(\Xi_c^+) \Rightarrow \tau(\Xi_c^0) < \tau(\Lambda_c^+) < \tau(\Omega_c^0) < \tau(\Xi_c^+)$
- Possible reasons why HQE has initially failed are being debated (Science Bulletin 67 (2022) 445-447)
- No other experimental confirmation of the LHCb results

Lifetime fit

- Proper decay time calculated from flight length between production and decay vertices and momentum as: $t = \frac{m}{p}(\vec{L} \cdot \hat{p})$
- Lifetime (τ): unbinned maximum-likelihood fit to (t, σ)

• PDF Model:

$$PDF(t,\sigma_t) = (1 - f_b) \int_0^\infty e^{-t_{true}/\tau} R(t - t_{true} | b, s\sigma_t) dt_{true} PDF_{sig}(\sigma_t) + f_b PDF_{bkg}(t,\sigma_t)$$

• Background PDF:

Empirical model of the sideband data, is the sum of two exponential functions convolved with Gaussian resolution functions.

- *b*-bias
- *s*-scale
- *R* resolution function
 - Gaussian: for D^+ , Λ_c^+ and Ω_c^0
 - Double Gaussian: for D^0

D lifetime

[PRL 127, 211801 (2021)]

- Remove D from B decays with $p^*(D^{*+}) > 2.5(2.6)$ GeV/c for $D^0(D^+)$
- 171k and 59k signal candidates for $D^{*+} \rightarrow (D^0 \rightarrow K^-\pi^+)\pi^+$ and $D^{*+} \rightarrow (D^+ \rightarrow K^-\pi^+\pi^+)\pi^0$ decays

More precise than and consistent with previous measurements. 18

Λ_c^+ lifetime

[PRL 130, 071802 (2023)]

- Remove Λ_c^+ from B decays with $p^*(\Lambda_c^+) > 2.5$ GeV/c
- 116k $\Lambda_c^+ \rightarrow p K^- \pi^+$ signal with 7.5% background in the signal region
- Potential bias due to $\Xi_c^{0/+} \rightarrow \Lambda_c^+ \pi^{-/0}$
 - veto applied and corrected for remaining contamination

World's best measurement of the Λ_c^+ lifetime

Ω_c^0 lifetime

[PRD 107, L031103 (2023)

- First Belle II lifetime measurement with complex decay topology
 - Two secondary decay vertices
- ~ 90 Ω_c^0 signal with 33% background in the signal region

 $m(\Omega^{-}\pi^{+})$ [GeV/ c^2]

Ω_c^0 lifetime

Dominant systematics: Modeling of background and resolution

Source	Uncertainty (fs)
Fit bias	3.4
Resolution model	6.2
Background model	8.3
Detector alignment	1.6
Momentum scale	0.2
Input charm masses	0.2
Total	11.0

$$\tau(\Omega_{\rm c}^0) = 243 \pm 48(\text{stat.}) \pm 11(\text{syst.}) \text{ fs}$$

- Ω⁰_c is not the shortest lived singly charmed baryon
 consistent with LHCb average
- Domenstrate the capabilities of the Belle II detector for vertexing complex decay topologies
- Limited by statistics and can improve with larger samples and additional decay modes

A short summary

- The first measurements of A_{CP}^{dir} and A_{CP}^{α} for singly Cabibbo-suppressed (SCS) decays of charmed baryons $[\Lambda_{c}^{+} \rightarrow \Lambda K^{+} \text{ and } \Lambda_{c}^{+} \rightarrow \Sigma^{0} K^{+}]$ at Belle.
- The observation of $\Lambda_c(2910)^+ \rightarrow \Sigma_c(2455)^{0/++} \pi^{\pm}$ at Belle
- The evidence for $\Omega_c^0 \to \Xi^- K^+$ at Belle
- Measurements of D, Λ_c^+ , and Ω_c^0 lifetimes at Belle II

SuperKEKB achieved world record peak luminosity: 4.7 x 10^{34} cm⁻²s⁻¹ Belle II collected ~ 428 fb⁻¹ of data

Stay tuned for more results!!

Thanks for your attentions!