

Applications of SiPM based detectors in muon spin spectroscopy

潘子文,杨天艺,梁昊,叶邦角

State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China

鲍煜,李强,李祥,程辉,胡海韬

China Spallation Neutron Source, Institute of High Energy Physics

12th May 2023 第三届半导体辐射探测器研讨会|巢湖中庙

1. 研究背景

μSR: muon spin rotation/relaxation/resonance 缪子自旋旋转/驰豫/共振

A quantum magnetism probe

Quantum probe

1.1 Principles of µSR spectroscopy

Scheme

1.1 Principles of µSR spectroscopy

Asymmetrical decay

1.2 Advantages of µSR spectroscopy

- 独特的时间窗(complementary to NMR/neutron scattering)
- 5 磁性灵敏(small moment magnetism ~ 10⁻³ μ_B/Atom)
- ●随机/不均匀磁性分布(e.g. spin glasses)
- 思程有序(where neutron scattering is not sensitive)

高度极化,可零场实验(independent of temperature, unique measurements

without disturbance of the system)

里粒子探测(with extremely high sensitivity)

态无限制(in choice of materials to be studied)

同域量子磁深针(no need to search reciprocal space)

Advantages

1.3 Application fields

Passive probe (lepton)

Superconductor

Charge transport

Magnetism

MD

Active probe (light proton)

Movement of electrons and holes n-type p-type Anode

Semiconductor

Ionic conductor

Polaron motion

Applications

1.3 Application fields

李世亮课题组@中科院物理所

Extreme Suppression of Antiferromagnetic Order and Critical Scaling in a Two-Dimensional Random Quantum Magnet, **Physical Review Letters** *126, 037201 (2021).*

二维量子反铁磁体掺杂演化机制得到部分澄清

宁凡龙课题组@浙江大学

Ba(Zn,Co)₂As₂: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors, Physical Review B 99, 155201 (2019).

成功合成一种新型稀磁半导体并由µSR确证

Discovery of slow magnetic fluctuations and critical slowing down in the pseudogap phase of $YBa_2Cu_3O_y$, Science Advances 4, eaao5235 (2018).

高温<mark>超导</mark>体赝能隙研究取得突破

Applications

1.4 Worldwide muon sources

Muon facilities

1.5 Instrumentation @ USTC muon group

Particle Beam Application Laboratory

(PI: 叶邦角教授)

USTC muon

1.5 Instrumentation @ USTC muon group

NSFC

Prof. Ye

✓ 样机探测系统计数性能优于ISIS谱仪
✓ 可以精确测量样品局域磁场
✓ 基金委结题评价为亮点工作

专家组验收

USTC muon

1.6 MELODY @ CSNS II

Muon station for sciEnce technoLOgy and inDustrY (MELODY)

MELODY

WS2023

1.6 MELODY @ CSNS II

Muon station for sciEnce technoLOgy and inDustrY (MELODY)

- Protons: 1.6GeV, 1 Hz (up to 5Hz), 130ns double pulses
- Muon beamlines: one surface muon and one decay muon beam
- Spectrometers: 1 µSR spectrometer and more...

MELODY

1.6 MELODY @ CSNS II

Data analysis software: (李样)

Proceedings @ MuSR2020

Schedule

2. 探测器设计与测试

2.1 Spectrometer development trend

Spectrometers

WS2023

2.1 Spectrometer development trend

Facilities	Time mode	Spectrometer	Light sensors	Amount		
PSI	Continuous	DOLLY、GPS、GPD、 HAL-9500、LEM、FLAME	SiPM/PMT	6		
TRIUMF	Continuous	Helios、 DR、 NuTime、 Omni Prime、 LAMPF、 SFUmu、 Hodge-Podge、 Gas Cart	PMT	8		
MuSIC	Continuous	Reused from KEK	PMT	1		
ISIS	Pulsed	MuSR→ <mark>SuperMuSR</mark> 、EMU、HiFi、 ARGUS、CHRONUS	PMT/SiPM	5		
J-PARC	Pulsed	D1、ARTEMIS、USM、CYCLOPS	SiPM	4		
In total:						

◆ 早期建设的谱仪(如TRIUMF、ISIS)使用PMT,后期建设的基本使用SiPM◆ 使用PMT的谱仪也逐步升级到SiPM

◆µSR谱仪逐步SiPM化

2.2 Technical challenges

缪子源		J-PARC		ISIS	CSNS
谱仪	DΩ1	D1	ARTEMIS	EMU	-
流强(μ+/pulse)		<1011(需准	$< 7.5 \times 10^4$	> 10 ⁵	
频率(Hz)		25	40	1	
通道数	128	640	640	96	
总计数率 (Mevents/h)	40	180	180	140	
单路计数率 (e ⁺ /pulse/ch)	3.47	3.13	3.13	10.13	-
传感器	PMT	SiPM	SiPM	PMT	SiPM
死时间(ns)	-	~ 100	50	8	-

- 多样品多条件快速测量(一次测量需要2×10⁷ events)
 - MELODY束流重复频率低
 - 每脉冲流强高
 - SiPM死时间长

Technical challenges

2.3 Solutions

Technical solutions

WS2023

2.3 Preliminary design

Design

WS2023

Electronics

Front-End Electronics

Design

TDC Readout

FEE (PZC + LED) + TDC

WS2023

PZC: Pole-zero cancellation, LED: Leading-edge discrimination

WS2023

Beam test

WS2023

CH52: MA-PMT CH53: SiPM + slow PZC CH54: SiPM + fast PZC CH56: EMU detector (PMT)

Beam test

WS2023

◆ MA-PMT和PMT死时间相当
◆ SiPM使用极零相消电路(PZC)后,死时间下降至20 ns左右
◆ 计数率高于18 events/pulse后, µSR谱出现明显变形

3. 总结与展望

3.1 Summary

Day-One at MELODY

- 2868 PS+SiPM
- Asymmetry : 0.39

• Counting rate : 8×10⁷/hour @ 1 Hz

Tests @ ISIS Muon Facility

- SiPM (sensl slow output) + PZC
- Dead time : ~ 20 ns
- Fast output / PZC optimization ?

Summary

3.2 Outlooks

Next-Generation Spectrometer ?

LGAD

Stiffening plate + irradiation holes Drift panel Gas Inlet / Outlet Copper cathode O-ring Brass springs Active area (copper r/o, resistive anode Mesh frame Pyralux® pillars; A, B, C, D) Micromesh FR4 spacing frame Readout pane r/o Panasonic HV connectors (anode / cathode) Cathode GEM GEM 2 GEM 3

Micromegas or GEM ?

Small size: ~ mm² Fast signal: 10s of picosecond

High granularity (almost no pileups under current intensity)

Detectors

3.2 Outlooks

Next-Generation Spectrometer ?

Electronics

