Production of muons from heavy-flavour hadron decays with ALICE at the CERN-LHC

Shuang Li for the ALICE Collaboration

Key Laboratory of Quark & Lepton Physics (MoE) and Institute of Particle Physics, Central China Normal University, Wuhan, P. R. China Laboratoire de Physique Corpusculaire, Université Blaise Pascal, Clermont-Ferrand, France

> First China LHC Physics workshop (CLHCP) **19-21 December 2015, Hefei, China**

Outline

- Physics motivations
- ALICE setup
- Selection of measurements of muons from heavy-flavour hadron

decays in pp, p-Pb and Pb-Pb collisions with ALICE detector

Summary and outlook

Relevance of open heavy flavours in heavy-ion collisions at the LHC

Heavy quarks (charm and beauty) are produced in initial hard scatterings on a short time scale and experience the whole evolution of the system

Interaction of heavy quarks with the hot/dense medium probes:

Parton energy loss via (in)elastic processes

- \checkmark expected: $\Delta E_{a} > \Delta E_{u.d.s} > \Delta E_{c} > \Delta E_{b}$
- ✓ reflected into: $R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$?
- \checkmark caveats:
 - \square different shapes of parent parton p_{T}
 - distributions in pp collisions
 - different fragmentation functions

Collectivity in the QGP

- \checkmark initial spatial asymmetry \rightarrow azimuthal asymmetry of particle emission in momentum space
- low p_{T} : participation of heavy quarks in the collective expansion of the system \checkmark
- \checkmark high $p_{\rm T}$: path-length dependence of energy loss \rightarrow azimuthal asymmetry

$$\frac{R_{AA}(p_{T})}{d\sigma_{pp}/dp_{T}}$$

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto [1 + 2\nu_1 \cos(\varphi - \Psi_1)]$$

 $+2v_2cos[2(\varphi-\Psi_2)]+\cdots]$

Relevance of open heavy flavours in pp and p-Pb collisions

Comprehensive understanding of Pb-Pb data needs data from:

p-Pb collisions

- Control experiment for Pb-Pb collisions
- Quantify cold nuclear matter effects
 - parton Distribution Functions (PDF)
 (shadowing / gluon saturation)
 - ✓ $k_{\rm T}$ broadening
 - ✓ energy loss in cold nuclear matter
 - ✓ possible other final-state effects
- Explore nPDFs at different x ranges [arXiv:1512.01528]

pp collisions

- Reference for Pb-Pb and p-Pb collisions
- Test of perturbative QCD calculations
- Insights into production mechanisms at the parton level

JHEP 0904 (2009) 65

ALICE: A Large Ion Collider Experiment

Front

absorber

Inner Tracking System (ITS)

- |η|<0.9
- vertex reconstruction
- event trigger

VZERO

- 2.8<η<5.1, -3.7<η<-1.7
- centrality determination
- event plane reconstruction
- event trigger

Tracking chambers

Dipole

magnet

Muon Spectrometer -4<η<-2.5 muon-ID

Trigger chambers

Measurements of muons from heavy-flavour hadron decays in pp collisions

pp collisions, $\sqrt{s} = 2.76 \& 7 \text{ TeV}$

Production cross sections

Test for pQCD and reference for p-A and A-A collisions

pQCD calculations are compatible with the p_{T} - and y-differential measurements at $\sqrt{s} = 7 \text{ TeV}$

Similar conclusion found for pp collisions at $\sqrt{s} = 2.76$ TeV

[Data: PLB 708 (2012) 265; FONLL: JHEP 1210 (2012) 137]

Measurements of muons from heavy-flavour hadron decays in p-Pb collisions

p-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

- Rapidity shift of the center-of-mass of 0.465 units in the proton direction
- Measurements performed at forward rapidity (p-going direction, $2.03 < y_{cms} < 3.53$) $\rightarrow x \sim 10^{-5}$

- Measurements performed at backward rapidity (Pb-going direction,
 - -40<*y*_{cms}<-2.9

-4.46< y_{cms} <-2.96) \rightarrow x~10⁻²

 R_{pPb} at forward rapidity: consistent with unity within uncertainties over the whole measured p_{T} range R_{pPb} at backward rapidity: slightly larger than unity in 2< p_T <4 GeV/c and close to unity at higher p_T $R_{\rm pPb} \sim 1$ indicates small cold nuclear matter effects (at least at high- $p_{\rm T}$) Good agreement between data and models including cold nuclear matter effects [pQCD NLO (MNR): NPB 373 (1992) 295; EPS09: JHEP 04 (2009) 065 PRC 80 (2009) 054902; PRC 87 (2013) 044905 PLB 740, (2015) 23; PR D 88 (2013) 054010]

 R_{FR} vs p_{T}

Forward-to-backward ratio

 $R_{\rm FB}(2.96 < |y_{cms}| < 3.54) = \frac{d\sigma/dp_{\rm T} \left[\text{Forward}(2.96 < y_{cms} < 3.54) \right]}{d\sigma/dp_{\rm T} \left[\text{Backward}(-3.54 < y_{cms} < -2.96) \right]}$

- $R_{\rm FB}$: systematically smaller than unity in 2< $p_{\rm T}$ <4 GeV/c and close to unity at higher $p_{\rm T}$
- $R_{\rm FB}$ ~1 indicates small cold nuclear matter effects (at least at high- $p_{\rm T}$)
- Within uncertainties, data can be described by EPS09 predictions

[pQCD NLO (MNR): NPB 373 (1992) 295; EPS09: JHEP 04 (2009) 065]

9

Measurements of muons from heavy-flavour hadron decays in Pb-Pb collisions

Pb-Pb collisions, $\sqrt{s_{\rm NN}} = 2.76 \text{ TeV}$

- Nuclear modification factor
- Azimuthal anisotropy

 $K_{\Delta\Delta}$ VS p_{T}

ALI-DER-36791

 R_{AA} of of heavy-flavour decay muons is independent of p_{T} within the measured p_{T} range

- Stronger suppression in central than in peripheral collisions, reaching a factor of about 3-4 in the 10% most central collisions \rightarrow results from final-state effects induced by the hot and dense nuclear medium (cold nuclear matter effects are small at high- p_{T})
- R_{AA} of heavy-flavour decay muons at forward rapidity (2.5<y<4) is compatible with that of heavyflavour decay electrons at mid-rapidity (|y| < 0.6)

- The suppression of heavy-flavour decay muons in the high p_{T} range at forward rapidity exhibits a increase with increasing centrality
- Consistent centrality dependence observed at mid-rapidity with muons measured in the ATLAS collaboration

[ATLAS-CONF-2012-050] 11

 V_2 VS p_T

$v_2 = \langle \cos 2(\varphi - \Psi_{\rm RP}) \rangle$

- Simultaneous R_{AA} and v_2 measurements starts to provide constraints to energy-loss models
- Similar picture for D mesons and electrons observed at mid-rapidity [PRL 111 (2013) 102301; arXiv:1509.06888]

[MC@ sHQ+EPOS, Coll + Rad (LPM): PRC89 (2014) 014905; BAMPS PLB 717 (2012) 430; TAMU elastic: arXiv: 1401.3817]

Summary of heavy-flavour hadron decay muons from Run 1

pp collisions:

- Reference system, test for pQCD at LHC energies
- Insights into production mechanisms at parton level

p-Pb collisions:

- Control experiment for Pb-Pb collisions
- Investigate cold nuclear matter effects within small & large Bjorken-x ranges
 - \checkmark cold nuclear matter effects are small (at least at high- $p_{\rm T}$)

Pb-Pb collisions:

- Strong interaction of heavy quarks with the medium
 - \checkmark suppression of heavy-flavour hadron decay muon yields at high p_{T} in central collisions: medium effect related to in-medium parton energy loss
 - \checkmark participation of heavy quarks (charm, mainly) in the collective expansion of the system
- Simultaneous description of different observables (R_{AA} , v_2) provides constraints on models including energy loss

Outlook: towards Run 2 and Run 3

Run 2: 2015-2018

- pp collisions at $\sqrt{s} = 5.02$ and 13 TeV, Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, as well as p-Pb collisions
- Significant increase of statistics
 - (L~1 nb⁻¹ for Pb-Pb collisions)

Run 3: 2020-2023

- ~10 times more statistics w.r.t. Run 2 (L > 10 nb⁻¹)
- New MFT (Muon Forward Tracker)
 - \checkmark separate $\mu \leftarrow$ c and $\mu \leftarrow$ b components at forward rapidity

Outlook: towards Run 2 and Run 3

Run 2: 2015-2018

- pp collisions at $\sqrt{s} = 5.02$ and 13 TeV, Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, as well as p-Pb collisions
- Significant increase of statistics
 - (L~1 nb⁻¹ for Pb-Pb collisions)

Run 3: 2020-2023

- ~10 times more statistics w.r.t. Run 2 (L > 10 nb⁻¹)
- New MFT (Muon Forward Tracker)
 - ✓ separate μ ← c and μ ← b components at forward rapidity

Thank you for the attention!

Backup

Test for pQCD and reference for p-A and A-A collisions (1/2)

Within uncertainties, pQCD calculations in reasonable agreement with data at $\sqrt{s} = 2.76 \, \text{TeV}$

ALICE

Data: PRL 109 (2012) 112

FONLL: JHEP 1210 (2012) 137

Within uncertainties, similar results in sub-rapidity bins for R_{pA} at both forward and backward rapidity

 $3.02 < y_{\rm CMS} < 3.54$

 $-4.00 < y_{\rm CMS} < -3.48$ $-3.48 < y_{\rm CMS} < -2.96$

Centrality dependence

PRL 109 (2012) 112

ATLAS-CONF-2012-050

 v_2 vs p_T

ALI-PREL-77612

- Heavy-flavour decay e^{\pm} , v_2 {EP, $|\Delta \eta| > 0.9$ }, |y| < 0.7ALICE Preliminary - Heavy-flavour decay μ^{\pm} , ν_2 {2, $|\Delta \eta| > 1.7$ }, 2.5 < y < 4 arXiv:1507.03134 Pb-Pb, $\sqrt{s_{NN}}$ = 2.76 TeV 10-20% Centrality Class 10-20% -0.1<u>---</u>0 10 12 2 6 8 4 $p_{_{\rm T}}$ (GeV/c)

ALI-PREL-77620

 \mathbf{V}_2

muons: 1507.03134

I-PREL-77628

Centrality dependence

- Results from QC4 are systematically lower than those from SP and QC2 \rightarrow due to different contributions of non-flow correlations and flow fluctuations
- 4-particle Q-cumulants give same v_2 as Lee-Yang zeroes within uncertainties \rightarrow indication that non-flow effects are suppressed with 4-particle Q-cumulants
- Smaller v_2 values with multi-particle flow methods than with two-particle methods \rightarrow an indication of flow fluctuation effects