

Yuxiang Zhao (Institute of Modern Physics, Chinese Academy of Sciences)

Special thanks to:

Weiping Wang, Wenbiao Yan, Yateng Zhang, Xiaorong Zhou Xiaorui Lv, Binlong Wang, Yangheng Zheng

Outline

Introduction of Fragmentation Functions Existing studies at BESIII

Potential at STCF

Several open questions about QCD

• <u>Confinement</u>, no existing isolated quarks or gluons

• <u>Nucleon structure</u>, what is the origin of nucleon spin and mass in terms of quarks and gluons degree of freedom

FFs VS confinement

Without knowing how quarks fragment into hadrons, we can't say we understand confinement

Extracted nucleon structure information: polarized PDFs (helicity distribution)

Fragmentation Functions studies at electron-positron colliders

PDG: "One of the cleanest ways to study FFs"

- Unpolarized fragmentation function (z, Pt dependence)
 Collins fragmentation function (Chiral odd)
- Spin-transfer fragmentation function (e.g., Lambda productions)
- Di-hadron fragmentation function (two hadron in a jet)
- ≻TMD FFs in jet
- Higher-twist fragmentation function (multi-particle correlations in a jet)

Unpolarized fragmentation function

Time-like

Study unpolarized fragmentation functions at e⁺e⁻ colliders

Experimental observable at e⁺e⁻ colliders:

$$\frac{1}{\sigma_{tot}(e^+e^- \to hadrons)} \frac{d\sigma(e^+e^- \to h + X)}{dP_h}$$

h is a particular type of hadron such as π^0 , $\pi^{+/-}$, $K^{+/-}$...

At Leading order ~
$$\sum_{q} e_q^2 D_1^{h/q}(z)$$

It can also be measured through electron-proton collisions by looking at multiplicities (Universality property)

World data

Lack of precise data at low energy region

PLUTO: more than 40 years ago
Stat. uncertainty: 18-41%

https://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1062-0

Global data fit and "Universality"

- Parameterization are fitted to particles that reached detectors
- A good parameterization: $D_{1q}^{h}(z) = D_{1q}^{h,\text{dir}}(z) + D_{1q}^{h,\text{dec}}(z),$ $D_{1q}^{h,\text{dec}}(z) = \sum_{h_j} D_{1q}^{h,h_j}(z),$ $D_{1q}^{h,h_j}(z) = Br(h,h_j) \int dz' K_{h,h_j}(z,z') D_{1q}^{h_j}(z'),$

Resonance decay from $\frac{1}{2}^+$, $\frac{1}{2}^+$, 1^- , 0^- multiplet was proposed by **Yu-kun Song, K.B.Chen, Z.T.Liang, Y.L.Pan and S.Y.Wei** to explain BELLE data

How to interpret data will help us to understand QCD

Global data fit on unpolarized FFs

R.D. Field R.P. Feynman, *Phys.Rev.D* 15, 2590 1977 J.F. Owens E. Reya. M.Gluck, *Phys.Rev.D* 18, 1501 1978 R. Baier, J. Engels and B. Petersson, *Z.Phys.C* 2, 265 1979 M. Anselmino, P. Kroll E. Leader, *Z.Phys.C* 18, 307 1983

"model estimates consistent with data"

LO groundbreaking

Global paradigm

 P. Chiappeta et al. , <i>Nuc.Phys.B</i> 412, 3 1994 J. Binneweis. B. Kniehl, G. Kramer, <i>Z. Phys. B</i> 65, 471 1995 J. Binneweis. B. Kniehl, G. Kramer, <i>Phys. Rev. D</i> 52, 4947 1995 J. Binneweis. B. Kniehl, G. Kramer, <i>Phys. Rev. D</i> 53, 3553 1996 D. de Florian. M.Stratmann, W.Vogelsang, <i>Phys. Rev. D</i> 57, 5811 199 L. Bourhis et al. , <i>Eur. Phys. J.C</i> 19, 89 2001 B. Kniehl G. Kramer, B. Potter, <i>Nuc. Phys. B</i> 582, 514 2000 S. Kretzer, <i>Phys. Rev. D</i> 62, 4001 2000 S. Albino, S. Kniehl, G. Kramer, <i>Nuc. Phys. B</i> 785, 181 2005 M. Hirai, et al., <i>Phys. Rev. D</i> 75, 4009 2007 heavy flavors, hadron mass effects, resummations, 	π^{0} π^{\pm}, K^{\pm} $\pi^{\pm}, K^{\pm} LEP$ K^{0} Λ^{0} h^{\pm} $\pi^{\pm}, K^{\pm}, p/\overline{p}$ "flavor tagging" "OPAL tagging" "uncertainties "	CGGRVV94 BKK95 DSV97 BFGVV00 KKP00 KRE00 AKK05 HKNS07 NLO erer paradigm	C.o.M. energy > 10 GeV
 D. de Florian, R.S., M. Stratmann , <i>Phys. Rev. D 75</i>, 4010 2007 S. Albino, S. Kniehl, G. Kramer, <i>Nuc. Phys. B 803</i>, 42 2008 R.S., M. Stratmann, P. Zurita , <i>Phys. Rev. D 81</i>, 054001 2010 C. Aidala, et al., <i>Phys. Rev. D 83</i>, 034002 2011 E. Leader, A.V. Sidorov, D. Stamenov, <i>arXiv:1312.5200</i> M. Soleymaninia et al., <i>Phys. Rev. D 98</i>, 054019 2013 D. de Florian et al. , <i>Phys. Rev. D 91</i>, 4035 2015, D 95 094019 2017 E. Leader, A.V. Sidorov, D. Stamenov, <i>Phys. Rev. D96</i>, 074026 2016 	" e^+e^- , pp, SIDIS" " e^+e^- , pp" " nFFs" " η " "SIDIS only" " e^+e^- , pSIDIS" " π^{\pm}, K^{\pm} , update" " SIDIS only"	DSS07 AKK08 SSZ10 AESS11 LSS13 SKMNA13 DSS14/17 LSS15	

BESIII measurements

W. P. Wang, Y. T. Zhang, Y. X. Zhao, J. Zu X. L. Gao, X. R. Zhou, W. B. Yan, G. S. Huang

arxiv: 2211.11253

Theory support: Hongxi Xing, Daniele Anderle

Data VS theoretical predictions with FFs extracted using high energy collision data (C. o. M. > 10 GeV)
 A discrepancy has been observed, dependent on C. o. M. energy → higher energy at 5-7 GeV?
 A few more analyses are ongoing...

Collins fragmentation function (Chiral odd)

We have very little data from e⁺e⁻ machine

Leading-Twist TMDs

Separation of Collins, Sivers and Pretzelosity through azimuthal angular dependence

$$A_{UT}(\varphi_h^l, \varphi_S^l) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$
$$= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S)$$
$$+ A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S)$$

UT: **U**npolarized beam + **T**ransversely polarized target

 $\frac{A_{UT}^{Collins} \propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp}}{A_{UT}^{Sivers} \propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1} \rightarrow \text{TMD: Transversity}} \xrightarrow{K_{therefore}} Collins FF$ $\frac{A_{UT}^{Pretzelosity}}{\Delta_{UT}^{Pretzelosity}} \propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp} \rightarrow \text{TMD: Pretzelosity}} \xrightarrow{K_{therefore}} Collins FF$

hadron plan

 P_h

Collins FF study at e⁺e⁻ colliders

$$\frac{d^5 \delta^{e^+e^- \to h_1 h_2 + X}}{dz_1 dz_2 d^2 P_{h\perp} d\cos\theta} = \frac{N_c \pi \alpha_{em}^2}{2Q^2} \left[(1 + \cos^2 \theta) Z_{uu}^{h_1 h_2} + \sin^2 \theta \cos(2\phi_0) Z_{collins}^{h_1 h_2} \right]$$
$$= \frac{N_c \pi \alpha_{em}^2}{2Q^2} (1 + \cos^2 \theta) Z_{uu}^{h_1 h_2} \left[R^{h_1 h_2} (z_1, z_2, \theta, P_{h\perp}) \right]$$
$$R^{h_1 h_2} (z_1, z_2, \theta, P_{h\perp}) = 1 + \cos(2\phi_0) \frac{\sin^2 \theta}{1 + \cos^2 \theta} \frac{Z_{collins}^{h_1 h_2}}{Z_{uu}^{h_1 h_2}}$$

To avoid detection-related effects, experimentally, a double ratio measurement was proposed:

arxiv:1505.05589

U: pi+&pi- or pi-&pi+ L: pi+&pi+ or pi-&pi-

$$\frac{R^U}{R^{L(C)}} = A\cos(2\phi_0) + B,$$

Collins fragmentation functions

To avoid detection-related effects, experimentally, a double ratio measurement was proposed:

U: pi+&pi- or pi-&pi+ L: pi+&pi+ or pi-&pi-

 $\frac{R^U}{R^{L(C)}} = A\cos(2\phi_0) + B,$

World data fit to extract Collins FFs and Transversity TMDs

TABLE I: World SIDIS data used in our analysis. The numbers in parentheses are the original number of data points before applying δ cut.

Data set	Target	Beam	Data points	Reaction	measurement
COMPASS 5	⁶ LiD	$160 \text{ GeV } \mu^+$	9(36)	$\mu^+ d \rightarrow \mu^+ \pi^+ X$	$A_{UT}^{Collins}/\epsilon$
				$\mu^+ d o \mu^+ \pi^- X$	
				$\mu^+ d \rightarrow \mu^+ K^+ X$	
				$\mu^+ d \rightarrow \mu^+ K^- X$	
COMPASS 6	NH_3	$160 \text{ GeV } \mu^+$	10(36)	$\mu^+ p \rightarrow \mu^+ \pi^+ X$	$A_{UT}^{Collins}/\epsilon$
				$\mu^+ p \rightarrow \mu^+ \pi^- X$	
				$\mu^+ p \rightarrow \mu^+ K^+ X$	
				$\mu^+ p \rightarrow \mu^+ K^- X$	
HERMES 4	H_2	$27.6 \text{ GeV} e^{\pm}$	104(256)	$e^{\pm}p \rightarrow e^{\pm}\pi^{+}X$	$A_{UT}^{Collins}/\epsilon$
				$e^{\pm}p \rightarrow e^{\pm}\pi^{-}X$	
				$e^{\pm}p \rightarrow e^{\pm}K^{+}X$	
				$e^{\pm}p \rightarrow e^{\pm}K^{-}X$	
JLab 👖	3 He	$5.9 \text{GeV} e^-$	4(8)	$e^-n \rightarrow e^-\pi^+X$	$A_{UT}^{Collins}$
				$e^-n \rightarrow e^-\pi^-X$	
Jlab 8	3 He	$5.9 \text{GeV} e^-$	2(5)	$e^{-3}\text{He} \rightarrow e^{-}K^{+}X$	$A_{UT}^{Collins}$
				e^{-3} He $\rightarrow e^{-}K^{-}X$	

and an other thanks the second and other the second s	TABLE II:	World	SIA	data	used	in	our	analysis.
--	-----------	-------	-----	------	------	----	-----	-----------

Data set	Energy	dependence	Data points	Reaction
BELLE 9	$10.58 \mathrm{GeV}$	z	16	$e^+e^- \rightarrow \pi\pi X$
BABAR 10	$10.6 \mathrm{GeV}$	z	36	$e^+e^- \rightarrow \pi\pi X$
		Pht	9	$e^+e^- \rightarrow \pi \pi X$
BABAR III	$10.6 \mathrm{GeV}$	z	48	$e^+e^- \rightarrow \pi \pi X$
		z		$e^+e^- \rightarrow \pi KX$
		z		$e^+e^- \rightarrow KKX$
BESIII 12	$3.68 \mathrm{GeV}$	z	6	$e^+e^- \rightarrow \pi \pi X$
		P_{ht}	5	$e^+e^- \rightarrow \pi\pi X$

Polarized SIDIS data + SIA data

C. H. Zeng, H. X. Dong, T. B. Liu, P. Sun, Y. X. Zhao

Outline

Introduction of Fragmentation Functions Existing studies at BESIII

Potential at STCF

STCF coverage

A few highlights in the high CoM region

Higher center of mass energy available at STCF

Broader hard scale Q coverage

≻heavy particles

□Lambda, Lambda_C, D0

Transition from Pert. to Non-pert.

Many interesting effects

•High lumi.

- From exploratory to precision measurements
- Multi-dimensional binning of the measurements
 - Currently mainly on z and Q², P_t of hadron is crucial (now with Gaussian assumption)

Example of Collins

A simulation at STCF

Summary

- ➢Unpolarized fragmentation function✓Unique Q<10 GeV data</p>
 - ✓ Hadronization in a "non-pert. → pert." region

Collins fragmentation function

- ✓ Important inputs in the 3D imaging era of the nucleon structure study, especially EIC is becoming real
- ✓Very little data in e⁺e⁻ machine

≻Heavy particles are possible compared to BESIII

≻Jet?

Thanks

