

STCF注入器 和正电子源研究进展

张艾霖

中国超级陶粲研讨会 2022年12月04日

一、STCF直线注入器设计

二、STCF正电子源的研究

中国超级陶粲项目简介

- > STCF的概念与独特优势
 - 亮度更高>0.5~1×10³⁵ cm⁻²s⁻¹ @ 4 GeV
 - 更高的对撞能量: E_{cm} = 2-7GeV

几个正负电子对撞机参数对比

STRF

	国际上/	几大正负电子对	撞机的电子源和	和注入器参数	
参数	中国STCF	意大利TCF	俄罗斯SCTF	Super KEKB	CEPC
电子源种类	光阴极	光阴极	光阴极	光阴极	热阴极
电子源	5nC/50Hz	-	1.5nC/50Hz	5nC/50Hz	10nC/100Hz
发射度	20 mm∙mrad	-	3 mm∙mrad	20 mm∙mrad	56
					mm∙mrad
注入器束流	3.5GeV	4GeV	3GeV	7GeV	10 GeV
	1.5nC/50Hz	5nC/50Hz	1.5nC/50Hz	5nC/50Hz	10nC/100Hz
注入器发射	20 mm∙mrad	-	3 mm∙mrad	20 mm∙mrad	56
度(归一化)					mm∙mrad
主环发射度	2~6 nm	4 nm	8 nm	4 nm	3.57 nm
(几何)					(booster)
亮度(设计)	0.5×10 ³⁵ cm ⁻² s ⁻¹	1×10 ³⁵ cm ⁻² s ⁻¹	1×10 ³⁵ cm ⁻² s ⁻¹	8×10 ³⁵ cm ⁻² s ⁻¹	1×10 ³⁵ cm ⁻² s ⁻¹
				(~4.2×10 ³⁴ cm ⁻² s ⁻¹)	
				2022年05月	

2022/12/2

国际上的正负电子对撞机的注入器

[1] Super Charm - Tau Factory, conceptual design report part two, Novosibirsk, 2018[2] Tau/Charm Factory Accelerator Report, INFN, July 2013

2022/12/2

[1] Injector Linac of Super KEKB, conceptual design report, 2013

[2] CEPC conceptual design report, August 2018

Super KEKB光阴极电子源方案

	NEND	KEKB
能量	3.5 GeV	7 GeV
电量	1 nC	5 nC
发射度 (mm·mrad)	300	20

1. 为了满足super KEKB发射度的需求,开始研发光阴 极电子源[1]。

2. 在2016年SuperKEKB的调试中,将用于产生正电子的热阴极电子枪也换成了光阴极电子枪[2]。产生正电子的电子束从原本设计的10 nC热阴极变为2×4 nC的光阴极。

[1] D. Satoh et al. Research and development of iridium cerium photocathode for SuperKEKB injector linac/ Energy Procedia 131 (2013) 326–333
 2022/12/12 M. Satoh, M. Akemoto, Y. Arakida, Commissioning Status of SuperKEKB Injector Linac[J]. Proceedings of IPAC2016, Busan, Korea, THPØY027 2016.

STCF注入器的布局

光阴极微波 电子源 1.5 nC/5 nC 电子束旁路 至主环 电子/正电子直线加速器 3.5 GeV 正电子直线加速器 电子直线加速器 1.0 GeV 1.5 nC/5 nC 1.0 GeV 正电子源 1.5 GeV 5nC 正电子阻尼环 参数 数值 注入束流带电量 **1.5 nC** 用于产生正电子的电子束电量 **5 nC** 注入束流能量 1.0~3.5 GeV 注入束流发射度 20 mm rad 注入束流均方根能散 0.1% 注入束流重复频率 **50Hz** 直线加速结构加速场强 ≥23MeV/m 阻尼环周长 ~65 m 阻尼环能散接收度 ~1% 阻尼环束流能量 **1.0 GeV**

STCF直线加速器的基本参数

SLED功率倍增器

加速结构:1. 常规加速器腔;2. 波形变压腔;3. 过渡腔;4. 连接隔膜;5. 冷却壳。

Parameter	Value
Klystron	1
Frequency, f _o	2856 MHz
Repetition frequency	0-50 Hz
Peak power	50 MW
Pulse width	3.5 µs
SLED	1
Amplification factor	5
output power	250 MW
Number of acceleration	2
Accelerating gradient	23MeV/m
Energy gain	134MeV

正电子阻尼环设计

2.0

0.0

20.

10.

30.

40.

2022/12/2

10

50.

-1.2

60.

s (m)

一、STCF直线注入器

二、STCF正电子源的研究

2022/12/2

STCF正电子源面临的问题

STEF

国际上常见的几个正电子源参数

Parameters	SLC	LEP (LIL)	Super KEKB	FCC-ee	CEPC
Incident e ⁻ beam energy (GeV)	33	0.2	3.3	4.46	4
e ⁻ /bunch [10 ¹⁰]	3–5	0.5-30 (20 ns pulse)	6.25	4.2	6.25
Bunch/pulse	1	1	2	2	1
Rep. rate (Hz)	120	100	50	200	100
Incident beam power (kW)	~20	1 (max)	3.3	15	4
Beam size @ target (mm)	0.6-0.8	<2	>0.7	0.5	0.5
Target thickness $[X_0]$	6	2	4	4.5	~4.5
Target size (mm)	70	5	14	-	10
Target	Moving	Fixed	Fixed	-	Fixed
Deposited power (kW)	4.4	-	0.6	2.7	0.78
Capture system	AMD	$\lambda/4$ transformer	AMD	AMD	AMD
Magnetic field (T)	6.8→0.5	1→0.3	4.5→0.4	7.5→0.5	6→0.5
Aperture of 1st cavity (mm)	18	25/18	30	20	25
Gradient of 1st cavity (MV/m)	30-40	~10	10	30	22
length of 1st cavity (m)	1	3	2	3	2
Linac frequency (MHz)	2855.98	2998.55	2855.98	2855.98	2860
e ⁺ yield @ CS exit (e ⁺ /e ⁻)	~1.6	~0.003 (Linac exit)	~0.5	~0.7	~0.55 (with
能量越高、产额越高! cut-off con- dition)					

2022/12/2 Cai Meng, Xiaoping Li, Guoxi Pei,etl. CEPC positron source design[J]. Radiation Detection Technology and Methods, 3(3):32.1-32.7.

STCF正电子源设计

STRF

高品质正电子源是注入器难点和	和 <mark>关键点,是STCF高亮度的保证</mark>
1.5 Gev 电子来	聚束、加速
日本 日本 中 中 中 中 中 中 中 中 中 中 中 中 中	 ・ 高效率 ・ 高流强 ・ 高稳定
参数	数值
打靶电子束团电荷量	5 nC
能量	1.5 GeV
重复频率	50 Hz
靶上能量沉积	234 W
磁场	5 \> 0.4 T
 靶厚 型材 正电子产额	13 mm 钨 0.3

SuperKEKB的正电子源运行状态

STRE

	design	2020ab (operation)	2020ab	2020c	2021a	2021b	2021c
Study date		2020/7/1	2020/7/2	2020/10/12	2021/2/12	2021/7/6	2021/10/8
Energy (e-)*	3.46 GeV	3.01 GeV	3.01 GeV	2.87 GeV	2.89 GeV	2.92 GeV	2.94 GeV
Bunch charge (e-)	10 nC	8.2 nC	8.3 nC	8.1 nC	8 nC	9.0 nC	10.3 nC
e+/e- @ SP_16_5	0.58	0.23	0.38	0.51	0.55	0.59	0.61
e+ @ SP_16_5	5.8 nC	1.9 nC	3.2 nC	4.1 nC	4.4 nC	5.3 nC	6.1 nC
e+ @ SP_28_4	-	1.6 nC	2.4 nC	2.5 nC	3.2 nC	3.5 nC	3.7 nC
e+ @ SP_DC_4	-	1.3 nC	1.9 nC	2.1 nC	2.5 nC	3.0 nC	3.2 nC
e+ @ SP_58_4	4 nC	1.3 nC	1.9 nC	2.1 nC	2.5 nC	3.0 nC	3.2 nC
e+ @ QMF8P_K**	4 nC				2.77 nC	2.95 nC	3.05 nC

*LIIOP:AC_13_4:GAINSUM:KBP

**BTpBPM:QMF8P_K_1:NC_1Hz × CGpBPM:QMF8P_K:FQ (0.475575)

15_T : just before the target 16_5 : first BPM for positron 28_4 : just before the DR

- DC 4 : just after the DR
- 58 4 : Linac end

2.94 GeV 的产额比1.5 GeV高1.7倍 1.5 GeV 如何保证0.3的产额?

Provided by Yoshinori Enomoto

电子束打靶模拟研究

自行开发的打靶优化和模拟

Lattice thermal vibration Electron ositron Positron ray Compton v rav scattering Electron Bremsstrahlung Electron e⁺ e⁻ production **Bethe-Heitler** Extinction $N_{+} \simeq N_{e} \frac{\rho \Delta_{e^{+}}}{\rho \Delta_{e^{+}} + \rho \Delta} \left(w_{e} + w_{\gamma}^{\infty} \frac{\rho \Delta}{\rho \Delta_{\gamma}} \right)$ Trident 过程 $\int \frac{1}{\Delta} = \frac{n}{16\pi^3 c^2 k_F^2 \omega_D^2} \cdot \left(\frac{k_B T}{\hbar}\right)^{2+n} \int \frac{\theta_D}{T} \frac{x^{1+n}}{e^x - 1} dx$ Bethe-Heitler(BH)过程 热阻尼过程(类似电阻效应) 因此自主开发了基于Matlab程序的打靶计算程序

[1]A.L. Zhang and M. Cheikh Mhamed, Nuclear Instruments and Methods in Physics Research Section B, 2020, 463: 107-110
 [2] A.L. Zhang, L.C. X. J. Sun, H.P. Peng, et al. Nuclear Inst. and Methods in Physics Research, A 1039 (2022) 167107 17

电子束打靶模拟的研究

单晶厚钨靶正电子源实验研究

◆ 使用单晶钨作为正电子转化靶
◆ 五个温度探头对靶材温变进行测量
◆ 高灵敏度光探头对1.02MeV以上的光子进行测量
◆ 进行热效应测量和模拟

单晶钨靶正电子源实验研究

脉冲间隔短会导致重结晶现象!

单晶钨的热传导率实验测量

瞬态平面热源法传导率测量装置示意图

"瞬态平面热源技术"(Transient Plane Source Method, TPS)在研究材料时 能够同时测量热导率、热扩散率以及单位体积的热容。利用热阻性材料做成一个平 面的探头,同时作为热源和温度传感器。通过了解电阻的变化可以知道热量的损失 ,从而反映样品的导热性能。

单晶钨靶正电子源实验研究

STRF

利用分子动力学模拟对热传导进行模拟

振荡式正电子转换靶的设计

避免束流短时间内轰击一个点,从而延长单晶寿命!

STCF

正电子源的收集匹配系统研究

AMD绝热磁场的优化

在得到正电子角度、能量分布的基础上下对AMD绝热磁场进行模拟和优化

STCF

小结:

- 1. 完成了注入器的初步布局设计。
- 2. 完成了阻尼环的初步设计。
- 3. 与法国LAL、日本super KEKB展开了深入合作,完成了部分正电子源 的打靶实验和模拟,完成了移动靶设计以及正电子横向和纵向匹配的 初步设计。

未来计划:

- 1. 完善整个注入器的物理设计,确定各部分的具体技术方案。
- 完成新型正电子转换靶的可行性验证,完成大孔径S波段孔径加速管的 设计和实验验证,完成正电子捕获系统的物理设计和模拟计算,确保 正电子产额,完善正电子源的方案。
- **3.** 根据正电子束的参数,进一步完善阻尼环的物理设计,完善其他物理 研究,如误差分析、集体效应等。

请各位专家批评指正!

欢迎加速器领域的专家、同事加入STCF!