Higher charmonium states

Ce Meng Peking University

in collaboration with: KuangTa Chao, BaiQing li, YingJia Gao, Hao Han HIEPA 2015 14-16 Jan., USTC, HeFei

Charmonium & Higher Charmonium

- Many Higher charmonium states have been discovered since 2003:
- $X(3872), \chi'_{c0}(3915), \chi'_{c2}(3930), X(4260), \dots$ **PDG'14** \blacktriangleright Coventional charmonium = $c\bar{c}$ bound state Higher charmonium or *CQ* **Diquark** onium Molecule ۲ Hadro-charmonium Hybrid

Charmonium & Higher Charmonium

- How to incorporate the QCD dynamics into the constituent quark/gloun model pictures?
- Lattice QCD will play a major role
- Phenomenological models: Molecule models, tetraquark models, hadron loop, EFT.....
- Conventional charmonium potential model + mixing effects ...
 - Charmonium potential model is successful in description of the properties of lower charmonium states
 - Most of XYZ states have similar quantum numbers to usual charmonia

see Chen, Ying's talk

Charmonium & Higher Charmonium

charmonium & Higher Charmonium

- Unquenched effects
- Quark-level picture

String breaking at scale $\mu \sim 100 \text{ MeV} (\mu^{-1} \sim 2 \text{ fm})$

⇒ Screened potential model (SPM) [Chao & Ding & Qin'92]

Hadron-level picture

Coupled-Channel model (CCM) \Rightarrow mixing between $\psi_0(c\bar{c})$ and $D\bar{D}$

Have been considered even in the Cornell model [E. Eichten et al'78].

SPM v.s. CCM

- Screened potential model (SPM)
 - Simple parameterization: α_c , λ , μ
 - Can hardly incorporate the threshold dynamics
- Coupled-channel model (CCM)
 - Including the dynamics of open-charm threshold
 - Pollutions from multi-channels:

The mass, width, WFs of D meson

Are these two models consistent with each other?

Especially, the compression of the spectrum of higher charmonium comparing with that in the quenched PM

SPM v.s. CCM

Li & Meng & Chao, PRD_80_014012 (2009)

 $M_{phy} < 4$ GeV: only $D \& D^*$ are relevant dynamically

SPM v.s. CCM

Li & Meng & Chao, PRD_80_014012 (2009)

- > SPM \approx CCM in the global features.
- CCM is more adapt in descriping the open-charmed threshold effects. (Especially for the 2P states)

CCM: 2P charmonium states

Li & Meng & Chao, PRD_80_014012 (2009)

The relative importance of the S-wave coupling

	DD	DD *	D * D *
χ'_{c0}	3/4		1/4
χ'_{c1}		1	
χ'_{c2}			1
		/	$BC, \vec{p} H_{OPC} $

$$M - M_0 + \Pi(M) = 0 \qquad \Pi = \sum_{BC} \int d^3p \, \frac{||^{D(C)p}|^{HQPC}|^{\phi(0)}|}{E_{BC}(\vec{p}) - M - i\epsilon}$$

$$\underbrace{\psi_0}_{\Pi(M)} \underbrace{\psi_0}_{\psi_0} |\langle BC, \vec{p} | H_{QPC} | \psi_0 \rangle|^2 \sim \Gamma_{\psi}^{BC} \sim E^{(2L+1)/2}$$

S-wave cusp: L = 0 $E = M - M_B - M_C \Rightarrow 0$ $\Pi(E) = const + \sqrt{E} + \cdots, \ \Pi'(E) \sim 1/\sqrt{E} \stackrel{E \to 0}{\Longrightarrow} \infty$

С

CCM: χ'_{c1}

Li & Meng & Chao, PRD 80 014012 (2009)

Solving the Breit-Wigner mass:

 $M - M_0 = -\text{Re}\Pi(M)$ $\text{Re}\Pi'(E) \sim 1/\sqrt{E}$

The S-wave cusp "attracts" physical mass $M_{\chi'_{c1}}$ to the threshold

$$\checkmark M_{\chi'_{c1}} \approx m_D + m_{D^*}:$$

$$\delta M \sim 15 \text{ MeV}$$

$$\Leftrightarrow \delta \text{Re}\Pi \sim 70 \text{ MeV}$$

$$\Leftrightarrow \delta M_0 \sim 85 \text{ MeV}$$

 $X(3872) = \chi'_{c1}?$

CCM: χ'_{CO}

Li & Meng & Chao, PRD_80_014012 (2009)

 $\succ M_{\chi'_{c0}} \approx 3915 \text{ MeV} \left(> M_{\chi'_{c1}}\right)$

•
$$\left| \Delta M_{\chi_{c0}'} \right| \ll \left| \Delta M_{\chi_{c1}'} \right|$$

Far away from threshold of $D\overline{D}$ (3735 MeV) or $D^*\overline{D}^*$ (4010) $\succ \Gamma(\chi'_{c0} \to D\overline{D}) < 5 \text{ MeV}$ B.Q. Li, PHD Thesis, PKU'07 $|\langle D\overline{D} | H_{QPC} | \psi_0 \rangle|^2 (M) \approx 0 \text{ at } M = 3910 \text{ MeV}$

Due to the node structure of the 2P WF's

Consistent with the PDG assignment:

 $\chi'_{c0} = X(3915)$ PDG'14

CCM: χ'_{C2}

Li & Meng & Chao, PRD_80_014012 (2009)

- $\succ M_{\chi'_{c2}} \approx 3966 \, \mathrm{GeV}$
- Not very close to the threshold of $D^*\overline{D}^*$ (4010)

modest mass-shift $\left| \Delta M_{\chi_{c2}'} \right| < \left| \Delta M_{\chi_{c1}'} \right|$

✓ Tend to enlarge the splitting $M_{\chi'_{c2}} - M_{\chi'_{c1}}$

• Roughly consistent with the PDG assignment

$$\chi'_{c2} = X(3930)$$
 PDG'14

• No strong threshold-attraction: sensitive to the model details

Summary I

SPM and CCM are consistent with each other

• Unquenched effects result in the screened spectrum and/or the mixing of charmonium with $D\overline{D}$

Threshold effects are important for understanding 2P states

- $\chi'_{c0} = X(3915)$
- $\chi'_{c2} = X(3930)$

$$\checkmark \quad M_{\chi_{c1}'} \approx m_D + m_{D^*} = 3872 \text{ MeV}$$

 $|X(3872)\rangle = \alpha |\chi_{c1}'\rangle + \beta |DD^*\rangle$

X(3872): χ'_{c1} - $D^0\overline{D}^{*0}$ mixing model

Meng, Gao and Chao, PRD_87_074035 (2013) [hep-ph/0506222]

- > X(3872) is a mixing state of χ'_{c1} and $D^0 \overline{D}^{*0} / \overline{D}^0 D^{*0}$
- Both the two components are substantial, and they may play different roles in the dynamics of X(3872).
- 1. The χ'_{c1} component is dominant in the short distance processes: the B- and hadro- production and the quark annihilation decays (into LHs, $\psi^{(\prime)}\gamma$)
- 2. The $D^0 \overline{D}^{*0}$ component is mainly in charge of the hadronic decays of X(3872) into $DD\pi/DD\gamma$ as well as $J/\psi\rho$ and $J/\psi\omega$.
- 3. The long distance coupled-channel effects between the two components could renormalize the short distance dynamics by a product factor $Z_{c\bar{c}}$, the equivalent probability of χ'_{c1} in X(3872).

X(3872) as a mixing state : Decay pattern

- $\succ \chi'_{c1}$ induced decay modes
 - Radiative decay modes $E_{\gamma}^{3}(\psi')/E_{\gamma}^{3}(J/\psi) \approx 0.02$

	Barnes & Godfry'04	Barnes et al'05	Li & Chao'09
$\Gamma_{\psi\gamma}/{ m keV}$	11	59	45
$\Gamma_{\psi'\gamma}/{ m keV}$	64	88	60
$\Gamma_{\psi'\gamma}/\Gamma_{\psi\gamma}$	5.8	1.5	1.3

 $\chi'_{c1} \rightarrow \gamma \psi' \text{ node-allowed}; \chi'_{c1} \rightarrow \gamma J/\psi \text{ node-surppressed}$ \checkmark Consistent with data

 $\Gamma_{\psi'\gamma}/\Gamma_{\psi\gamma}$: 3.4 ± 1.1 (BaBar'09) & 2.5 ± 1.7 (LHCb'14)

• Light hadron decay mode

 $\Gamma(\chi_{c1}' \to LHs) \sim \Gamma(\chi_{c1} \to LHs) \sim 0.6 \; {\rm MeV}$

X(3872) as a mixing state : Decay pattern

- > DD^* induced decay modes Meng & Chao, PRD'07 $\Gamma(D^0\overline{D}{}^0\pi) \sim 0.5-1 \text{ MeV}$
 - $\Gamma(J/\psi\rho) \approx \Gamma(J/\psi\omega) \sim 50\text{-}100 \ \text{keV}$

Isospin violation

✓ The difference between $D^0 \overline{D}^{*0}$ and $D^{\pm} \overline{D}^{*\mp}$ can be "seen"

✓ Suppression of the PS of $J/\psi\omega$

> Totally,

$$\operatorname{Br}_0 \equiv \operatorname{Br}(X \to J/\psi \pi^+ \pi^-) \sim 0.05$$

Consistent with the experimental decay pattern PDG'14

X(3872) as a mixing state : Production ➤ General factorization formula:

$$d\sigma(X(J/\psi\pi^{+}\pi^{-})) = \sum_{n} d\hat{\sigma}((c\bar{c})_{n}) \cdot \langle O_{n}^{\chi'_{c1}} \rangle \cdot k, \qquad k = Z_{c\bar{c}} Br_{0}$$

$$p_{T}, m_{b}, m_{c} \gg m_{c} v, m_{c} v^{2}, \Lambda_{QCD} \gg \epsilon, \Gamma_{X} \sim 1 \text{ MeV}$$

$$c\bar{c} \text{ production } \chi'_{c1} \text{ production } Binding \& \text{ Decay(LD)}$$

$$Br_{0} = Br(X \rightarrow J/\psi\pi^{+}\pi^{-})$$

✓ Hard production of χ'_{c1} is very similar to that of $\chi_{c1}(1P)$

- $\sigma(\chi'_{c1}) \sim R'_{2P}(0)$ $R'_{2P}(0) \approx R'_{1P}(0)$ Eichten & Quigg'95
- For the $b\overline{b}$ sector: $pp \rightarrow \chi_b$ @ LHC

$$\sigma_{\chi_b}(1P) \sim \sigma_{\chi_b}(2P) \sim \sigma_{\chi_b}(3P)$$

LHCb'14 v.s. Han & Ma & Meng & Shao & Zhang & Chao'14

X(3872) as a mixing state : B-Production

Factorization assumption: [Meng, Gao and Chao, PRD_87_074035 (2013) [hep-ph/0506222]]

$$Br(B \rightarrow \chi'_{c1}K)/Br(B \rightarrow \chi_{c1}K) = 0.75 \sim 1$$
$$Br_{PDG}(B \rightarrow \chi_{c1}K) = (4-5) \times 10^{-4}$$

• Consistent with the fitting result: [Kalashnikova & Nefediev PRD'09] $Br^{fit}(B \rightarrow \chi'_{c1}K) = (3.7-5.7) \times 10^{-4}$ $Br(B \rightarrow X(J/\psi\pi^{+}\pi^{-})K) = (8.6 \pm 0.8) \times 10^{-6}$ PDG'14 $\therefore k = Z_{c\bar{c}}Br_{0} = 0.018 \pm 0.004$ $(Z_{c\bar{c}} = 28\% - 44\% \text{ for } Br_{0} = 5\%)$

X(3872) as a mixing state : B-Production

➢ B-production rates in J/ψπ⁺π[−] mode:
Inputs: Br(B → χ'_{c1}...) = Br_{PDG}(B → χ_{c1}...), k = 0.018

$Br_{i} \cdot Br_{0} \cdot 10^{6}$ $i =$	Predictions	data		
$B^+ \to XK^+$	8.6 ± 0.4	8.6 ± 0.8	PDG'14	
$B^0 \to X K^0$	7.1 ± 0.5	4.3 ± 1.3		
$B^+ \to XK^{*+}$	5.4 ± 1.0			
$B^0 \rightarrow X K^+ \pi^-$	6.8 ± 0.7	8.5 <u>+</u> 1.5	Belle's	
$B^0 \to XK^{*0}$	4.0 ± 0.7	3.7 <u>+</u> 1.2	Preliminary [1]	

[1] Shen, Chengping's talk given in the 2nd workshop on XYZ particles, 20-21 Nov, 2013, Huangshan, China

X(3872) as a mixing state : Production at $pp(p\bar{p})$ collider

Meng & Han & Chao, arXiv:1304.6710

- Hadro-procution:
- Similar to that of $\chi_{c1}(1P)$ $d\sigma(\chi'_{c1}) \approx d\sigma(\chi_{c1})$ [MWC'11]
- Consistent with B-production $k = 0.014 \pm 0.007$ $(0.018 \pm 0.004)_{B-pro}$
- Consistent with the P_T spectrum
 [CMS'13]

$$\chi^2/3 = 0.17$$

 $e^+e^- \rightarrow \psi^n \rightarrow \gamma \chi'_{cJ}$

 $e^+e^- \rightarrow \psi^n \rightarrow \gamma \chi'_{cI}$

Li & Meng & Chao, arXiv: 1201.4155

- Three potential models are used and they are consistent with each other quite well. (see below for results of SPM)
- Relativistic corrections are included in the wave functions

Γ(keV)	$\psi_{3S}(4040)$	$\psi_{2D}(4160)$	$\psi_{4S}(4260)$
$\chi_{c2}'(3930)$	56	9.2	15
$\chi_{c1}'(3872)$	88	189	88
$\chi_{c0}'(3915)$	7.9	89	59

 $e^+e^- \rightarrow \psi^n \rightarrow \gamma X(3872)$

Meng & Li & Chao, in preparation

m_i /MeV	Γ_{tot}^i /MeV	Γ^i_{ee} /keV
4260 [1]	100	0.5
4160	100	0.83
4040	80	0.86

[1] $Y(4260) = \psi(4S)$ Li & Chao'09

Molecule models: $DD_1(4260) \rightarrow \gamma [DD^*(3872)]$. Guo et al, PLB'13 $Br(Y \rightarrow \gamma X [J/\psi \pi \pi]) \sim \frac{50 \text{ keV}}{100 \text{ MeV}} Br_0 \sim 2.5 \times 10^{-5}$ $\frac{Br(Y \rightarrow \gamma X [J/\psi \pi \pi])}{Br(Y \rightarrow I/\psi \pi \pi)} \sim 5 \times 10^{-3}$ BES'13

 $\Gamma_{\rm ee} \cdot {\rm Br}(Y \to J/\psi \pi \pi) \sim 6 \ {\rm eV} \ \Rightarrow \ {\rm Need} \ \Gamma_{\rm ee} \sim 1 \ {\rm keV!}$

 $e^+e^- \rightarrow \psi^n \rightarrow \gamma \chi_{cI}(2P)$

Meng & Li & Chao, in preparation

•
$$\sigma(e^+e^- \rightarrow \gamma \chi_{c2}'(3930)) \sim \mathcal{O}(10) \text{ pb}$$

 ${\rm Br}(\chi_{c2}'\to D\overline{D})\sim 70\%$

•
$$\sigma(e^+e^- \rightarrow \gamma \chi_{c0}'(3915)) \sim \mathcal{O}(10) \text{ pb}$$

Assuming
$$\Gamma_{tot}(\chi'_{c0}) = 10 \text{ MeV}$$

Br $(\chi'_{c2} \rightarrow \gamma \psi') \sim 1\%$

• Hopeful to be studied at BEPC II/Super τ -c/Super-B

Summary & Perspectives

SPM and CCM are confirmed and supplied by each other

- The $q\bar{q}$ creation in flux tube induces screened spectrum and/or the mixing between charmonium and $D\bar{D}$
- The threshold effects are important for 2P states: $\chi'_{c2}(3930), \chi'_{c1}(3872), \chi'_{c0}(3915)$
- The transition $e^+e^- \rightarrow \psi^n \rightarrow \gamma \chi_{cJ}(2P)$ processes are apt to study both 2P and higher vector charmonium states.
- > Have all unquenched effects been incorporated in the simple picture of the mixing of $c\overline{c}$ with $D\overline{D}$?

Generally not!

Especially when going to higher mass

Summary & Perspectives

Diquark onium

Hadro-charmonium

Esposito et al'14, Brodsky & Hwang & Lebed'14

- ✓ Suppression of hadronization rate
- $\Rightarrow D(\overline{D}) \qquad \checkmark \text{ Suppression of } D\overline{D} \text{ rate}$
 - ✓ Suppression of $\psi(1S)/\psi(2S)$

Voloshin'08

- ✓ Specific final states
- $\Rightarrow \psi/\psi'/\chi_c/h_c \dots$ Di-excitation is suppressed $\Rightarrow \pi/\pi\pi/\rho/f_0 \dots \checkmark \text{Suppression of } D\overline{D} \text{ rate}$

Summary & Perspectives

- All the above configurations could be mixed together in the same state:
 - Is this similar to the case where the SPM can roughly describe the effects caused by the mixing of $c\bar{c}$ and $D\bar{D}$?
 - Can the mixing be described by effective potential which may have different faces at different separation r's of $c\bar{c}$?
 - Lattice QCD
 - Born-Oppenheimer potentials Braaten et al'14

High Intensity Collider @ 2-7GeV is sincerely welcome!

Thank you for your patience!

Back Ups

X(3872): experimental information 1st observed by Belle Collaboration in $B \rightarrow I/\psi \pi^+ \pi^- K \qquad \pi^+ \pi^- \approx \rho$ Belle'03 Mass, width and quantum numbers: • $m_X = 3871.68 \pm 0.17$ MeV **PDG'14** $m_X - m_{D^0 D^{*0}} = -0.142 \pm 0.220 \text{ MeV}$ Tomaradze *et al.*'12 • $\Gamma < 1.2 \text{ MeV}$ CL = 90%PDG'14 • $I^{PC} = 1^{++}$ LHCb'13 Decay pattern: $I/\psi\rho, I/\psi\omega, D^0\overline{D}^{*0}/\overline{D}^0D^{*0}/D\overline{D}\pi, I/\psi\gamma, \psi'\gamma$ Relative ratios of these 5 modes: 1:1:10:0.3:1 **PDG'14** $Br_0 \equiv Br(X \rightarrow I/\psi \pi^+ \pi^-) < 8\%$

X(3872): experimental information

B-production:

 $1 \times 10^{-4} < Br(B \to X(3872)K) < 3.2 \times 10^{-4} BaBar'05$ Br(B \to X(3872)K)Br₀ = (8.6 \pm 0.8) \times 10^{-6} PDG'14 2.6% < Br₀ \equiv Br(X \to J/\psi\mathcal{m}^+\pi^-) < 8%

- Hadro-production
- Large production rate:

 $\frac{\sigma(p\bar{p}\to X)\mathrm{Br}_{0}}{\sigma(p\bar{p}\to\psi')}\frac{\epsilon_{\psi'}}{\epsilon_{X}} = (4.8 \pm 0.8)\% \text{ CDF'04}$

• Similar behaviors to ψ' production

 $R = d\sigma(\psi')/d\sigma(X) \sim P_T$

$X(3872): D^0\overline{D}^{*0}/\overline{D}^0D^{*0}$ Molecule models

[Tornqvist'04, Voloshin'04, Swanson'04, Braaten'04, ...]

> The mass, J^{PC} and $R_{\rho/\omega}$ can be understood naturally.

The large production rate seems to be questionable

- Naively, $\sigma(X) \sim R(0) \sim k_0^3$, $k_0 = \sqrt{2\mu_{DD^*}|E_b|} < 40 \text{ MeV}$
- Explicit calculations [Bignamini *et al*, PRL'09]: $\sigma_{CDF}^{th}(X) < 0.085 \text{ nb}$ *v.s.* $\sigma_{CDF}^{ex}(X)Br_0 = 3.1 \pm 0.7 \text{ nb}$
- ✓ Artoisenet and Braaten [PRD'10] proposed that the rescattering effects of $D^0 \overline{D}^{*0}$ may enhance the rate to values consistent with the CDF data if the upper bound of the relative momentum of $D^0 \overline{D}^{*0}$ in the rescattering is as large as $3m_{\pi} \approx 400$ MeV
- Similarly, small B-production rate [Braaten, Lu, Kusunoki'05-06] Br $(B^+ \rightarrow K^+X(3872)) = (0.07 - 1) \times 10^{-4}$ for $k_0 \sim 40$ MeV

Molecule models

- Decay pattern
- $DD\pi$ decay mode [Swanson; Voloshin; Fleming, mehen,] $\Gamma(X \to D^0 \overline{D}{}^0 \pi) \sim 2\Gamma(D^{*0} \to D^0 \pi) \sim 100 \text{ keV}$
- Radiative decays: [Swanson'04]

• $J/\psi\rho(\omega)$ decay mode [Swanson'04] $\Gamma(X \rightarrow J/\psi\rho(\omega)) \sim 1-2 \text{ MeV}$

Specrum: Screened potential model

B.Q. Li & K.T. Chao, PRD_79_094004 (2009)

20	State	Expt.	Theor.	of ours	Theor. c	of $\operatorname{Ref}[5]$
			Mass	$\langle r^2 angle^{rac{1}{2}}$	NR	GI
1S	$J/\psi(1^3{ m S}_1)$	3096.916 ± 0.011	3097	0.41	3090	3098
	$\eta_{ m c}(1^1{ m S}_0)$	2980.3 ± 1.2	2979		2982	2975
2S	$\psi'(2^3\mathrm{S}_1)$	3686.093 ± 0.034	3673	0.91	3672	3676
	$\eta_c^\prime(2^1{ m S}_0)$	3637 ± 4	3623		3630	3623
3S	$\psi(3^3{ m S}_1)$	4039 ± 1	4022	1.38	4072	4100
	$\eta_{ m c}(3^1{ m S}_0)$		3991		4043	4064
4S	$\psi(4^3\mathrm{S}_1)$	4263^{+8}_{-9}	4273	> 1.87	4406	4450
	$\eta_{ m c}(4^1{ m S}_0)$		4250		4384	4425
5S	$\psi(5^3\mathrm{S}_1)$	$\checkmark 4421 \pm 4$	4463	> 2.39		
	$\eta_c(5^1{ m S}_0)$		4446			
6S	$\psi(6^3S_1)$		4608	2.98		
	$\eta_c(6^1{ m S}_0)$		4595			
1P	$\chi_2(1^3\mathrm{P}_2)$	3556.20 ± 0.09	3554	0.71	3556	3550
	$\chi_1(1^3\mathrm{P}_1)$	3510.66 ± 0.07	3510		3505	3510
	$\chi_0(1^3\mathrm{P}_0)$	3414.75 ± 0.31	3433		3424	3445
	$h_c(1^1\mathrm{P}_1)$	3525.93 ± 0.27	3519		3516	3517
$2\mathbf{P}$	$\chi_2(2^3\mathrm{P}_2)$ ($3929 \pm 5 \pm 2$	3937	1.19 <	3972	3979
	$\chi_1(2^3\mathrm{P}_1)$		3901		3925	3953
	$\chi_0(2^3\mathrm{P}_0)$		3842		3852	3916
	$h_c(2^1\mathrm{P}_1)$		3908		3934	3956

Specrum: SPM v.s. CCM

Li & Meng & Chao, PRD_80_014012 (2009)

	Our results					Results of Ref. [6]		
states	M_{que}	Mcou	M _{scr}	ΔM_{cou}	ΔM_{scr}	M_0'	M'_{cou}	$\Delta M'_{cou}$
$1^{1}S_{0}$	2980	2980	2980.0	0	0	2982	2982	0
$1^{3}S_{1}$	3112	3100	3105	-12	-7	3090	3090	0
$1^{1}P_{1}$	3583	3531	3539	-52	-44	3516	3514	-2
$1^{3}P_{0}$	3476	3441	3448	-35	-28	3424	3415	-9
$1^{3}P_{1}$	3568	3520	3526	-48	-42	3505	3489	-16
$1^{3}P_{2}$	3628	3565	3577	-63	-51	3556	3550	-6
$2^{1}S_{0}$	3697	3635	3626	-62	-71	3630	3620	-10
$2^{3}S_{1}$	3754	3674	3674	-80	-80	3672	3663	-9
$1^{1}D_{2}$	3895	3818	3805	-77	-90	3799		
$1^{3}D_{1}$	3878	3794	3790	-84	-88	3785	3745	-40
$1^{3}D_{2}$	3896	3818	3805	-78	-91	3800		
$1^{3}D_{3}$	3903	3823	3812	-80	-91	3806		
$2^{1}P_{1}$	4042	3961	3909	-81	-133	3934	3929	-5
$2^{3}P_{0}$	3948	3915	3839	> -33	-109	3852	3782	-70
$2^{3}P_{1}$	4030	3875	3900	-155	-130	3925	3859	-66
$2^{3}P_{2}$	4085	3966	3941	-119	-144	3972	3917	-55

Fixed Formula Two faces of χ'_{c0} : [X. Liu et al, PRL'10, EPJC'12; F.K. Guo et al, PRD'12]

- Narrow peak ($\Gamma < 10$ MeV) at 3915 MeV
- Broad structure ($\Gamma > 100$ MeV) around 3850 MeV

X(4260) v.s. $\psi(4S)$

 $\succ X(4260)$ was first observed in $e^+e^- \rightarrow J/\psi \pi^+\pi^-$ BaBar'05 $\Gamma_{tot} \sim 100 \text{ MeV}$ **PDG'14** $\Gamma_{\rho\rho} \operatorname{Br}(X \to J/\psi \pi^+ \pi^-) \sim 10 \text{ eV}$ Belle'07 • ψ_{4S} : $\Gamma_{ee} = 970 \text{ eV}$ [Li & Chao, PRD'09] Fitting *R*-value: Mo et al'06 • $\Gamma_{ee} < 580 \text{ eV}$ 4.5 Ignoring the dip structure R value 4.26 4.28 4.3 4.32 Relative phases between 3.5 different resonances are 3 important!

2.5

3.8

5

4.6

E_{c.m.} (GeV)

4.8