Numerical Result

$au^+ au^-$ atom and au mass

Yu-Jie Zhang

Beihang Univeisity

2022 Super Tau Charm Workshop

2022年12月3日

▲□ > ▲□ > ▲目 > ▲目 > 目 のへで

tau tau atom and tau mass

Outline

1 Introduction

 $\tau~{\rm mass} \\ \tau^+\tau^-~{\rm atom}$

2 The frame of Calculation

3 Numerical Result

4 Discussion

1 Introduction

au mass $au^+ au^-$ atom

- **2** The frame of Calculation
- **3** Numerical Result

4 Discussion

1 Introduction au mass $au^+ au^-$ atom

- **2** The frame of Calculation
- **3** Numerical Result

4 Discussion

Numerical Resul

Need more precise measurements m_{τ} , Γ_{τ} , $(g-2)_{\tau}$ in PDG 2022

Mass
$$m = 1776.86 \pm 0.12 \text{ MeV}$$

 $(m_{\tau^+} - m_{\tau^-})/m_{\text{average}} < 2.8 \times 10^{-4}$, CL = 90%
Mean life $\tau = (290.3 \pm 0.5) \times 10^{-15} \text{ s}$
 $c\tau = 87.03 \ \mu\text{m}$
Magnetic moment anomaly > -0.052 and < 0.013, CL = 95%
 $\text{Re}(d_{\tau}) = -0.220 \text{ to } 0.45 \times 10^{-16} \ e \text{ cm}$, CL = 95%
 $\text{Im}(d_{\tau}) = -0.250 \text{ to } 0.0080 \times 10^{-16} \ e \text{ cm}$, CL = 95%

 $J = \frac{1}{2}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction	The Frame of Calculation	Numerical Result	Discussion
000000000000000000000000000000000000		00000	0000
m_{τ} and lepton universality.	1405.1076		

• Comparing the electronic branching fractions of τ and $\mu,$ lepton universality can be tested as

$$\left(rac{g_{ au}}{g_{\mu}}
ight)^2 = rac{ au_{\mu}}{ au_{ au}} \left(rac{m_{\mu}}{m_{ au}}
ight)^5 rac{B(au o e
u ar{
u})}{B(\mu o e
u ar{
u})} (1 + F_W)(1 + F_{\gamma}), \tag{1}$$

• BESIII measurement, 1405.1076

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)^2 = 1.0016 \pm 0.0042,$$
 (2)

Numerical Resul

Measured m_{τ} , from Belle II 2008.04665

Introduction

The Frame of Calculation

Numerical Resul

Discussion 0000

m_{τ} measurement at BESIII, 1405.1076

- ▲ ロ ▶ ▲ 固 ▶ ▲ 固 ▶ ▲ 固 ▶ ④ ヘ ()

New data taking scenario at BESIII, from Zhang Jianyong TAU2018

Data comparison

	J/ψ	Ψ'	т (рb-1)					
	(pb-1)	(pb-1)	3540	3553	3554	3560	3600	
			MeV	MeV	MeV	MeV	MeV	
2011	1.5	7.5	4.3	0	5.6	3.9	9.6	
2018	32.6	67.2	25.5	42.6	27.1	8.3	13.9	

▲□▶▲□▶▲≧▶▲≧▶ ≧ のへで

New data taking scenario at BESIII, from Zhang Jianyong TAU2018

Three energy regions:

- Low energy region Point 1, 14 pb⁻¹, to determine background
- Near threshold Point 2, 39 pb⁻¹ and point 3, 26 pb⁻¹, to determine tau mass
- High energy region Point 4, 7 pb⁻¹ for X² check Point 5, 14 pb⁻¹ to determine detection efficiency

Total lum. ~100pb⁻¹, uncertainty: 0.1MeV

We obtain more than 130 pb⁻¹ tau scan data!

Zhang Jianyong

ヘロマ うぼう うけい うけい

1 Introduction

au mass $au^+ au^-$ atom

- **2** The frame of Calculation
- **3** Numerical Result

4 Discussion

roduction	The Frame of Calculation	Numerical Result 00000	Discussion 0000
)ED atom			

- 1 QED atoms (e^+e^- , μ^+e^- , τ^+e^- , $\mu^+\mu^-$, $\tau^+\mu^-$, $\tau^+\tau^-$) are formed during QED interaction just as hydrogen.
- The properties of QED atoms have been studied to test QED, fundamental symmetries, New Physics, gravity, and so on (hep-ex/0106103, 0912.0843, 1710.01833, 1802.01438, Phys.Rept. 975 (2022) 1-61).
- 3 Only positronium (e^+e^-) and muonium (μ^+e^-) had been discovered in 1951 and 1960 respectively.

- 1 $\tau^+\tau^-$ atom is the smallest QED atom for Bohr radius is 30.4 fm (Moffat:1975uw)
- 2 $\tau^+\tau^-$ atom is is named tauonium (Avilez:1977ai,Avilez:1978sa), ditauonium (2204.07269, 2209.11439), and true tauonium (2202.02316).
- **3** We named them following charmonium just as $J_{\tau}(nS)$ for $n^{2S+1}L_J = n^3S_1$ and $J^{PC} = 1^{--}$, $\chi_{\tau J}(nP)$ for $n^{2S+1}L_J = n + 1^3P_J$ and $J^{PC} = J^{++}$.
- **4** The production of η_{τ} has been considered (2202.02316), and the production of J_{τ} in electron positron collisions has been estimated (0807.4114).
- **5** The spectroscopy of $\tau^+\tau^-$ atoms has been studies (2204.07269).

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

$\gamma\gamma ightarrow\eta_{ au} ightarrow\gamma$, 2202.02316

Colliding system, c.m. energy, \mathcal{L}_{int} , exp.		$\sigma imes \mathcal{B}_{\gamma\gamma}$					$N imes \mathcal{B}_{\gamma\gamma}$	
	$\eta_{\rm c}(1{ m S})$	$\eta_{\rm c}(2{ m S})$	$\chi_{\rm c,0}(1{\rm P})$	$\chi_{\rm c,2}(1{\rm P})$	LbL	${\mathcal T}_0$	${\mathcal T}_0$	$\chi_{\rm c,2}(1{\rm P})$
e^+e^- at 3.78 GeV, 20 fb ⁻¹ , BES III	120 fb	3.6 ab	15 ab	13 ab	30 ab	0.25 ab	-	-
e^+e^- at 10.6 GeV, 50 ab ⁻¹ , Belle II	1.7 fb	0.35 fb	0.52 fb	0.77 fb	1.7 fb	0.015 fb	750	38 500
e^+e^- at 91.2 GeV, 50 ab ⁻¹ , FCC-ee	11 fb	2.8 fb	3.9 fb	6.0 fb	12 fb	0.11 fb	5 600	$3\cdot 10^5$
p-p at 14 TeV, 300 fb ⁻¹ , LHC	7.9 fb	2.0 fb	2.8 fb	4.3 fb	6.3 fb	0.08 fb	24	1290
p-Pb at 8.8 TeV, 0.6 pb ⁻¹ , LHC	25 pb	6.3 pb	8.7 pb	13 pb	21 pb	0.25 pb	0.15	8
Pb-Pb at 5.5 TeV, 2 nb ⁻¹ , LHC	61 nb	15 nb	21 nb	31 nb	62 nb	0.59 nb	1.2	62

Numerical Resu

$\gamma\gamma \rightarrow \eta_{\tau} \rightarrow \gamma\gamma$ at Z pole, 2202.02316

Recent progress: NNNLO

- 1 AMFlow: 2201.11669, 2201.11636, 2201.11637
- 2) $e^+e^-
 ightarrow t ar{t}$ at NNNLO in QCD, 2209.14259
- 3 $\Upsilon
 ightarrow e^+e^-$, decay constant of B_c , 2207.14259, 2208.04302

Numerical Resul

1 Introduction

2 The frame of Calculation

3 Numerical Result

4 Discussion

 $\begin{array}{c|c} & & & \text{The Frame of Calculation} \\ e^+e^- \rightarrow \tau^+\tau^- \rightarrow \nu X^-\bar{\nu}X^+ \text{ around the } \tau^+\tau^- \text{ production threshold} \end{array}$

1 Updated cross sections

$$\sigma_{ex}(W, m_{\tau}, \Gamma), \delta_{w}) = \int_{m(J_{\tau})}^{\infty} dW' \frac{e^{-\frac{(W-W')^{2}}{2\delta_{w}^{2}}}}{\sqrt{2\pi}\delta_{w}} \int_{0}^{1-\frac{W(J_{\tau})^{2}}{W'^{2}}} dx F(x, W') \frac{\bar{\sigma}(W'\sqrt{1-x}, m_{\tau}, \Gamma)}{|1-\Pi(W'\sqrt{1-x})|^{2}}$$

2 Cross sections in BESIII, 1405.1076

$$\sigma(E_{\rm CM}, m_{\tau}, \delta_w^{\rm BEMS}) = \frac{1}{\sqrt{2\pi}\delta_w^{\rm BEMS}} \int_{2m_{\tau}}^{\infty} dE'_{\rm CM} e^{\frac{-(E_{\rm CM} - E'_{\rm CM})^2}{2(\delta_w^{\rm BEMS})^2}} \int_0^{1-\frac{4m^2}{E'_{\rm CM}}} dx F(x, E'_{\rm CM}) \frac{\sigma_1(E'_{\rm CM}\sqrt{1-x}, m_{\tau})}{|1-\prod(E_{\rm CM})|^2}$$

3 Difference: shift $2m_{\tau}$ to $m(J_{\tau})$ in the range of integration and add Γ_{τ} as a variable of the cross sections after including $J_{\tau}(nS)$ atom.

$\bar{\sigma}(W, m_{\tau}, \Gamma_{\tau})$, 1312.4791

$$\bar{\sigma}(W, m_{\tau}, \Gamma_{\tau}) = \frac{4\pi\alpha^2}{3W^2} \frac{24\pi}{W^2} \text{Im} \left[G_{\bar{\nu}X^+\nu X^-}(0, 0, W - 2m_{\tau}) \right], \quad (3)$$

2 $G_{\bar{\nu}X^+\nu X^-}(\vec{r},\vec{r}',E)$ represents a Green function of $\tau^+\tau^-$ currents in the non-relativistic effective theory, where $\tau^+\tau^-$ decay to $\bar{\nu}X^+\nu X^-$

$$G_{\bar{\nu}X^{+}\nu X^{-}}(\vec{r},\vec{r}^{\,\prime},E) = \sum_{n} \frac{\psi_{n}(\vec{r})\psi_{n}^{*}(\vec{r}^{\,\prime})}{E_{n}-E-i\epsilon} Br[n \to \bar{\nu}X^{+}\nu X^{-}] + \int \frac{d^{3}\vec{k}}{2\pi^{3}} \frac{\psi_{\vec{k}}(\vec{r})\psi_{\vec{k}}^{*}(\vec{r}^{\,\prime})}{E_{\vec{k}}-E-i\epsilon},$$
(4)

3 Then

$$\bar{\sigma}(W) = \bar{\sigma}^{J_{\tau}}(W) + \bar{\sigma}(W)_{continue}$$
(5)

1 Green function approach to bound states is consistent with Breit-Wigner formula for a narrow bound states

$$\bar{\sigma}^{J_{\tau}}(W) = \sum_{n} \frac{6\pi^2}{W^2} \delta(W - m(J_{\tau}(nS))) \Gamma(J_{\tau}(nS) \to e^+e^-) Br(J_{\tau}(nS) \to \bar{\nu}X^+\nu X^-)$$
(6)

2 Ignore the binding Energy of $J_{\tau}(nS)$ for it much less than δ_{w}

$$\bar{\sigma}^{J_{\tau}}(W) = \frac{6\pi^2}{W^2} \delta(W - 2m_{\tau}) \sum_n \Gamma(J_{\tau}(nS) \to e^+ e^-) Br(J_{\tau}(nS) \to \bar{\nu}X^+ \nu X^-) \quad (7)$$

Decay mode of $J_{\tau}(nS)$

$$\Gamma_{total}(J_{\tau}(nS)) = \Gamma_{Ani}(J_{\tau}(nS)) + \Gamma_{Weak}(J_{\tau}(nS)) + \Gamma_{E1}(J_{\tau}(nS))$$

$$\Gamma_{Ani}(J_{\tau}(nS)) = 4.2\Gamma(J_{\tau}(nS) \to e^{+}e^{-})$$

$$\Gamma_{Weak}(J_{\tau}(nS)) = 2\Gamma(\tau \to \nu X^{-})$$
(8)

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q ()

Numerical Result ●0000

1 Introduction

2 The frame of Calculation

3 Numerical Result

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQ@

Decay mode of $J_{\tau}(nS)$

Numerical Result

TABLE I: $\Gamma(J_{\tau}(nS))$ (meV)

n	$\Gamma(e^+e^-)$	Γ_{Weak}	Γ_{E1}	Γ_{total}	$\Gamma(e^+e^-)Br(\bar{\nu}X^+\nu X^-)$
1	6.1362	4.5346	0.00000	30.3066	0.9181
2	0.7671	4.5346	0.00000	7.7561	0.4484
3	0.2273	4.5346	0.00724	5.4964	0.1874
4	0.0959	4.5346	0.00506	4.9424	0.0880
5	0.0491	4.5346	0.00325	4.7440	0.0449
6	0.0284	4.5346	0.00214	4.6561	0.0277
7	0.0179	4.5346	0.00146	4.6112	0.0176
8	0.0120	4.5346	0.00104	4.5849	0.0119
9	0.0084	4.5346	0.00076	4.5700	0.0084

Introduction	The Frame of Calculation	Numerical Result	Discussion
0000000000000		00●00	0000
Cross sections from $J_{\tau}(nS)$			

1 Then we get the $J_{\tau}(nS)$ contribution the cross section in Eq.11

$$\bar{\sigma}^{J_{\tau}}(W) = 3.26 \,\delta(W - 2m_{\tau}) \,\mathrm{pb} \,\mathrm{MeV} \tag{9}$$

2 Updated $\bar{\sigma}(W, m_{\tau}, \Gamma_{\tau})$

$$\bar{\sigma}(W) = 3.26\delta(W - 2m_{\tau}) \text{ pb MeV} + \theta(W - 2m_{\tau})\bar{\sigma}_{Continue}$$
(10)

Nomber of enents of $J_{ au} o u X^- \overline{ u} X^+$ at BESIII

BESIII collect 42.6 pb⁻¹ data at 3553 MeV and 27.1 pb⁻¹ data at 3554 MeV in 2018. And $\delta_w = 1.2$ MeV. Then the nomber of enents of $J_\tau \to \nu X^- \bar{\nu} X^+$ at BESIII is

$$N_{J_{\tau}} \sim 50 \times Exp[-(W - 2m_{\tau})^2/(2.88 \text{ MeV}^2)]$$
 (11)

We can discovery J_{τ} at BESIII.

Introduction 0000000000000	The Frame of Calculation	Numerical Result	Discussion 0000	
<i>m</i> Estimate				

- 1 The data include contribution from $J_{\tau}(nS)$, so the continue contribution will be suppress.
- 2 m_{τ} will move from 1776.91 MeV to about 1777.77 MeV during BESIII data in 2011.
- **3** Γ_{τ} and $(g-2)_{\tau}$ will be measured at STCF.
- **4** Updated BESIII measurement, 1405.1076

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)^{2}_{Updated} = \frac{1776.91^{5}}{1777.77^{5}} \times 1.0016 \pm 0.0042 = 0.9992 \pm 0.0042, \tag{12}$$

Numerical Resul

1 Introduction

- **2** The frame of Calculation
- 3 Numerical Result

Discussion

- **1** J_{τ} may be discovered at BESIII.
- **2** m_{τ} will be enlarged.
- **3** Γ_{τ} and $(g-2)_{\tau}$ will be measured at STCF.

Numerical Resul

Thanks

◆□ > ◆□ > ◆ 三 > ◆ 三 > → □ → ○ < ⊙

Process, c.m. energy, \mathcal{L}_{int} , exp.	$\sigma[\mu^+\mu^- + LH]$			$N[\mu^+\mu^- + LH]$			Significance
	$\psi(2S)$	Continue	$J_{ au}$	$\psi(2S)$	Continue	$J_{ au}$	
$\mu^+\mu^-$ at 3.554 GeV, 100 fb ⁻¹ , BES III	-	6.9 nb	0.94 pb	-	0.69E9	94E3	3.6σ
$\mu^+\mu^-$ or LH at 3.554 GeV, 100 fb ⁻¹ , BES III	-	21 nb	3.0 pb	-	2.2E9	300E3	6.4σ
$\mu^+\mu^-$ via ISR at 10.6 GeV, 50 ab ⁻¹ , Belle II	108 fb	8.7 pb	7.7 ab	5.4E6	440E6	380	-
$\mu^+\mu^-$ via ISR at 91.2 GeV, 50 ab ⁻¹ , FCC-ee	1.6 fb	12.7 fb	0.12 ab	80E3	640E3	6	-