CEvNS observation by COHERENT

Presented by Kangkang Zhao 2020.06.15

Outline

- Introduction of CEvNS process
- Experimental setup & Detector studies
- Data analysis
- Summary

• Introduction of CEvNS process

- Experimental setup & Detector studies
- Data analysis
- Summary

CEvNS : Coherent Elastic v-Nucleus Scattering

- Firstly theoretical described in 1974
- Weak neutral current process
- Only the nuclear recoil detectable
- Large cross section (>10² IBD)
- Cross section VS recoil energy

$$\frac{\mathrm{d}\sigma}{\mathrm{d}q^2} = \frac{G^2}{2\pi} a_0^2 A^2 e^{-2bq^2} \left(1 - q^2 \frac{2ME + M^2}{4M^2 E^2}\right)$$

$$E_{\text{Recoil}} = \frac{q^2}{2M} \propto \frac{1}{A}$$

• Firstly observed by COHERENT in 2017

Interests in CEvNS

- Large cross section
 - Detector mass reduction (kg-scale)
 - Technological applications: nonintrusive reactor monitor
- Nuclear structure & beyond SM
- Neutrino properties:
 - sterile neutrinos
 - neutrino magnetic moment

$$\frac{\mathrm{d}\sigma_{\nu-N}^{\mathrm{mag.}}}{\mathrm{d}E_R} = \frac{\pi \alpha^2 \mu_{\nu}^2 Z^2}{m_e^2} \left(\frac{1}{E_R} - \frac{1}{E_{\nu}} + \frac{E_R}{4E_{\nu}^2}\right) F^2(E_R)$$

- Introduction of CEvNS process
- Experimental setup & Detector studies
- Data analysis
- Summary

Neutrinos source & setup

- Spallation Neutron Source (SNS)
 @Oak Ridge National Laboratory
- Prompt v_{μ} , delayed v_e , \bar{v}_{μ}
- Facility-wide 60-Hz trigger signal
- Protons-on-target (POT) as trigger
- 60 Hz of ~1 μs-wide POT spills: subtract steady-state backgrounds

Installation location

Neutron- induced nuclear recoils

- basement corridor
 - >12 m moderating neutrons
- 8 m.w.e. overburden reducing cosmic rays
- installed nearest to the SNS target

Detector & Shielding design

detector

- ► 14.6-kg sodium-doped CsI
- ➤ Scintillating response
- Hamamatsu R877-100 PMT

- Similar high mass:
 - similar response of the detector
- Large light yield:
 - ~ 9.9 PE/keVee yield in the 2 kg prototype
- low radioactivity:
 - ²³⁸U, ²³⁵U and ²³²Th < 1 ppb
 - 177±16 mBq/kg of ⁴⁰K

Shielding design

- ≻7.5 cm of high-density polyethylene (HDPE)
- > Multi-layer lead for γ shielding
- ≻5 cm plastic scintillator muon veto
- ➤15 cm HDPE (bottom)+ >9 cm water tanks (top, sides) neutron moderator

Beam-Related Background

- prompt SNS neutron & neutrino-induced-neutron (NIN)
- Standard PSD techniques: neutron-like events
- unbinned fit to arrive time(NIN), fit energy spectrum (flux)

• prompt neutron: 0.92 \pm 0.23 events / GWhr

• NIN $: 0.54 \pm 0.18$ events / GWhr

doi:10.1126/science.aao0990

Detector calibrations

- light yield uniformity
 - ²⁴¹Am 59.54 keV gamma emission
 - Nine equally-spaced locations
 - PMT average light yield 13.35 (0.5%) PE / keV
- low-energy signal characteristics
 - ¹³³Ba train data cuts for CEvNS signal acceptance
 - Cherenkov light emission in PMT window
 - dark-current photoelectrons

Quenching factor (QF)

- QF: light yield from nuclear recoil / from electron recoil
- Down to 3 keV region

- Introduction of CEvNS process
- Experimental setup & Detector studies
- Data analysis
- Summary

Data analysis

- Afterglow cut: $SPEs \le 4$ pretrace
- quality cuts :
 - muon veto coincidences
 - dead time from PMT saturation
 - digitizer range overflow

Residual differences between signals in the 12 μs window after and before POT

 Maximize the ratio of event acceptance in an energy ROI to the number of background events passing the same cuts

Arrival times cut: 0-5 μ s Energy cut: PE \leq 20

CEvNS signal events

- PDFs 2-D (energy, time) MLE fit :
 - the CEvNS signal
 - the prompt neutron background
 - the steady-state environmental backgrounds NIN backgrounds omitted

rival time (us)

2 4 Arrival time

Outcome

- 134 ± 22 CEvNS events
- shaded region: 68% C.L. of the SM prediction (173 events)
- absence of CEvNS events
 rejected at a level of 6.7-sigma

Summary

- Firstly observed CEvNS at 6.7-sigma
 - Well experimental design
 - Well detector studies
 - Well background studies
 - Well statistical analysis

Backup

- SNS neutrinos: prompt muon neutrinos, delayed electron neutrinos, delayed muon antineutrinos
- NIN: delayed v_e through the ²⁰⁸Pb(v_e , e^- xn) reaction

Backup

- 12 µs following POT triggers as coincident (C)
- 12 µs before POT trigger as anti-coincident (AC)