### Searching for fully-heavy tetraquark states in QCD

### Wei Chen

#### Sun Yat-Sen University

#### Workshop of Super Tau-Charm Facility, Guangzhou

December 4, 2022

1 Observations of fully-charm tetraquark family

- 2 Moment sum rules for  $cc\bar{c}\bar{c}$  and  $bb\bar{b}\bar{b}$  tetraquarks
- 3 Decay properties of the *cccc̄* tetraquarks
- 4 Decay properties of the  $bb\bar{b}\bar{b}$  tetraquarks



## X(6900): the first structure in $J/\psi J/\psi$ mass spectrum

LHCb observed some structures in the  $J/\psi$ -pair mass spectrum in 2020 (Sci.Bull.,2020,2020,65):



- The mass and width of X(6900) are:(1) M = 6905 ± 11 ± 7 MeV, Γ = 80 ± 19 ± 33 MeV based on no-interference fit; (2) M = 6886 ± 11 ± 11 MeV, Γ = 168 ± 33 ± 69 MeV based on the simple model with interference.
- A broad structure next to threshold ranging from 6.2 to 6.8 GeV;
- Hint for another structure around 7.2 GeV with low significance.

# CMS: *X*(6600), *X*(6900), *X*(7300)

CMS found 3 significant structures in the  $J/\psi J/\psi$  mass spectrum (from Yi Kai's slide):

### Final CMS model: 3 BWs + Background (null)



#### • CMS found the family of fully-charm tetraquark states!

# ATLAS: X(6200), X(6600), X(6900)

#### ATLAS found 3 resonance structures in the $J/\psi J/\psi$ mass spectrum (from Yue Xu's slide):

### Fit results in di- $J/\psi$ channel

#### ATLAS-CONF-2022-040



- The 3rd peak mass is consistent with the LHCb observed X(6900), with significance of 10σ
- The broad structure at the lower mass could from other physical effects, e.g. feed-down from higher dicharmonium resonances

#### Extracted masses and widths (GeV)



# ATLAS: X(6800), X(7200)

ATLAS found 2 resonance structures in the  $J/\psi\psi(2S)$  mass spectrum (from Yue Xu's slide):



• In model A, the 1st peak could be related to X(6900) in the di- $J/\psi$  channel. The significance of 2nd peak (7.2 GeV) reaches  $3.2\sigma$ , also hinted by LHCb in the di- $J/\psi$  spectrum

### Theoretical studies of four-heavy tetraquarks

### Before Experiment:

- Quark-Gluon models: Prog. Theor. Phys. 54, 492 (1975); Zeit. Phys. C7, 317 (1981).
- Potential model: Phys.Rev. D25, 2370 (1982);32, 755 (1985); Phys. Lett. B123, 449 (1983).
- Hyperspherical harmonic formalism: Phys. Rev. D73, 054004 (2006).
- BS or Schrodinger Eqs: Phys.Rev.D86, 034004 (2012); Phys.Lett.B718, 545 (2012).
- Lattice QCD: Phys.Rev.D 97 (2018) 5, 054505;1709.09605
- QCD sum rules: PLB773 (2017) 247; EPJC77 (2017) 432
- Some others: PRD97 (2018) , 094015; EPJC77, 432 (2017);78 (2018) 8, 647; CPC43 (2019), 013105...

### After Experiment: copious works to study their properties

- Diquark-antidiquark model: EPJC 80 (2020) 11, 1004;PRD103 (2021) 1, 014001; 104(2021) 114037; 014003; 014020;PLB811 (2020) 135952; 106 (2022) 096005; 106 (2022) 094019;Sci.Bull. 65 (2020) 1994-2000; PLB834 (2022) 137404;.....
- Hadron-molecule model: PRD102 (2020) 9, 094001
- Tetracharm hybrid interpretation: PLB 817 (2021) 136339

*cccc̄* Tetraquarks:

- They are far away from the mass range of the  $c\bar{c}$  and  $cq\bar{c}\bar{q}$  hadrons, can be clearly distinguished from the spectroscopy.
- The light mesons  $(\pi, \rho, \omega, \sigma...)$  can not be directly exchanged between two charmonia/bottomonia.
- The binding force comes from the short-range gluon exchange.
- A molecule configuration is not favored and thus the *cccc̄* is a good candidate for compact tetraquark.



• Study two-point correlation function of current J(x) with the same quantum numbers with hadron state:

$$\Pi(q^2) = i \int d^4 x e^{iq \cdot x} \langle \Omega | T[J(x)J^{\dagger}(0)] | \Omega \rangle$$

- Classify states |X
  angle by coupling to current  $\langle \Omega|J(x)|X
  angle 
  eq 0$
- Currents are probes of spectrum and might not overlap with state



Pauli principle operates for diquark structure:

Operators with  $J^{PC} = 0^{-+}$  and  $0^{--}$ :

$$\begin{split} J_1^{\pm} &= Q_a^{T} C Q_b \bar{Q}_a \gamma_5 C \bar{Q}_b^{T} \pm Q_a^{T} C \gamma_5 Q_b \bar{Q}_a C \bar{Q}_b^{T} ,\\ J_2^{+} &= Q_a^{T} C \sigma_{\mu\nu} Q_b \bar{Q}_a \sigma^{\mu\nu} \gamma_5 C \bar{Q}_b^{T} , \end{split}$$

• Hadron level: described by the dispersion relation

$$\Pi(q^2) = \frac{(q^2)^N}{\pi} \int \frac{\mathrm{Im}\Pi(s)}{s^N(s-q^2-i\epsilon)} ds + \sum_{n=0}^{N-1} b_n(q^2)^n,$$
  

$$\rho(s) = \frac{1}{\pi} \mathrm{Im}\Pi(s) = \sum_n \delta(s-m_n^2) \langle 0|J|n \rangle \langle n|J^{\dagger}|0 \rangle$$
  

$$= f_X^2 \delta(s-m_X^2) + \text{continuum},$$

• Quark-gluon level: evaluated via operator product expansion(OPE)

$$\Pi(s) = \Pi^{pert}(s) + \Pi^{\langle GG \rangle}(s) + ...,$$



Tetraquarks

• Define moments in Euclidean region  $Q^2 = -q^2 > 0$ :

$$\begin{split} M_n(Q_0^2) &= \frac{1}{n!} \left( -\frac{d}{dQ^2} \right)^n \Pi(Q^2)|_{Q^2 = Q_0^2} \\ &= \int_{m_H^2}^\infty \frac{\rho(s)}{(s+Q_0^2)^{n+1}} ds = \frac{f_X^2}{(m_X^2 + Q_0^2)^{n+1}} \left[ 1 + \delta_n(Q_0^2) \right], \end{split}$$

where  $\delta_n(Q_0^2)$  contains the higher states and continuum.

Ratio of the moments

$$r(n, Q_0^2) \equiv \frac{M_n(Q_0^2)}{M_{n+1}(Q_0^2)} = (m_X^2 + Q_0^2) \frac{1 + \delta_n(Q_0^2)}{1 + \delta_{n+1}(Q_0^2)}.$$

Predict hadron mass

$$m_X = \sqrt{r(n,Q_0^2) - Q_0^2}$$

for sufficiently large *n* when  $\delta_n(Q_0^2) \cong \delta_{n+1}(Q_0^2)$  for convergence.

PLB773(2017), 247-251

| JPC      | Currents       | $m_{X_c}(\text{GeV})$             | $m_{X_b}(\text{GeV})$              |
|----------|----------------|-----------------------------------|------------------------------------|
| 0++      | $J_1$          | $6.44\pm0.15$                     | $18.45\pm0.15$                     |
|          | $J_2$          | $\textbf{6.59} \pm \textbf{0.17}$ | $18.59\pm0.17$                     |
|          | $J_3$          | $\textbf{6.47} \pm \textbf{0.16}$ | $18.49\pm0.16$                     |
|          | $J_4$          | $\textbf{6.46} \pm \textbf{0.16}$ | $18.46\pm0.14$                     |
|          | $J_5$          | $\textbf{6.82} \pm \textbf{0.18}$ | $19.64\pm0.14$                     |
| 1++      | $J^+_{1\mu}$   | $\textbf{6.40} \pm \textbf{0.19}$ | $18.33\pm0.17$                     |
|          | $J_{2\mu}^+$   | $\textbf{6.34} \pm \textbf{0.19}$ | $18.32\pm0.18$                     |
| $1^{+-}$ | $J^{1\mu}$     | $\textbf{6.37} \pm \textbf{0.18}$ | $18.32\pm0.17$                     |
|          | $J_{2\mu}^+$   | $\textbf{6.51} \pm \textbf{0.15}$ | $18.54\pm0.15$                     |
| 2++      | $J_{1\mu\nu}$  | $\textbf{6.51} \pm \textbf{0.15}$ | $18.53\pm0.15$                     |
|          | $J_{2\mu\nu}$  | $\textbf{6.37} \pm \textbf{0.19}$ | $18.32\pm0.17$                     |
| 0-+      | <i>I</i> +     | $6.84 \pm 0.18$                   | 18 77 + 0 18                       |
| 0        | $J_{1}^{+}$    | $6.85 \pm 0.18$                   | $18.79 \pm 0.18$                   |
| 0        | $J_{1}^{2}$    | $\textbf{6.84} \pm \textbf{0.18}$ | $18.77\pm0.18$                     |
| $1^{-+}$ | $J_{1}^{+}$    | $\textbf{6.84} \pm \textbf{0.18}$ | $18.80\pm0.18$                     |
|          | $J_{2\mu}^{+}$ | $\textbf{6.88} \pm \textbf{0.18}$ | $\textbf{18.83} \pm \textbf{0.18}$ |
| 1        | $J^{1\mu}$     | $\textbf{6.84} \pm \textbf{0.18}$ | $18.77\pm0.18$                     |
|          | $J_{2\mu}^{-}$ | $\textbf{6.83} \pm \textbf{0.18}$ | $18.77\pm0.16$                     |

Our predictions in 2017 are consistent very good with the observations of LHCb, CMS and ATLAS:

- > The masses of  $cc\bar{c}\bar{c}$  tetraquarks with  $J^{PC} = 0^{++}, 2^{++}$  are agree with the mass of X(6200) and X(6600);
- > The masses of  $cc\bar{c}\bar{c}$  tetraquarks with  $J^{PC} = 0^{-+}, 1^{-+}$  are consistent with the mass of X(6900).



# $c\bar{c}c\bar{c}$ tetraquarks in $\mathbf{8}_{[c\bar{c}]}\otimes\mathbf{8}_{[c\bar{c}]}$ :

#### Phys.Rev.D 104 (2021) 11, 114037

| Current       | J <sup>PC</sup> | Mass(GeV)                       |                                  |
|---------------|-----------------|---------------------------------|----------------------------------|
| J_1           | 0++             | $6.51\substack{+0.18 \\ -0.17}$ | $18.15\substack{+0.14 \\ -0.10}$ |
| $J_2$         | 0++             | $6.34\substack{+0.15\\-0.16}$   | $18.13\substack{+0.13 \\ -0.09}$ |
| $J_{1\mu}$    | $1^{+-}$        | $6.44\substack{+0.16\\-0.17}$   | $18.14\substack{+0.14\\-0.09}$   |
| $J_{\mu u}$   | 2++             | $6.44\substack{+0.17\\-0.17}$   | $18.15\substack{+0.14 \\ -0.09}$ |
| $\eta_1$      | 0-+             | $7.00\substack{+0.23\\-0.20}$   | $18.45\substack{+0.15 \\ -0.11}$ |
| $\eta_2$      | 0-+             | $7.02\substack{+0.24 \\ -0.20}$ | $18.54\substack{+0.16\\-0.12}$   |
| $\eta_3$      | 0               | $7.00\substack{+0.23\\-0.20}$   | $18.47\substack{+0.15\\-0.11}$   |
| $\eta_{1\mu}$ | 1               | $6.98\substack{+0.23\\-0.20}$   | $18.46\substack{+0.15\\-0.11}$   |
| $\eta_{2\mu}$ | 1               | $7.10\substack{+0.24 \\ -0.21}$ | $18.46\substack{+0.15\\-0.11}$   |
| $\eta_{3\mu}$ | 1-+             | $7.00\substack{+0.23\\-0.20}$   | $18.56\substack{+0.16\\-0.11}$   |
| $\eta_{4\mu}$ | 1-+             | $7.14^{+0.25}_{-0.21}$          | $18.79\substack{+0.18\\-0.13}$   |

- Almost the same mass spectra with diquark-antidiquark configurations!
- A  $c\bar{c}c\bar{c}$  tetraquark is predicted close to X(7200).

### Decay behavior: cccc tetraquarks

- $cc\bar{c}\bar{c} \rightarrow (c\bar{c}) + (c\bar{c})$ : charm quark pair rearrangement. Allowed.
- $cc\bar{c}\bar{c} \rightarrow (ccq) + (\bar{c}\bar{c}\bar{q})$ : kinematically forbidden.
- $cc\bar{c}\bar{c} \rightarrow (cqq) + (\bar{c}\bar{q}\bar{q})$ : suppressed by two light quark pair creation.
- $cc\bar{c}\bar{c} \rightarrow (q\bar{c}) + (c\bar{q})$ : possible via a heavy quark pair annihilation and a light quark pair creation, with large phase space.
- $cc\bar{c}\bar{c}(L=1) \rightarrow cc\bar{c}\bar{c}(L=0) + (q\bar{q})_{I=0}$ : OZI forbidden.



### Strong decays into di-charmonia



PLB773(2017), 247-251; Sci.Bull.65,2020, 1994-2000

| JPC      | S-wave                                                              | P-wave                                                                      |
|----------|---------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 0++      | $\eta_c(1S)\eta_c(1S), \ J/\psi J/\psi$                             | $\eta_c(1S)\chi_{c1}(1P), J/\psi h_c(1P)$                                   |
| 0-+      | $\eta_c(1S)\chi_{c0}(1P), J/\psi h_c(1P)$                           | ${\sf J}/\psi{\sf J}/\psi$                                                  |
| 0        | $J/\psi\chi_{c1}(1P)$                                               | $J/\psi\eta_c(1S)$                                                          |
| 1++      | _                                                                   | $J/\psi h_{c}(1P), \eta_{c}(1S)\chi_{c1}(1P), \\ \eta_{c}(1S)\chi_{c0}(1P)$ |
| 1+-      | $J/\psi\eta_{c}(1S)$                                                | $J/\psi\chi_{c0}(1P), J/\psi\chi_{c1}(1P), \eta_{c}(1S)h_{c}(1P)$           |
| $1^{-+}$ | $J/\psi h_{c}(1P)$ , $\eta_{c}(1S)\chi_{c1}(1P)$                    | $J/\psi J/\psi$                                                             |
| 1        | $J/\psi\chi_{c0}(1P), J/\psi\chi_{c1}(1P), \ \eta_{c}(1S)h_{c}(1P)$ | $J/\psi\eta_c(1S)$                                                          |

|          |                           |                 | Decay channels |                 |                  |              |                    |                    |                |                  |               |                   |                   |              |
|----------|---------------------------|-----------------|----------------|-----------------|------------------|--------------|--------------------|--------------------|----------------|------------------|---------------|-------------------|-------------------|--------------|
| $J^{PC}$ | Current                   | $J/\psi J/\psi$ | $J/\psi\psi'$  | $\eta_c \eta_c$ | $\eta_c \eta_c'$ | $J/\psi h_c$ | $\eta_c \chi_{c0}$ | $\eta_c \chi_{c1}$ | $J/\psi\eta_c$ | $J/\psi \eta_c'$ | $\psi'\eta_c$ | $J/\psi\chi_{c0}$ | $J/\psi\chi_{c1}$ | $\eta_c h_c$ |
|          | $J_{1}^{0^{++}}$          | 1               |                | 0.45            |                  |              |                    | $2 \times 10^{-5}$ |                |                  |               |                   |                   |              |
| $0^{++}$ | $J_{2}^{0^{++}}$          | 1               |                | 4.1             |                  |              |                    | $9 \times 10^{-5}$ |                |                  |               |                   |                   |              |
| $1^{+-}$ | $J_{2-}^{\tilde{1}^{+-}}$ |                 |                |                 |                  |              |                    |                    | 1              |                  |               |                   |                   |              |
| $2^{++}$ | $J^{2^{++}}_{4lphaeta}$   | 1               |                | 0.036           |                  |              |                    | 0.003              |                |                  |               |                   |                   |              |
|          | $J_{\epsilon}^{0^{-+}}$   | 1               | 0.071          |                 |                  | 0.21         | 0.69               |                    |                |                  |               |                   |                   |              |
| $0^{-+}$ | $J_{4}^{0^{-+}}$          | 1               | 0.071          |                 |                  | 0.21         | 6.2                |                    |                |                  |               |                   |                   |              |
| 0        | $J_{7}^{0^{}}$            |                 |                |                 |                  |              |                    |                    | 1              | 0.048            | 0.078         |                   | 1.4               |              |
|          | $J_{8-}^{1^{-+}}$         | 1               | 0.071          |                 |                  | 0.78         |                    | 0.94               |                |                  |               |                   |                   |              |
| 1-+      | $J_{0a}^{0a}$             | 1               | 0.071          |                 |                  | 0.78         |                    | 8.4                |                |                  |               |                   |                   |              |
|          | $J_{10\alpha}^{9a}$       |                 |                |                 |                  |              |                    |                    | 1              | 0.048            | 0.078         | 0.79              | 1.5               | 0.43         |
| 1        | $J_{11a}^{1-a}$           |                 |                |                 |                  |              |                    |                    | 1              | 0.048            | 0.078         | 7.1               | 1.5               | 0.43         |

#### Relative branching ratios by Fierz rearrangement: Sci.Bull.65(2020)1994

- > The X(6200) and X(6600) can be S-wave  $cc\overline{c}\overline{c}$  tetraquarks with  $J^{PC} = 0^{++}$  or  $2^{++}$ , while X(6900) can be a P-wave  $cc\overline{c}\overline{c}$  tetraquark with  $J^{PC} = 0^{-+}$  or  $1^{-+}$ :
- > Their quantum numbers can be determined by studying the relative branching ratios of the di- $J/\psi$ , di- $\eta_c$ ,  $J/\psi h_c$ ,  $\eta_c \chi_{c0}$ ,  $\eta_c \chi_{c1}$  channels.

Wei Chen

Tetraquarks

# bbbb tetraquarks

The  $bb\bar{b}\bar{b}$  tetraquarks lie below two bottomonium thresholds:

- $bb\bar{b}\bar{b} \rightarrow (b\bar{b}) + (b\bar{b})$ : kinematically forbidden.
- $bb\bar{b}\bar{b} 
  ightarrow (bbq) + (\bar{b}\bar{b}\bar{q})$ : kinematically forbidden.
- $bb\bar{b}\bar{b} \rightarrow (q\bar{b}) + (b\bar{q})$ : possible via a heavy quark pair annihilation and a light quark pair creation.
- $bb\bar{b}\bar{b} \rightarrow (b\bar{b}) + \gamma$ : electromagnetic decay via  $b\gamma_{\mu}\bar{b} \rightarrow \gamma$  photon production process.
- These  $bb\bar{b}\bar{b}$  states are expected to be very narrow. They are good candidates for compact tetraquarks, if they do exist.



|          |                                             | Decay channels           |                          |                     |                        |                        |                           |                               |  |
|----------|---------------------------------------------|--------------------------|--------------------------|---------------------|------------------------|------------------------|---------------------------|-------------------------------|--|
| $J^{PC}$ | Current                                     | $\mu^+\mu^-\Upsilon(1S)$ | $\mu^+\mu^-\Upsilon(2S)$ | $\mu^+\mu^-h_b(1P)$ | $\mu^+\mu^-\eta_b(1S)$ | $\mu^+\mu^-\eta_b(2S)$ | $\mu^+\mu^-\chi_{b0}(1P)$ | $\mu^{+}\mu^{-}\chi_{b1}(1P)$ |  |
|          | $J_{1}^{0^{++}}$                            | 1                        | 0.42                     | 0.002               |                        |                        |                           |                               |  |
| $0^{++}$ | $J_{2}^{0^{++}}$                            | 1                        | 0.42                     |                     |                        |                        |                           |                               |  |
| $1^{+-}$ | $J_{2a}^{1^{+-}}$                           |                          |                          |                     | 1                      | 0.42                   |                           | $1 \times 10^{-4}$            |  |
| $2^{++}$ | $J^{2^{++}}_{4lphaeta}$                     | 1                        | 0.42                     | 0.002               |                        |                        |                           |                               |  |
| 0        | $J_{5}^{0^{-+}}$                            | 1                        | 0.39                     | 0.090               |                        |                        |                           |                               |  |
| $0^{-+}$ | $J_{6}^{0^{-+}}$                            | 1                        | 0.39                     | 0.090               |                        |                        |                           |                               |  |
| 0        | $J_{7}^{0^{}}$                              |                          |                          |                     | 1                      | 0.42                   |                           | 0.041                         |  |
|          | $J_{q_{q_{q_{q_{q_{q_{q_{q_{q_{q_{q_{q_{q_$ | 1                        | 0.43                     | 0.27                |                        |                        |                           |                               |  |
| 1-+      | $J_{0-}^{0a}$                               | 1                        | 0.43                     | 0.27                |                        |                        |                           |                               |  |
| 1        | $J_{10a}^{1}$                               |                          |                          |                     | 1                      | 0.38                   | 1.3                       | 0.070                         |  |
| 1        | $J_{11\alpha}^{1-\alpha}$                   |                          |                          |                     | 1                      | 0.38                   | 12                        | 0.070                         |  |

#### Phys. Rev. D 106 (2022), 094019

- > The *bbbb* tetraquarks with  $J^{PC} = 0^{++}/2^{++}/0^{-+}/1^{-+}$  can be searched for in the  $\mu^+\mu^+\Upsilon(1S)$  and  $\mu^+\mu^+\Upsilon(2S)$  channels;
- > The  $bb\overline{b}\overline{b}$  tetraquarks with  $J^{PC} = 0^{+-}/1^{+-}/1^{--}$  can be searched for in the  $\mu^+\mu^+\eta_b(1S)$  and  $\mu^+\mu^+\eta_b(2S)$  channels.

- We have calculated the mass spectra for the ccccc, bbbb tetraquark states, and have studied their decay properties.
- Our results suggest that the X(6200), X(6600) can be interpreted as an S-wave  $cc\bar{c}\bar{c}$  tetraquark state with  $J^{PC} = 0^{++}$  or  $2^{++}$ , while the narrow structure X(6900) to be a P-wave one with  $J^{PC} = 0^{-+}$  or  $1^{-+}$ . The X(7200) may be a P-wave state with  $J^{PC} = 1^{-+}$ .
- The relative branching ratios of the di-J/ψ, J/ψψ(2S), J/ψh<sub>c</sub>, di-η<sub>c</sub>, η<sub>c</sub>χ<sub>c0,1</sub> channels are helpful to determine their quantum numbers.
- The  $bb\bar{b}\bar{b}$  tetraquarks with  $J^{PC} = 0^{++}/2^{++}/0^{-+}/1^{-+}$  can be searched for in the  $\mu^+\mu^-\Upsilon(1S)$  and  $\mu^+\mu^-\Upsilon(2S)$  channels, while those with  $J^{PC} = 0^{+-}/1^{+-}/1^{--}$  can be searched for in the  $\mu^+\mu^-\eta_b(1S)$  and  $\mu^+\mu^-\eta_b(2S)$  channels.

# Thank you for your attention!