

核与粒子物理实验读出电子学 ASIC研究现状与展望

中国科学技术大学

2023年5月12日

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

MODERN PHYSICS DEPARTMENT

▶ 在大型核与粒子物理实验中,电子学是其中重要的组成部分和硬件载体

 探测器所感知的实验信息,须经电子学提取、处理、传输,才能为后方 的分析系统所用。

- 随着当代核与粒子物理实验的快速发展,对信号测量技术提出了新挑战:
 - ◇ 更快的信号处理
 - ns → 亚ns级脉冲
 - ◇ 更高的测量精度
 - ・ ps级时间、亚fC电荷
 - ◇ 巨大的电子学通道数
 - · 千→万→数十万通道
 - ◇ 高可靠性

- 其他领域电子学无法满足
 此领域要求
- 须发展核心技术

- ▶ 前端读出ASIC
 - ◇ 高精度电荷测量
 - ◇ 高精度时间测量
 - ◇ 高速波形数字化
 - ◇ 硅像素探测器读出
- ▶ 数据汇总与传输ASIC
 - ◇ 高速接口电路
 - ◇ 数据汇总
 - ◇ 光信号收发

▶ 前端读出ASIC

- ◇ 高精度电荷测量
- ◇ 高精度时间测量
- ◇ 高速波形数字化
- ◇ 硅像素探测器读出
- ▶ 数据汇总与传输ASIC
 - ◇ 高速接口电路
 - ◇ 数据汇总

◇ 光信号收发

高精度电荷测量ASIC

- ▶ 以如MPGD/硅微条探测读出为代表的ASIC技术:
 - ◇ 特点: 低噪声、高集成度
 - ◇ 大致分类:
 - ・ 纯模拟读出 → 电荷
 - ・ 片内甄别 → 电荷、时间
 - ・半数字化 → 电荷、时间
 - 全数字化输出 → 电荷、时间
 - 放大、成形测量电荷+放大甄别测量时间
 - 放大成形后波形数字化
- ▶ 以宇宙线物理实验读出为代表的ASIC技术:
 - ◇ 大动态范围
 - ◇ 时间+电荷测量

7

更多功能集成 更高集成度、更低功耗 更高事例率...

高精度电荷测量ASIC

典型ASIC芯片

名称	通道数	技术路线	成形时间 (ns)	噪声	动态范围	功耗 mW/ch	事例率	时间精度	应用实验	探测器类型	研制单位	工艺
CASAGEM	17	<mark>模拟输出</mark> CSA+Shaper	20 to 80	173.2 e +16.52 e/pF @ 80 ns	Up to 1 pC	11	-	-	nTPC	GEM	清华	350 nm
CATIA	1	模拟输出 TIA	none	1.8 fC @ 7.2 pC 18 fC @ 72 pC	Up to 72 pC	-	-	30 ps @1.8 pC	CMS ECAL barrel	APD	Université Paris- Saclay, France	130 nm
-	2	<mark>模拟输出</mark> CSA+Shaper	90 to 250	278.2 e +26 e/pF	15 fC	8.7	344 kHz @ 8fC	4 ns @ corrected	CBM experiment at FAIR center, Germany	silicon microstrip	AGH University of Science and Technology, Poland	180 nm
FEAM	8	<mark>模拟输出</mark> CSA+Shaper	80 to 1000	4000 e @100 pF Cin	1 pC	6.6	10 kHz	3 ns @14 fC	CEE MWDC	MWDC	近物所	-
-	16	<mark>模拟输出</mark> CSA+Shaper	25 to 250	17,000e @10 pC Range @100 pF Cin @120 ns треак	Up to 10 pC	8.6	200 kHz	-	CSNS Back-n	MPGD	中科大	180 nm
-	12	模拟输出 CSA+Shaper	350 to 1430	59 e @0 pF Cin	0.6 fC; 2 fC	1.25	-	-	-	-	西工大	_
XAA1.2	128	片内甄别 CSA+Shaper +Discri. +Peak S&H	2000	935 e @ 30 pF Cin	5 fC	1	0.02	-	SuperAGILE X-ray imager onboard the AGILE satellite	silicon microstrip	INAF, Italy	800 nm
VATA241	64	片内甄别 CSA +Shaper +Discri.	190	1300 e +65 e/pF	72 fC	-	500 kHz	1 ns @ 72 fC	BrainPET scanner	APD	CIEMAT, Spain	-
SENSROC13	4	<mark>片内甄别</mark> CSA+Shaper +Discri.	250	57 e +20 e/pF	15 fC	1.25	1 MHz	-	electronic personal dosimeter	Si-PIN	西工大	350 nm
-	8	<mark>片内甄别</mark> Current conveyor +Discri.	-	592.4 e + 50.7 e/pF	50 fC	17.6	120 MHz	22.7ps +2.3ps/pF @ 15 fC	X-ray time-resolved	APD	国科大	130 nm
RX64	64	片内甄别 CSA+Shaper +Discri.	500 to 1000	167 e @ 2.5 pF Cin	3.2 fC	2.5	200 kHz	-	digital X-ray imaging	silicon microstrip	Universita del Piemonte Orientale, Italy	800 nm
CBC3	254	片内甄别 CSA+Shaper +Discri.	25	200 e +100 e/pF	8 fC	1.65	1 MHz	-	CMS Tracker at the High Luminosity LHC	silicon microstrip	Imperial College London, UK	130 nm
-	4	<mark>片内甄别</mark> CSA+Shaper +Discri. +Peak S&H	160 to 1000	3000 e @1 pC Range 30,000 e @10 pC Range	Up to 10 pC	-	20 kHz	-	-	塑闪阵列探 测器	近物所	-

典型ASIC芯片

名称	通道 数	技术路线	成形时间 (ns)	噪声	动态范围 (fC)	功耗 mW/ch	事例率	时间精度	应用实验	探测器类型	研制单位	工艺
APV25	128	<mark>半数字化</mark> CSA+Shaper +SCA	50	270e+38e/pF	20 fC	2.7 @20 MSps	1 kHz @ full readout	< 1 ns @ 20 fC	CMS tracker	GEM、 silicon microstrip	Imperial College, UK	250 nm
-	32	<mark>半数字化</mark> CSA+Shaper +Disc. +S&H +Wilkinson ADC	3000	2099 e +1.5 e/pF	300 fC	3.5	-	-	Onboard the International Space Station	APD	Waseda University, Japan	350 nm
AGET	64	<mark>半数字化</mark> CSA+Shaper +SCA	50 to 1000	900e @120 fC Range @30 pF Cin @230 ns треак	Up to 10 pC	10 @40 MSps	< 1 kHz	< 1 ns @ 20 fC	SPIRAL2 at GANIL in France RIKEN at Wako in Japan FAIR at Darmstadt in Germany etc.	GEM TPC	CEA Saclay, France	350 nm
TIGER	64	全数字化 CSA+Shaper +S&H +TAC +Wilkinson ADC	170	1500e+10e/pF	50 fC	12	60 kHz	30 ps @ TDC only	BESIII	GEM TPC	Politecnico di Torino, Italy	110 nm
SAMPA	32	<mark>全数字化</mark> CSA+Shaper +SAR SCA +DSP	160 to 300	800e @67 fC Range @22 pF Cin @160 ns ⊤peak	Up to 500 fC	19 @20 MSps	50 kHz	-	ALICE TPC and MCH at LHC	GEM TPC、 MWPC MCH	Escola Politécnica da Universidade de São Paulo, Brazil	130 nm
VMM3	64	全数字化 CSA+Shaper +S&H +TAC +SAR ADC	25 to 200	2280e @110 fC Range @100 pF Cin @25 ns треаk	Up to 2 pC	15	1 MHz	< 1 ns	New Small Wheels Phase I upgrade project of the ATLAS	MPGD TPC	Brookhaven National Laboratory	130 nm
STS-XYTER2	128	全数字化 CSA+Shaper +Discri. +TDC +flash ADC	30	583 e +44 e/pF	15 fC	11	150 kHz	-	CBM experiment at FAIR center, Germany	silicon microstrip	AGH University of Science and Technology, Poland	180 nm
-	1	全数字化 CSA+Shaper +S&H +SAR ADC +Disc. +TDC	200 to 800	898.6 е +5.2 е/рF @ 800 ns треак	400 fC	70	400 kHz	300 ps @100 fC	ECAL	APD	西工大	180 nm
WASA	16	全数字化 CSA+Shaper +SAR ADC	160	941e+19.8e/pF	120 fC	2.33 @40 MSps	-	-	CEPC experiment	MPGD TPC	清华	65 nm
-	32	全数字化 CSA+Shaper +SCA +Wilkinson ADC	70	1100e @48 fC Range @20 pF Cin @70 ns треак	48 fC	20 @120 MSps	100 kHz	< 1 ns @ 20 fC	STCF RICH PID	MPGD	中科大	180 nm
-	8	全数字化 CSA+Shaper +Disc. +SAR ADC	180 to 900	-	Up to 10 pC	-	-	-	-	-	近物所	-

1 CATIA

通道数:128 动态范围:20 fC 噪声:270 e⁻+38 e⁻/pF 功耗:2.7 mW/ch

② AGH University of Science and Technology

通道数:2 动态范围:15fC 噪声:278.2 e⁻+26 e⁻/pF 功耗:8.7 mW/ch

片内甄别 [国外]

① XAA1.2

② VATA241

. . .

通道数: 128 动态范围: 15 fC 噪声: 583 e⁻ + 44 e⁻/pF 功耗: 8 mW/ch

① **APV25**

通道数:128 动态范围:20 fC 噪声:270 e⁻+38 e⁻/pF 功耗:2.7 mW/ch

2 AGET

. . .

通道数: 64 动态范围: Up to 10 pC 噪声: (435~34000) +(19~7.4) e-/pF 功耗: 10 mW/ch

① VMM3

通道数: 64

动态范围: Up to 2 pC

噪声: 2280 e⁻ @110 fC Range @100 pF C_{in} @25 ns т_{peak} 功耗: 15 mW/ch

通道数:32 动态范围:500 fC 噪声:<1600 e⁻ @80 pF Cin 功耗:8 mW/ch

气体径迹探测器读出ASIC(清华)

① FEAM (近物所)

通道数:8 动态范围:1pC 噪声:4000 e-_{@100 pF Cin} 功耗:6.6 mW/ch

②低噪声辐射探测读出ASIC(西工大)

通道数:12 动态范围:2 fC 噪声:59 e⁻ ^{@0 pF C_{in} 功耗:1.25 mW/ch}

③ MTPC readout ASIC (中科大)

通道数:16 动态范围:Up to 10 pC

噪声: 17000 e⁻ @10 pC Range @100 pF C_{in} @480 ns т_{peak} 功耗: 8.6 mW/ch

片内甄别 [国内]

① SENSROC13 (西工大)

通道数:4

动态范围: 15 fC

噪声: 119 e⁻+5 e⁻/pF

功耗: 1.25 mW/ch

② 塑闪探测器前端ASIC(近物所)

通道数:4 动态范围:Up to 10 pC

噪声: < 5 fC @10 pC Range

波形采样读出前端芯片(近物所)
 通道数:8

动态范围: Up to 10 pC

② ECAL (西工大)

通道数:1 动态范围:400 fC 噪声:898.6 e⁻ +5.2 e⁻/pF 功耗:70 mW/ch

③ MGPD读出芯片(中科大)

通道数: 32

动态范围: 48 fC

噪声: < 1100 e⁻

@20 pF Cin

功耗: 20 mW/ch

CdZnTe探测器相关ASIC芯片

名称	通道数	技术路线	成形时间 (ns)	噪声	动态范围 (fC)	功耗 mW/ch	事例率	应用实验	探测器类型	研制单位	工艺
CASACZT16	16	<mark>模拟输出</mark> CSA+Shaper	1000 to 4000	72e +26e/pF	12 fC	7.8	-	X-ray imaging	CdZnTe	清华	350 nm
-	16	<mark>模拟输出</mark> CSA+Shaper	600 to 4000	30e +20e/pF	Up to 100 fC	18	300 kHz	-	CdZnTe	Brookhaven National Laboratory	350 nm
_	16	<mark>模拟输出</mark> CSA+Shaper	1200	220e +35e/pF	16 fC	0.5	-	hard X ray telescope	CdZnTe	Italian National Institute of Astrophysics	800 nm
-	4	<mark>片内甄别</mark> CSA+Shaper +Discri.	250	112 e +17 e/pF	7 fC	1.435	200 kHz	-	CdZnTe、 Si-PIN	西工大	180 nm
IDE 4281	12	片内甄别 CSA+Shaper +Discri. +Peak S&H	750 to 4000	110e @4 pF Cin @750 ns треак	5 fC	25.4	100 kHz	X-ray imaging	CdZnTe、 CdTe	IDEAS	350 nm
-	121 pixels	<mark>片内甄别</mark> CSA+Shaper +Discri.	250 to 12000	60e	100 fC	2.5	10 kHz	3D position sensitive detectors	CdZnTe	Brookhaven National Laboratory	-
_	144 pixels	全数字化 CSA+Shaper +S&H +pipeline ADC +Disc. +TDC	300 to 900	800e	25.6 fC	-	-	-	pixel CdZnTe	Am Wolfsmantel	-

CdZnTe探测器相关ASIC芯片

① Brookhaven National Laboratory (模拟输出)

通道数:16 动态范围:Up to 100 fC 噪声:30 e⁻+20 e⁻/pF 功耗:18 mW/ch

② CASACZT16 (模拟输出)

通道数:16 动态范围:12 fC 噪声:72 e⁻+26 e⁻/pF 功耗:7.8 mW/ch

CdZnTe探测器相关ASIC芯片

①西工大(片内甄别)

通道数:4 动态范围:7 fC 噪声:112 e⁻+ 17 e⁻/pF

功耗: 1.435 mW/ch

② IDE 4281 (片内甄别)

通道数:12

动态范围: 5 fC

噪声:110 e⁻ @4 pF C_{in} @750 ns т_{peak}

功耗: 25.4 mW/ch

大动态范围的电荷测量

JUNOCC(高能所,实际应用)
 动态范围(PMT增益10⁷): 1 – 4000 pe
 噪声: 0.05 pe

量程: 3输入阻抗: 1Ω @<10MHz

② PASC(中科大,实际应用)
 动态范围: 1-4000 pe
 电荷精度: < 10% @1 pe
 时间精度: < 300 ps
 死时间: < 600 ns

中速模数变换ASIC(ADC)

事件驱动ADC(西工大)

与模拟前端集成 多通路(>16 ch) 分辨率(>14 bits) 采样率(>3MS/s) 异步读出

Pipeline-SAR ADC (西工大) 采样率: 10 Msps 垂直分辨: 12 bits

SAR ADC (中科大)

采样率>30 Msps 垂直分辨: 12 bits

低温低噪声前端芯片

① 低温低噪声高纯锗探测器读出芯片(清华)

温度:液氮(77 K) 探测器质量:0.5 kg 电容:1.1 pF 噪声:15.5 e⁻@77 K

②低温、极低噪声读出ASIC — nEXO实验(IHEP)

温度:液氙(160 K)

动态范围: 64 fC

通道数: 32

噪声: 265 e⁻ @ 160 K

功耗: 5.4 mW/ch

① MaPMT — 散裂中子源通用粉末衍射仪(IHEP,实际用于CSNS工程项目)

通道数:64 动态范围:Up to 20 pC 单通道计数率:100 kHz 成形时间:80/160 ns

② 多丝气体探测器读出芯片(IHEP)

通道数:32 动态范围:土150 fC 噪声:600 e⁻+25 e⁻/pF 单通道计数率:1 MHz

▶ 前端读出ASIC

- ◇ 高精度电荷测量
- ◇ 高精度时间测量
- ◇ 高速波形数字化
- ◇ 硅像素探测器读出
- ▶ 数据汇总与传输ASIC
 - ◇ 高速接口电路
 - ◇ 数据汇总

◇ 光信号收发

前端高精度时间测量

典型的技术路线:

- ◇ 分立器件: 高速甄别器
- ◊ ASIC: NINO, PADI...
- ▶ 时间数字化(TDC)
 - ◇ FPGA TDC
 - ◇ ASIC TDC

国际甄别ASIC — NINO、PADI

1 NINO

应用场景:

MRPC读出

250 nm CMOS, 8通道

配合高精度FPGA TDC可实现好于 10 ps RMS

② **PADI** 应用场景:

MRPC读出

diamond detectors 读出

180 nm CMOS, 4通道

配合高精度FPGA TDC可实现好于 10 ps RMS

FPGA TDC

- ▶ 基于FPGA内部特殊结构构建延时链
- ▶ 精度提高
 - ➢ 采用先进的器件: UltraScale
 - ▶ 多链求平均
 - ➢ Wave Union, 等
- ➢ 可实现精度: < 5 ps RMS</p>

代表性TDC芯片——HPTDC

ASIC性能参数

结构:延迟链 通道数:32 工艺:250 nm LSB:25/100 ps 精度:~20 ps 功耗:450~1500 mW

实验应用

- ALICE
 - ✓ 应用于TOF TRM中
 - ✓ 20 ps精度
- BES III
 - ✓ 应用于TOF中
 - ✓ 20 ps精度

- HIRFL-CSR
- ATLAS
- HADES

代表性TDC芯片——GET4

- ▶ 应用实验:CBM
- ➢ 结构:延迟链
- ≻ 通道数:4
- > 工艺: 180 nm
- LSB: 50 ps
- ▶ 精度: 24 ps
- ➢ 功耗: 27 mW/chn
- ▶ 事例率: 2~8 MHz/chn
- ▶ 时间: 2008

ATLAS MDT TDC

- ➢ 应用实验:ATLAS MDT
- 结构:时钟分相
- ▶ 通道数:48
- ▶ エ艺: 130 nm
- LSB: 780 ps
- ▶ 精度: 276 ps
- ➢ 功耗:6.5 mW/chn
- ▶ 时间: 2018

西工大TDC ASIC

结构:延迟链(ADLL) 通道数:3 工艺:350 nm LSB:71~142ps 功耗:50 mW 时间:2009

结构:基于游标延迟链的三级插值结构 180 nm 精度: 89.3 ps

结构:游标延迟链 180 nm 精度:41.7 ps

中科大TDC ASIC

结构:	延迟链
	16通道
精度:	60 ps
功耗:	128 mW

结构:游标 精度:10 ps 功耗:~10 mW/通道

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

LGAD(Low-Gain Avalanche Detector) 读出ASIC

ALTIROC

用于ATLAS实验中的LGAD读出 功能:放大+甄别+TDC 工艺:130 nm 通道数:5x5(V1)、15x15(V2) LSB:~20 ps(TOA) 精度:~25 ps@10fC(TOA) 尺寸:20 mm x 22 mm(V2)

ETROC (Fermi)

用于CMS实验中的LGAD读出 功能:放大+甄别+TDC 工艺:65 nm 通道数:4x4 LSB:~17 ps (TOA) 精度:~16 ps @ 15 fC (TOA)

LGAD读出ASIC

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

TOA(ns)

▶ 前端读出ASIC

- ◇ 高精度电荷测量
- ◇ 高精度时间测量

◇ 高速波形数字化

- ◇ 硅像素探测器读出
- ▶ 数据汇总与传输ASIC
 - ◇ 高速接口电路
 - ◇ 数据汇总

◇ 光信号收发

高速波形数字化技术

- 随着模拟数字变换器(ADC)技术的发展,进行超高速的波形数字化成为可能
- ▶ 采样率 ~ Gsps

- ▶ 波形前沿分析:
 - 中 获得时间信息
- ▶ 波形数字积分(计算面积):

获得电荷信息

- 相对于传统的时间及电荷测 量方法的优势:
 - ◇ 最大程度获取原始波形信息
 - ◇ 任意无规则的波形信号处理

 基于开关电容阵列(Switched Capacitor Array, SCA)技术, 可以实现超高速的模拟波形采样

- 其基本原理是将高速采样过程和量化过程分离
 - ◇ 超高速采样过程是基于开关电容阵列来实现,然后配合较低速的量化电路 即可实现数字化
- ▶ 此技术适用于核与粒子物理实验中事例偶发的特点
- 同时消除了超高速ADC的高复杂度和高功耗的问题,以及附加缓存、 数据接口和传输电路的系统复杂性问题

芯片名/设计单 位	工艺	采样率 Gsps	采样深度	输入类型	片内数字化	RMS噪声	通道数	功耗 mW/ch
ARS1	800 nm	~ 1	128	单端输入	8 bits	4 mV	4	47.5
MATACQ	800 nm	~ 2	20 x 128	单端输入	无	< 0.2 mV	1	/
SAM	350 nm	~ 2	16 x 16	单端输入	无	0.7 mV	2	150
ATWD	200 nm	~ 2	128	单端输入	10 bits	1 mV	4	37.5
LABRADOR3	250 nm	~ 4	260	单端输入	12 bits	1.3 mV	9	/
DRS4	250 nm	~ 5	1024	差分输入	无	0.35 mV	9	17.5 @2 GSps
PSEC4	130 nm	~ 10	256	单端输入	12 bits	0.7 mV	6	16.7
SAMPIC	180 nm	~ 5	64	单端输入	11 bits	< 1 mV	16	11.25
高能所+清华+ 科大	180 nm	~ 1	256	单端输入	12 bits	/	8	/
FEEWAVE (高能所)	180 nm	~ 5	256	差分输入	10 bits	< 1 mV	6	25
华中师范大学	130 nm	~ 2	256	单端输入	无	4.96 mV	4	/
中科大	180 nm	~ 5	256	差分输入	12 bits	0.7 mV	8	25

国外代表性SCA—模拟读出

DRS4

通道数:9

输入类型:差分输入

采样率:~5 Gsps

采样深度: 1024

输入动态范围: 1 V

噪声: 0.35 mV

功耗: 140 mW

国外代表性SCA—数字化读出

> PSEC4

通道数:6 采样率:~10 Gsps 采样深度:256 输入动态范围:1 V 噪声:0.7 mV 功耗:100 mW

> SAMPIC

通道数:16 采样率:~5 Gsps 采样深度:64 输入动态范围:1V 噪声:<1 mV 功耗:180 mW

国内代表性SCA -- IHEP

- ≻ 通道数:8
- ▶ 输入类型:差分输入+模拟前端
- ▶ 采样率:~5 Gsps
- ▶ 采样深度: 256
- ▶ 输入动态范围:1V
- 读出方式:数字读出
- ➢ 量化位数: 10 bits
- ▶ 噪声: <1mV
- ▶ 功耗: 单通道<25 mW
- ➢ 经初步评估合格,将用于 LHAASO望远镜升级项目LACT中

国内代表性SCA -- CCNU

- ≻ 通道数:4
- 输入类型:单端输入
- ▶ 采样率:~2 Gsps
- ▶ 采样深度: 256
- ▶ 输入动态范围: 0.5 V
- ▶ 读出方式:模拟读出
- ▶ 噪声: 4.96 mV

国内代表性SCA -- USTC

- ≻ 通道数:8
- 输入类型:差分输入
- ▶ 采样率:~5 Gsps
- ▶ 采样深度: 256
- ▶ 输入动态范围: 1.2 V
- ▶ 读出方式:数字读出
- ➢ 量化位数: 12 bits
- ▶ 噪声: <1mV
- ▶ 功耗: 单通道25 mW

SCA技术用于高精度时间测量

- 通过高速模拟-数字变换技术对探测器输 出波形进行高速采样数字化,可以通过 数值拟合的方法得到信号的时间信息。
- 通过提升采样率f_s,可以提升整个电子
 学的时间测量精度,而基于数值拟合的
 方法,实际系统所能的达到的时间精度
 会超出采样周期本身(T_s=1/f_s)。

SCA中的修正算法

SCA电路中存在各S/H
 单元的不一致性,因此
 需要展开标定和修正方
 法研究。

•

▶ 正弦波过零法

全局时间标定修正法

- 正弦波过零计算初始时间间隔
- 通过计算周期,不断的循环迭代
- 计算正弦波周期,得到超定方程
- 超定方程组的最小二乘解为采样间隔

▶ 前端读出ASIC

- ◇ 高精度电荷测量
- ◇ 高精度时间测量
- ◇ 高速波形数字化

◇ 硅像素探测器读出

- ▶ 数据汇总与传输ASIC
 - ◇ 高速接口电路
 - ◇ 数据汇总

◇ 光信号收发

- ▶ 复合式像素探测器(Hybrid Pixel)
 - ◇ 优点:发展成熟,抗辐照能力高◇ 缺点
 - 需要两层硅片,物质的量大
 - 限制了像素最小尺寸

- Bump bonding技术工艺复杂,良品率低,成本更高 ^{复合式像素探测器}
- ▶ 单片有源式像素探测器(Monolithic Active Pixel Sensor, MAPS)
 ◇ 优点:
 - 仅需一层硅片,物质的量较小
 - 像素尺寸可以较小
 - 成本较低
 - ◇ 缺点:
 - 抗辐照能力降低
 - 收集电荷量较小
 - 对于传统型MAPS, 电荷收集时间较长

单片式有源像素探测器

硅像素探测器读出ASIC

芯片	工艺	像素阵列	像素大小	应用实验	类型
FEI3	250 nm	18×160	$50 \times 400 \ \mu m^2$	ATLAS pixel detector	hybrid
FE-I4	130 nm	80×336	$50 \times 250 \ \mu m^2$	ATLAS pixel detector	hybrid
Timepix3	130 nm	256×256	$55 \times 55 \ \mu m^2$	GEM-TPCs	hybrid
HEPS-BPIX4	130 nm	20×32	$55 \times 55 \ \mu m^2$	HEPS	hybrid
EMPIX	180 nm	32×8	$150 \times 150 \ \mu m^2$	/	hybrid
ULTIMATE	350 nm	928×960	$20.7 \times 20.7 \ \mu m^2$	RHIC STAR	monolithic
ALPIDE	180 nm	512×1024	$28 \times 28 \ \mu m^2$	ALICE ITS	monolithic
ATLASPix3	180 nm	132×372	$150 \times 50 \ \mu m^2$	ATLAS pixel detector	monolithic
Mupix10	180 nm	250×256	$80 \times 80 \ \mu m^2$	Mu3e	monolithic
TJ-Monopix2	180 nm	512×512	$33 \times 33 \ \mu m^2$	ATLAS pixel detector	monolithic
CLICTD	180 nm	16×128	$300 \times 30 \ \mu m^2$	CLIC	monolithic
JadePix3	180 nm	512×192	$16 \times 23.1 \ \mu m^2$	CEPC	monolithic
TaiChuPix-2	180 nm	192×64	$25 \times 25 \ \mu m^2$	CEPC	monolithic
MIC5	180 nm	356×398	$20 \times 30 \ \mu m^2$	CEPC	monolithic
Topmetal-M2	130 nm	400×512	$45 \times 45 \ \mu m^2$	/	顶层金属+MAPS
Topmetal-S2/CEE	130 nm	/	/	0νββ/CEE	顶层金属

FE-I3、FE-I4

- ▶ 类型: Hybrid
- ▶ 应用于LHC ATLAS内径迹探测器
- ▶ 像素电路:CSA、甄别器、阈值微调DAC、SRAM

数字读出结构

- ◇ FE-I3: column drain结构,数据由EoC缓存
- ◇ FE-I4: 本地缓存, 4个像素共享数字逻辑

	FE-I3	FE-I4
Year	2003	2010
Process	250 nm	130 nm
Pixel size	50 μm×400 μm	50 μm×250 μm
Array size	18×160	80×336
Chip size	7.6 mm×10.8 mm	20.2 mm×18.8 mm
Active area	74%	89%

Timepix3

- ▶ 类型: Hybrid
- ▶ 应用: 粒子径迹探测、辐射成像
- ▶ 像素结构: CSA、阈值微调DAC、两级甄别器
- ▶ Super pixel: 由8个像素组成, 额外有ring oscillator
- ▶ 读出数据:像素坐标、ToA、ToT
- ▶ Trigger-less,数字带宽5.12 Gbps(8×SLVS)

	Timepix3
Process	130 nm
Pixel size	55μm× 55μm
Array size	256×256
Chip size	16.2 mm×14.1 mm
Power	<1 W/cm^2
TID	No

Timepix3芯片版图

ALPIDE

- 类型: MAPS
- 像素内完成0、1甄别
- 应用于LHC ALICE ITS
- 四阱工艺(深P阱、深N阱),可使用完整CMOS电路
- AERD优先级读出结构

	ALPIDE
Process	TJ 180 nm
Pixel size	28 μm×28 μm
Array size	512×1024
Chip size	$15 \text{ mm} \times 30 \text{ mm}$
Power	100 mW/cm^2
TID	2.7 Mrad

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA ENSITE OF SCIENCE AND TE

TJ-Monopix

- ▶ 类型: MAPS
- ▶ 电荷(TOT)时间(TOA)测量
- ▶ 应用于HL-LHC ATLAS Inner Tracker
- ▶ 改进型TJ180工艺,全耗尽

	TJ-Monopix2
Process	Modified TJ 180 nm
Pixel size	$33.04 \ \mu m \times 33.04 \ \mu m$
Array size	512×512
Chip size	$20 \text{ mm} \times 20 \text{ mm}$
Power	170 mW/cm ²

TJ-Monopix2芯片(2020,Q4提交)

TJ-Monopix2芯片结构框图

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

CEPC顶点探测器研究(IHEP)

- 顶点探测器对芯片设计提出了巨大挑战
- > 三条并行研发路线,开展广泛的国内外合作设计

MIC5 (CCNU)

- MIC5芯片结构
- 像素大小: 20 µm x 29 µm, epi thickness 18 µm
- 读出可以采用触发模式或非触发模式
- 阵列中采用非零数据压缩技术, 仅被击中像素地址被输出 -> a few μ s readout time
- 片上高速时钟模块PLL (400MHz)
- 阵列外围数据压缩以及高速数据传输链路,输出速率800Mbps

- 为低能X射线偏振观测探测器研制
 - 像素阵列扫描读出
 - 400 x 512像素
 - 45微米像素尺寸
 - 16通道并行读出
 - 具备位置、能量以及时间分辨功能

版本C照片

- 为无中微子双贝塔衰变实验N v DEx研制
 - 芯片阵列读出
- 无放大、离子漂移探测
- 上海宏利(GSMC)130纳米工艺
- 四个测试版本
 - 正在进行测试

高能同步光源硅像素探测器HEPS-BPIX研制

• 项目设计指标

- 灵敏面积: 8cm×8cm
- 像素尺寸: 150μm×150μm
- 帧刷新率: >100Hz
- 动态范围: 20bit
- 能量范围: 8~20keV

像素读出芯片ASIC 前端模块: 传感器+ASIC+倒装焊

整机集成

- 针对高能同步辐射光源自主研制
- 基于单光子计数模式和混合型像素探测器
 结构,开展各项关键技术研发
 - 自主设计:高帧频、高集成度像素读出芯片
 - 联合研发:大阵列、一对多倒装焊工艺
 - 联合研发: 高灵敏度传感器阵列
 - 自主设计:后端电子学、机械、DAQ、整机

• 主要关键技术均实现了国产化

高能同步光源硅像素探测器HEPS-BPIX研制

封装后的前端探测模块 灵敏1cm×1cm

- 在保持主要性能不变的前提下,采用全定制设计,将像素尺寸由原来的150µm缩减至55µm,与国际同类产品中最先进的MEDIPIX一致
- ▶ 已列入高能光源HEPS工程序列
- 通过国家重点研发计划"高性能光源关键 实验技术与方法"课题二验收

光子计数型像素芯片(清华)

- ▶ X射线光子计数型像素芯片
 - ◇应用于多能谱CT成像
 - ◇ 像素电路包括CSA、成型放大器、甄别
 - 器、计数器和慢控制寄存器

EMPIX

- ◇ 应用于超快电镜成像的大动态范围像素读出芯片
- ◇相关双采样、线性放电DAC
- ◇ 自适应增益调节

	光子计数型像素芯片	EMPIX
Year	2021	2021
Process	180 nm	180 nm
Pixel size	150 μm×150 μm	150 μm×150 μm
Array size	64×128	32×8
Noise	61 e-	563e-(低增益)
Power	65µW/pixel	0.467 mW/channel
Signal range	10 fC	375 fC(high gain) 12.5 pC(low gain)

EMPIX芯片

像素型ASIC(西工大)

▶ 可重构像素型读出ASIC(SENSPIX2_A)

◇ 多能光子计数

◇ 消除电荷共享效应

- ◇ 支持全帧读出或数据驱动读出
- ▶ 能量分辨像素型ASIC(SENSPIX2_B)
 - ◇ 采用像素级LDO的超级像素电路结构
 - ◇ 内置模拟滤波成形
 - ◇ 同时能量测量和计数测量

参数	SENSPIX2_A	SENSPIX2_B
年份	2022	2022
工艺	180nm	180nm
阵列规模	32x32	16x16
像素大小	75µm	100µm
像素电路结构	计数型	计数型+TOT
动态范围	12位	4+8位
输入噪声	90e-(rms)	< 200e-(rms)
静态功耗	42µW/pixel	40µW/pixel
应用	X射线成像	X射线成像高能物理

▶ 前端读出ASIC

- ◇ 高精度电荷测量
- ◇ 高精度时间测量
- ◇ 高速波形数字化
- ◇ 硅像素探测器读出
- ▶ 数据汇总与传输ASIC
 - ◇ 高速接口电路
 - ◇ 数据汇总
 - ◇ 光信号收发

- 硅像素读出芯片因其大阵列、高密度的特点,单芯片数据带宽可达百 Mbps~数Gbps;同时靠近对撞点,需考虑抗辐照电路的设计
- ▶ 抗辐照的高速时钟模块
 - ◇ 针对不同项目需求,IHEP研发了抗辐照的SERDES高速时钟产生电路

- 高速串行接口电路
 - ◇ IHEP研发了片上高速串行接口协议,实现了Gbps量级的链路互联

数据汇总ASIC

- VMM-ROC (Readout Controller)
 - ◇ 应用于ATLAS NSW升级
 - 130 nm CMOS
 - ◇ 通道数: 8
 - ◇ 向VMM、TDS、ART提供时钟
 - ◇ L1触发匹配
 - ◇ 串行数据发送
 - ◊ 640/320/160/80 Mbps
- NICA-ROC
 - ◇ 汇总前端ASIC芯片的数据,配置并监控ASIC状态
 - 130 nm CMOS
 - ◇ 通道数: 8
 - ◇ 触发匹配
 - ◇ 串行数据率: 400 Mbps
 - ◇ 面积: 5 mm×5 mm

VMM ROC结构框图

高速汇总及光纤传输ASIC

- ▶ 第二代GBTx芯片(LpGBT)
 - ♦ 65 nm CMOS
 - ◊ Downlink: 2.56 Gbps
 - ◇ Uplink: 10.24 Gbps(最高)
 - ◇ 低功耗:750 mW
 - ◇ 辐照加固: 200 Mrad SEU robust

- ▶ 第二代GBLD芯片 → GBTIA芯片 (LDQ10)
 - ♦ 65 nm CMOS
 - ◇ 4 x 10 Gbps 四通道 阵列式VCSEL激光器 驱动

- - ♦ 130 nm CMOS
 - ◇ 5 Gbps 单通道跨导 放大芯片

国内高速传输及光纤收发ASIC

BDTIC芯片:

- SMIC 中芯国际55nm
- Uplink: 10.24 Gbps
- Downlink: 2.56Gbps
- 5.12 GHz PLL(phase lock loop)
- 160M~1.28Gbps 自动相位对齐
 Phase Aligner

阵列式14 Gbps/ch 激光器驱动芯片 SMIC 55nm

阵列式10 Gbps/ch TIA跨导放大芯片 SMIC 55nm

激光器驱动芯片14 Gbps光 眼图

跨导放大芯片10 Gbps眼图

抗辐照低压供电芯片

应用于高能粒子探测的CMOS像素传感器LD0

抗辐射同步整流DC-DC转换器

性能参数	设计规格
输入电压	3-7V
基准电压	0.795V
开关频率	500 kHz(固定)1 MHz(max)
抗单粒子闩锁SEL	> 85 MeV cm ² /mg(LET)
抗总剂量电离效应TID	> 100 krad(Si)

- ▶ 专用集成电路(ASIC)芯片是构成电子学系统的关键组件,一 直以来是核电子学领域的重要研究方向。
- ▶ 此领域ASIC发展方向:

◇不断提升的数据传输和处理能力

国内ASIC研究呈加速发展趋势,并有系列芯片开始在实际的大型科学实验和工程中应用。

谢 谢!