

用于CEPC内层顶点探测器的高计数率CMOS像素探测器 芯片研制

Ying Zhang (IHEP)

On behalf of the CEPC MOST2 Vertex detector design team

第三届半导体辐射探测器研讨会 5月11-14日,2023

■ 项目背景

- TaichuPix 芯片概述
- TaichuPix 芯片设计与测试
- 总结与展望

CEPC 顶点探测器需求

CEP

Circular Electron Positron Collider (CEPC) proposed as a Higgs factory.

Efficient tagging of heavy quarks (b/c) and τ leptons

→ Impact parameter resolution,

$$\sigma_{r\emptyset} = 5 \oplus \frac{10}{(p \cdot \sin^{3/2}\theta)} \ (\mu m)$$

Baseline design parameters for CEPC vertex detector

	$R (\mathrm{mm})$	z (mm)	$ \cos \theta $	$\sigma(\mu{\rm m})$
Layer 1	16	62.5	0.97	2.8
Layer 2	18	62.5	0.96	6
Layer 3	37	125.0	0.96	4
Layer 4	39	125.0	0.95	4
Layer 5	58	125.0	0.91	4
Layer 6	60	125.0	0.90	4

Ref: CEPC Conceptual Design Report, Volume II - Physics & Detector, http://cepc.ihep.ac.cn/

2023/5/12, 第三届半导体辐射探测器研讨会

 $\leq 6.2 \times 10^{12} n_{ed} / (cm^2 year)$

TaichuPix 芯片研发背景

Motivation for TaichuPix chip design

- Large-scale & full functionality pixel chip
- Fit to be assembled on ladders with backend Elec. & DAQ

CMOS pixel sensor

2023/5/12, 第三届半导体辐射探测器研讨会

TaichuPix 芯片设计指标

Bunch spacing

- Higgs: 680 ns; W: 210 ns; Z: 25 ns
- > Max. bunch rate: 40 M/s

Hit density

 2.5 hits/bunch/cm² for Higgs/W; 0.2 hits/bunch/cm² for Z

Cluster size: ~3 pixels/hit

- > Epi-layer thickness: ~18 µm
- Pixel size: 25 µm × 25 µm

Ref: CEPC Conceptual Design Report, Volume II

For Vertex	Specs	For High rate Vertex	Specs.	For Ladder Prototype	Specs.
Pixel pitch	≤ 25 µm	Hit rate	120 MHz/chip	Pixel array	512 row × 1024 col
TID	>1 Mrad	Date rate	3.84 Gbps triggerless ~110 Mbps trigger	Power Density	< 200 mW/cm ² (air cooling)
		Dead time	< 500 ns (for 98% efficiency)	Chip size	~1.4 cm × 2.56 cm

TaichuPix 芯片结构

Motivation: a large-scale & full functionality pixel sensor for the first 6layer vertex detector prototype

CEP

Pixel 25 μm × 25 μm

- Continuously active front-end, in-pixel discrimination
- Fast-readout digital, with masking & testing config. logic

Column-drain readout for pixel matrix

- Priority based data-driven readout
- > Time stamp added at EOC
- > Readout time: 50 ns for each pixel

2-level FIFO architecture

- > L1 FIFO: de-randomize the injecting charge
- L2 FIFO: match the in/out data rate between core and interface

Trigger-less & Trigger mode compatible

- > Trigger-less: 3.84 Gbps data interface
- Trigger: data coincidence by time stamp, only matched event will be readout

Features standalone operation

On-chip bias generation, LDO, slow control, etc.

TaichuPix 原型芯片概述

Major challenges for the CMOS sensor

- > Small pixel size \rightarrow high resolution (3-5 µm)
- > High readout speed (dead time < 500 ns @ 40 MHz) → for CEPC Z pole
- Radiation tolerance (per year): 1 Mrad TID

Completed 3 round of sensor prototyping in 180 nm CMOS process

- > Two MPW chips (5 mm \times 5 mm)
 - TaichuPix-1: 2019.06 2019.11
 - TaichuPix-2: 2020.02 2020.06
- 1st engineering run
 - Full-scale chip: TaichuPix-3, received in July 2022

Electrical test

 Electrical performance verified by injecting external voltage pulses into pixel front-end

Functionality of complete signal chain of TaichuPix2

Functionality of the complete signal chain (including sensor, analog front-end, in-pixel logic readout, matrix periphery readout and data transmission unit) was firstly proved with an X-ray source and a laser source.

TaichuPix2 response to X-ray tube (cutting energy @ 6keV) Simulated analog output with different input signal

Letter imaging obtained with a 1064 nm laser spot scanning on the TaichuPix-2

TaichuPix2 test with ⁹⁰Sr

- Shape and amplitude of analog signal as expected, but peaking time and pulse length larger than simulation.
- Average cluster size decreases with threshold as expected
- Average cluster size for S1-S4 less than 3 as expected
 - Indicates the estimated maximum hit rate (36 MHz/cm²) reasonable
 - Cluster size >1, benefits the spatial resolution (better than $pitch/\sqrt{12}$ = 7.2 µm)

Large-scale sensor TaichuPix-3

- 6 TaichuPix-3 wafers arrived at IHEP in July
 - One wafer thinned down to 150 µm and diced

8-inch wafer

Wafer after thinning and dicing

Thickness after thinning

> Complete wafer testing on probe-station \rightarrow chip selecting & yield evaluation

Probe card for wafer test

An example of wafer test result

5 wafers tested

- 2 wafer based on standard process
 - Reasonable yield achieved
- > 3 wafer based on modified process
 - Preliminary result indicates
 lower yield than the std. process

TaichuPix-3芯片像素阈值和噪声

- CEP
- Pixel threshold and noise were measured with selected pixels
 - Average threshold ~215 e⁻, threshold dispersion ~43 e⁻, temporal noise ~12 e⁻ @ nominal bias setting

TaichuPix-3 telescope

- The 6-layer of TaichuPix-3 telescope built
 - Each layer consists of a TaichuPix-3 bonding board and a FPGA readout board

6-layer TaichuPix-3 telescope

- TaichuPix-3 telescope achieved the expected goal in the DESY testbeam
 - > Basically works well during the beam test time
 - The preliminary offline results indicate the best spatial resolution could be < 5 µm

Spatial resolution vs. pixel threshold

Ladder readout

Completed detector module (ladder) design

- > Detector module (ladder) = 10 sensors + readout board + support structure + control board
- > Sensors will be glued and wire bonded to the flexible PCB
- > Flexible PCB will be supported by carbon fiber support structure
- > Signal, clock, control, power, ground will be handled by control board through flexible PCB

3D module of the ladder

Schematic of ladder readout

Detector prototype

- 6 double-sided layers assembled on the detector prototype
 - > 12 flex boards with two TaichuPix-3 chips bonded on each flex
 - > Readout boards on one side of the detector

总结与展望

- 面向CEPC顶点探测器需求,基于MOST2项目支持,开展TaichuPix芯片研发
 - > 采用单片式 CMOS像素探测器技术
 - ▶ 像素尺寸 25 µm × 25 µm, 读出时间 50 ns/pixel
 - ▶ 经过三次流片实现了全功能全尺寸(25.7 mm × 15.9 mm)芯片,满足设计指标

■ 基于全尺寸太初芯片初步研制了束流望远镜和探测器原型样机

- > 2022年12月对束流望远镜进行了电子束流测试
- > 2023年4月对探测器原型样机进行了电子束流测试

详细内容→5月13日下午吴天涯报告

展望

- > 进一步完成完整版探测器模块的研制和原型样机安装
- ▶ 优化Ladder读出
- > 提高探测器系统稳定性