$\tau^{+} \tau^{-}$atom and τ mass

Yu－Jie Zhang
Beihang Univeisity
2022 Super Tau Charm Workshop

2022年12月3日
(1) Introduction
τ mass
$\tau^{+} \tau^{-}$atom
(2) The frame of Calculation
(3) Numerical Result
(4) Discussion
(1) Introduction
τ mass
$\tau^{+} \tau^{-}$atom
(2) The frame of Calculation
(3) Numerical Result

4 Discussion
(1) Introduction
τ mass
$\tau^{+} \tau^{-}$atom
(2) The frame of Calculation
(3) Numerical Result
(4) Discussion

Need more precise measurements $m_{\tau}, \Gamma_{\tau},(g-2)_{\tau}$ in PDG 2022
τ

$$
J=\frac{1}{2}
$$

Mass $m=1776.86 \pm 0.12 \mathrm{MeV}$
$\left(m_{\tau^{+}}-m_{\tau^{-}}\right) / m_{\text {average }}<2.8 \times 10^{-4}, \mathrm{CL}=90 \%$
Mean life $\tau=(290.3 \pm 0.5) \times 10^{-15} \mathrm{~s}$

$$
c \tau=87.03 \mu \mathrm{~m}
$$

Magnetic moment anomaly >-0.052 and $<0.013, C L=95 \%$
$\operatorname{Re}\left(d_{\tau}\right)=-0.220$ to $0.45 \times 10^{-16} \mathrm{ecm}, \mathrm{CL}=95 \%$
$\operatorname{Im}\left(d_{\tau}\right)=-0.250$ to $0.0080 \times 10^{-16} \mathrm{ecm}, \mathrm{CL}=95 \%$

- Comparing the electronic branching fractions of τ and μ, lepton universality can be tested as

$$
\begin{equation*}
\left(\frac{g_{\tau}}{g_{\mu}}\right)^{2}=\frac{\tau_{\mu}}{\tau_{\tau}}\left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{B(\tau \rightarrow e \nu \bar{\nu})}{B(\mu \rightarrow e \nu \bar{\nu})}\left(1+F_{W}\right)\left(1+F_{\gamma}\right) \tag{1}
\end{equation*}
$$

- BESIII measurement, 1405.1076

$$
\begin{equation*}
\left(\frac{g_{\tau}}{g_{\mu}}\right)^{2}=1.0016 \pm 0.0042 \tag{2}
\end{equation*}
$$

Measured m_{τ}, from Belle II 2008.04665

Data comparison

	$\begin{gathered} \mathrm{J} / \Psi \\ \left(\mathrm{pb}^{-1}\right) \end{gathered}$	$\left(p^{-1}\right)$	T (pb-1)				
			3540	3553	3554	3560	3600
			MeV	MeV	MeV	MeV	MeV
2011	1.5	7.5	4.3	0	5.6	3.9	9.6
2018	32.6	67.2	25.5	42.6	27.1	8.3	13.9

Three energy regions:
> Low energy region Point 1, $14 \mathrm{pb}^{-1}$, to determine background
> Near threshold
Point 2, $39 \mathrm{pb}^{-1}$ and point 3, $26 \mathrm{pb}^{-1}$, to determine tau mass
> High energy region Point 4, $7 \mathrm{pb}^{-1}$ for X^{2} check Point 5, $14 \mathrm{pb}^{-1}$ to determine detection efficiency
Total lum. $\sim 100 \mathrm{pb}^{-1}$, uncertainty: 0.1 MeV

We obtain more than $130 \mathrm{pb}^{-1}$ tau scan data!

(1) Introduction

τ mass
$\tau^{+} \tau^{-}$atom
(2) The frame of Calculation
(3) Numerical Result
4) Discussion

QED atom

(1) QED atoms ($\left.e^{+} e^{-}, \mu^{+} e^{-}, \tau^{+} e^{-}, \mu^{+} \mu^{-}, \tau^{+} \mu^{-}, \tau^{+} \tau^{-}\right)$are formed during QED interaction just as hydrogen.
(2) The properties of QED atoms have been studied to test QED, fundamental symmetries, New Physics, gravity, and so on (hep-ex/0106103, 0912.0843, 1710.01833, 1802.01438, Phys.Rept. 975 (2022) 1-61).
(3) Only positronium ($e^{+} e^{-}$) and muonium ($\mu^{+} e^{-}$) had been discovered in 1951 and 1960 respectively.
(1) $\tau^{+} \tau^{-}$atom is the smallest QED atom for Bohr radius is 30.4 fm (Moffat:1975uw)
(2) $\tau^{+} \tau^{-}$atom is is named tauonium (Avilez:1977ai,Avilez:1978sa), ditauonium (2204.07269, 2209.11439) , and true tauonium (2202.02316).
(3) We named them following charmonium just as $J_{\tau}(n S)$ for $n^{2 S+1} L_{J}=n^{3} S_{1}$ and $J^{P C}=1^{--}, \chi_{\tau} J(n P)$ for $n^{2 S+1} L_{J}=n+1^{3} P_{J}$ and $J^{P C}=J^{++}$.
(4) The production of η_{τ} has been considered (2202.02316), and the production of J_{τ} in electron positron collisions has been estimated (0807.4114).
(5) The spectroscopy of $\tau^{+} \tau^{-}$atoms has been studies (2204.07269).

The spectroscopy of $\tau^{+} \tau^{-}$atom, 2204.07269

$\gamma \gamma \rightarrow \eta_{\tau} \rightarrow \gamma \gamma, 2202.02316$

Colliding system, c.m. energy, $\mathcal{L}_{\mathrm{int}}$, exp.	$\sigma \times \mathcal{B}_{\gamma \gamma}$							$N \times \mathcal{B}_{\gamma \gamma}$	
	$\eta_{\mathrm{c}}(1 \mathrm{~S})$	$\eta_{\mathrm{c}}(2 \mathrm{~S})$	$\chi_{\mathrm{c}, 0}(1 \mathrm{P})$	$\chi_{\mathrm{c}, 2}(1 \mathrm{P})$	LbL	\mathcal{T}_{0}	\mathcal{T}_{0}	$\chi_{\mathrm{c}, 2}(1 \mathrm{P})$	
$e^{+} e^{-}$at $3.78 \mathrm{GeV}, 20 \mathrm{fb}^{-1}$, BES III	120 fb	3.6 ab	15 ab	13 ab	30 ab	0.25 ab	-	-	
$e^{+} e^{-}$at $10.6 \mathrm{GeV}, 50 \mathrm{ab}^{-1}$, Belle II	1.7 fb	0.35 fb	0.52 fb	0.77 fb	1.7 fb	0.015 fb	750	38500	
$e^{+} e^{-}$at $91.2 \mathrm{GeV}, 50 \mathrm{ab}^{-1}$, FCC-ee	11 fb	2.8 fb	3.9 fb	6.0 fb	12 fb	0.11 fb	5600	$3 \cdot 10^{5}$	
p-p at $14 \mathrm{TeV}, 300 \mathrm{fb}^{-1}$, LHC	7.9 fb	2.0 fb	2.8 fb	4.3 fb	6.3 fb	0.08 fb	24	1290	
$\mathrm{p}-\mathrm{Pb}$ at $8.8 \mathrm{TeV}, 0.6 \mathrm{pb}^{-1}$, LHC	25 pb	6.3 pb	8.7 pb	13 pb	21 pb	0.25 pb	0.15	8	
$\mathrm{~Pb}-\mathrm{Pb}$ at $5.5 \mathrm{TeV}, 2 \mathrm{nb}^{-1}$, LHC	61 nb	15 nb	21 nb	31 nb	62 nb	0.59 nb	1.2	62	

(1) AMFlow: 2201.11669, 2201.11636, 2201.11637
(2) $e^{+} e^{-} \rightarrow t \bar{t}$ at NNNLO in QCD, 2209.14259
(3) $\Upsilon \rightarrow e^{+} e^{-}$, decay constant of $B_{c}, 2207.14259,2208.04302$

(1) Introduction

(2) The frame of Calculation
(3) Numerical Result
(4) Discussion
(1) Updated cross sections

$$
\sigma_{e x}\left(W, m_{\tau}, \Gamma_{\tau}, \delta_{w}\right)=\int_{m^{m}\left(J_{\tau}\right)}^{\infty} d W^{\prime} \frac{e^{-\frac{\left(W-W^{\prime}\right)^{2}}{2 \delta_{w}^{2}}}}{\sqrt{2 \pi} \delta_{w}} \int_{0}^{1-\frac{e_{\left.\left(I_{\tau}\right)^{2}\right)}^{W^{\prime}}}{}} d x F\left(x, W^{\prime}\right) \frac{\bar{\sigma}\left(W^{\prime} \sqrt{1-x}, m_{\tau}, \Gamma_{\tau}\right)}{\left|1-\Pi\left(W^{\prime} \sqrt{1-x}\right)\right|^{2}} .
$$

(2) Cross sections in BESIII, 1405.1076

$$
\sigma\left(E_{\mathrm{CM}}, m_{\tau}, \delta_{w}^{\mathrm{BEMS}}\right)=\frac{1}{\sqrt{2 \pi} \delta_{w}^{\mathrm{EEMS}}} \int_{\left(2 m_{\tau}\right.}^{\infty} d E_{\mathrm{CM}}^{\prime} e^{\frac{-\left(E_{\mathrm{CM}}-E_{\tau}^{\prime}\right)^{2}}{2\left(\delta_{w}^{E W M}\right)^{2}}} \int_{0}^{1-\frac{\left.\sigma^{2}\right)}{E_{\mathrm{CM}}}} d x F\left(x, E_{\mathrm{CM}}^{\prime}\right) \frac{\sigma_{1}\left(E_{\mathrm{CM}}^{\prime} \sqrt{1-x}, m_{\tau}\right)}{\mid 1-\underline{\prod\left(\left.E_{\mathrm{CM}}\right|^{2}\right.}}
$$

(3) Difference: shift $2 m_{\tau}$ to $m\left(J_{\tau}\right)$ in the range of integration and add Γ_{τ} as a variable of the cross sections after including $J_{\tau}(n S)$ atom.
(1) $\bar{\sigma}\left(W, m_{\tau}, \Gamma_{\tau}\right)$

$$
\begin{equation*}
\bar{\sigma}\left(W, m_{\tau}, \Gamma_{\tau}\right)=\frac{4 \pi \alpha^{2}}{3 W^{2}} \frac{24 \pi}{W^{2}} \operatorname{Im}\left[G_{\bar{\nu} X^{+} \nu X^{-}}\left(0,0, W-2 m_{\tau}\right)\right] \tag{3}
\end{equation*}
$$

(2) $G_{\bar{\nu} X^{+} \nu X^{-}}\left(\vec{r}, \vec{r}^{\prime}, E\right)$ represents a Green function of $\tau^{+} \tau^{-}$currents in the non-relativistic effective theory, where $\tau^{+} \tau^{-}$decay to $\bar{\nu} X^{+} \nu X^{-}$

$$
\begin{equation*}
G_{\bar{\nu} X^{+} \nu X^{-}}\left(\vec{r}, \vec{r}^{\prime}, E\right)=\sum_{n} \frac{\psi_{n}(\vec{r}) \psi_{n}^{*}\left(\vec{r}^{\prime}\right)}{E_{n}-E-i \epsilon} B r\left[n \rightarrow \bar{\nu} X^{+} \nu X^{-}\right]+\int \frac{d^{3} \vec{k}}{2 \pi^{3}} \frac{\psi_{\vec{k}}(\vec{r}) \psi_{\vec{k}}^{*}\left(\vec{r}^{\prime}\right)}{E_{\vec{k}}-E-i \epsilon}, \tag{4}
\end{equation*}
$$

(3) Then

$$
\begin{equation*}
\bar{\sigma}(W)=\bar{\sigma}^{J_{\tau}}(W)+\bar{\sigma}(W)_{\text {continue }} \tag{5}
\end{equation*}
$$

(1) Green function approach to bound states is consistent with Breit-Wigner formula for a narrow bound states

$$
\begin{equation*}
\bar{\sigma}^{J_{\tau}}(W)=\sum_{n} \frac{6 \pi^{2}}{W^{2}} \delta\left(W-m\left(J_{\tau}(n S)\right)\right) \Gamma\left(J_{\tau}(n S) \rightarrow e^{+} e^{-}\right) \operatorname{Br}\left(J_{\tau}(n S) \rightarrow \bar{\nu} X^{+} \nu^{\prime} X^{-}\right) \tag{6}
\end{equation*}
$$

(2) Ignore the binding Energy of $J_{\tau}(n S)$ for it much less than δ_{w}

$$
\begin{equation*}
\bar{\sigma}^{J_{\tau}}(W)=\frac{6 \pi^{2}}{W^{2}} \delta\left(W-2 m_{\tau}\right) \sum_{n} \Gamma\left(J_{\tau}(n S) \rightarrow e^{+} e^{-}\right) \operatorname{Br}\left(J_{\tau}(n S) \rightarrow \bar{\nu} X^{+} \nu X^{-}\right) \tag{7}
\end{equation*}
$$

$$
\begin{align*}
\Gamma_{\text {total }}\left(J_{\tau}(n S)\right) & =\Gamma_{\text {Ani }}\left(J_{\tau}(n S)\right)+\Gamma_{\text {Weak }}\left(J_{\tau}(n S)\right)+\Gamma_{E 1}\left(J_{\tau}(n S)\right) \\
\Gamma_{\text {Ani }}\left(J_{\tau}(n S)\right) & =4.2 \Gamma\left(J_{\tau}(n S) \rightarrow e^{+} e^{-}\right) \\
\Gamma_{\text {Weak }}\left(J_{\tau}(n S)\right) & =2 \Gamma\left(\tau \rightarrow \nu X^{-}\right) \tag{8}
\end{align*}
$$

(1) Introduction
(2) The frame of Calculation
(3) Numerical Result
(4) Discussion

Decay mode of $J_{\tau}(n S)$

TABLE I: $\Gamma\left(J_{\tau}(n S)\right)(\mathrm{meV})$

n	$\Gamma\left(e^{+} e^{-}\right)$	$\Gamma_{\text {Weak }}$	$\Gamma_{E 1}$	$\Gamma_{\text {total }}$	$\Gamma\left(e^{+} e^{-}\right) B r\left(\bar{v} X^{+} v X^{-}\right)$
1	6.1362	4.5346	0.00000	30.3066	0.9181
2	0.7671	4.5346	0.00000	7.7561	0.4484
3	0.2273	4.5346	0.00724	5.4964	0.1874
4	0.0959	4.5346	0.00506	4.9424	0.0880
5	0.0491	4.5346	0.00325	4.7440	0.0449
6	0.0284	4.5346	0.00214	4.6561	0.0277
7	0.0179	4.5346	0.00146	4.6112	0.0176
8	0.0120	4.5346	0.00104	4.5849	0.0119
9	0.0084	4.5346	0.00076	4.5700	0.0084

(1) Then we get the $J_{\tau}(n S)$ contribution the cross section in Eq. 11

$$
\begin{equation*}
\bar{\sigma}^{J_{\tau}}(W)=3.26 \delta\left(W-2 m_{\tau}\right) \mathrm{pb} \mathrm{MeV} \tag{9}
\end{equation*}
$$

(2) Updated $\bar{\sigma}\left(W, m_{\tau}, \Gamma_{\tau}\right)$

$$
\begin{equation*}
\bar{\sigma}(W)=3.26 \delta\left(W-2 m_{\tau}\right) \mathrm{pb} \mathrm{MeV}+\theta\left(W-2 m_{\tau}\right) \bar{\sigma}_{\text {Continue }} \tag{10}
\end{equation*}
$$

BESIII collect $42.6 \mathrm{pb}^{-1}$ data at 3553 MeV and $27.1 \mathrm{pb}^{-1}$ data at 3554 MeV in 2018. And $\delta_{w}=1.2 \mathrm{MeV}$. Then the nomber of enents of $J_{\tau} \rightarrow \nu X^{-} \bar{\nu} X^{+}$at BESIII is

$$
\begin{equation*}
N_{J_{\tau}} \sim 50 \times \operatorname{Exp}\left[-\left(W-2 m_{\tau}\right)^{2} /\left(2.88 \mathrm{MeV}^{2}\right)\right] \tag{11}
\end{equation*}
$$

We can discovery J_{τ} at BESIII.
(1) The data include contribution from $J_{\tau}(n S)$, so the continue contribution will be suppress.
(2) m_{τ} will move from 1776.91 MeV to about 1777.77 MeV during BESIII data in 2011.
(3) Γ_{τ} and $(g-2)_{\tau}$ will be measured at STCF.
(4) Updated BESIII measurement, 1405.1076

$$
\begin{equation*}
\left(\frac{g_{\tau}}{g_{\mu}}\right)_{\text {Updated }}^{2}=\frac{1776.91^{5}}{1777.77^{5}} \times 1.0016 \pm 0.0042=0.9992 \pm 0.0042 \tag{12}
\end{equation*}
$$

(1) Introduction
(2) The frame of Calculation
(3) Numerical Result
(4) Discussion

Discussion

(1) J_{τ} may be discovered at BESIII.
(2) m_{τ} will be enlarged.
(3) Γ_{τ} and $(g-2)_{\tau}$ will be measured at STCF.

Thanks

Process, c.m. energy, $\mathcal{L}_{\text {int }}$, exp.	$\sigma\left[\mu^{+} \mu^{-}+L H\right]$			$N\left[\mu^{+} \mu^{-}+L H\right]$			Significance
	$\psi(2 S)$	Continue	J_{τ}	$\psi(2 S)$	Continue	J_{τ}	
$\mu^{+} \mu^{-}$at $3.554 \mathrm{GeV}, 100 \mathrm{fb}^{-1}$, BES III	-	6.9 nb	0.94 pb	-	0.69 E 9	94 E 3	3.6σ
$\mu^{+} \mu^{-}$or LH at $3.554 \mathrm{GeV}, 100 \mathrm{fb}^{-1}$, BES III	-	21 nb	3.0 pb	-	2.2 E 9	300 E 3	6.4σ
$\mu^{+} \mu^{-}$via ISR at $10.6 \mathrm{GeV}, 50 \mathrm{ab}^{-1}$, Belle II	108 fb	8.7 pb	7.7 ab	5.4 E 6	440 E 6	380	-
$\mu^{+} \mu^{-}$via ISR at $91.2 \mathrm{GeV}, 50 \mathrm{ab}^{-1}$, FCC-ee	1.6 fb	12.7 fb	0.12 ab	80 E 3	640 E 3	6	-

