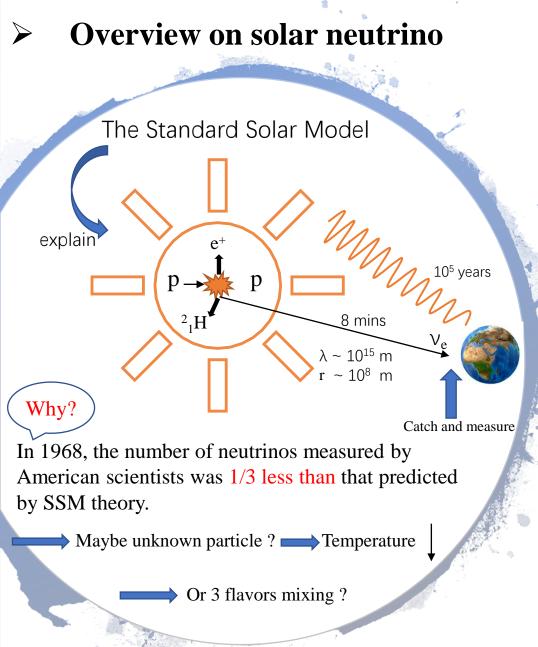

Final report

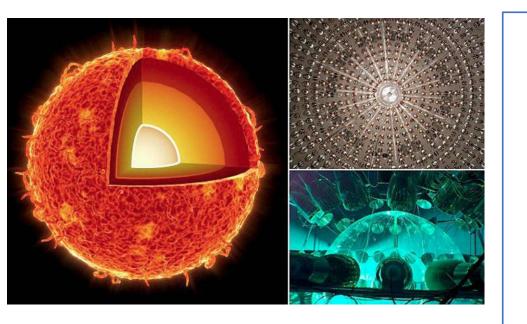

The Borexino experiment

Weimin Liu June 17, 2020

Slides outline

- > Overview on solar neutrino
- Introduction to Borexino experiment
- ➢ p-p chain analysis
- Result and discussion
- ➤ Summary

Solar neutrino


- The sun can be seen as an extremely successful prototype of a selfsustaining thermonuclear reactor.
- Nuclear fusion reactions produce the solar energy.
- These reactions produce electron neutrinos called solar neutrinos.

In 2002, SNO Collaboration confirmed that oscillation led to the loss of neutrinos.

Physics goals

So, how to describe the solar nuclear fusion? how much energy is generated directly from fusion? how much energy is generated by carbon catalytic reactions? The Sun high metallicity(HZ) or low metallicity(LZ)? To confirm the SSM

Overview on Borexino experiment

Borexino experiment

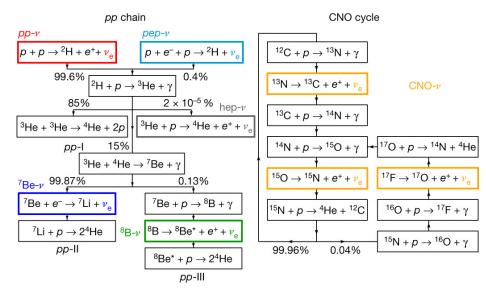
- Borexino experiment is a real-time detector to measure low energy solar neutrinos fluxes.
- Borexino detector contains 100 ton of liquid scintillator. (underground 1400 m)
- Neutrinos are detected by means of electron scattering which can proceed via the charged and neutral current processes.

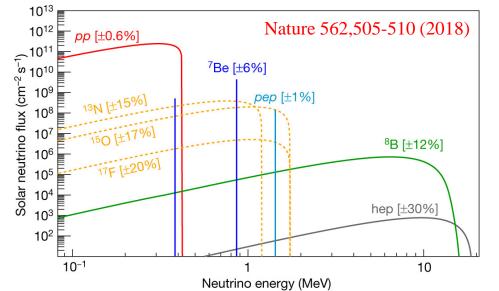
$$\nu_x + e^- \rightarrow \nu_x + e^-$$

1

Tips:

 v_e can interact via the charge and neutral current interactions.

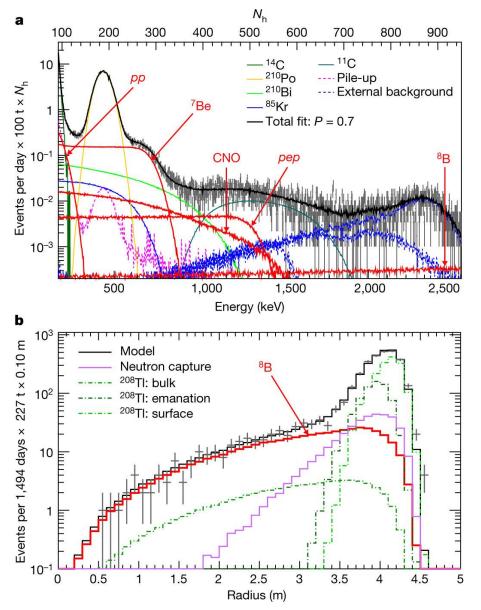

Other flavors neutrinos can only interact through neutral interactions.


Neutrino scattering cross section

$$\frac{d\sigma}{dE} = \sigma_{e} \left\{ g_{l}^{2} + g_{r}^{2} \left(1 - \frac{E}{E_{\nu}} \right) - g_{l} g_{r} \frac{m_{e} c^{2} E}{E_{\nu}^{2}} \right\}$$

$$\sigma = \frac{2G_F^2 m_e E_{max}}{\pi \hbar^4 c^2} \left\{ (g_l^2 + g_r^2) - \left(\frac{g_r^2}{E_\nu} + g_l g_r \frac{m_e c^2}{2E_\nu^2} \right) E_{max} + g_r^2 \frac{E_{max}^2}{3E_\nu^2} \right\}$$

p-p chain analysis



	Low-energy region(LER):	High-energy region(HER):		
Which neutrino signal	pp, ⁷ Be and pep	⁸ B		
Energy region	0.19-2.93 MeV	3.2-5.7 MeV HER-I	5.7-16 MeV HER-II	
bkg	gamma ray from ⁴⁰ K, ²¹⁴ Be and ²⁰⁸ Tl	gamma ray ²⁰⁸ Tl		
Actual selection	radius R $<$ 2.8 m, vertical -1.8 m $<$ z $<$ 2.2 m (total 71.3 t of scintillator)	vertical z < 2.5 m (total 227.8 t)	entire scintillator volume (total 266 t)	

event selection

- Use a different set of cuts in the three energy region to maximize the signal-to-background ratio.
- Reject cosmic muons surviving the mountain shield.
- Reduce the cosmogenic background.
- Select an optimal spatial region of the scintillator.

> p-p chain analysis

Nature 562,505-510 (2018)

LER fit:

the energy spectrum, the spatial and the pulse-shape estimator distributions

HER-I/II:

a fit of the radial distribution of events is performed to separate the ⁸B neutrino signal (uniformly distributed in the scintillator) from the external background.

Background LER	Rate (Bq per 100 t)		
¹⁴ C(0.156 MeV, β ⁻)	$[40.0 \pm 2.0]$		
Background LER	Rate (counts per day per 100 t)		
⁸⁵ Kr (0.687 MeV, β^-) (internal)	6.8 ± 1.8		
210 Bi (1.16 MeV, β^-) (internal)	17.5 ± 1.9		
^{11}C (1.02–1.98 MeV, β^+) (internal)	26.8 ± 0.2		
²¹⁰ Po (5.3 MeV, α) (internal)	260.0 ± 3.0		
⁴⁰ Κ (1.460 MeV, γ) (external)	1.0 ± 0.6		
²¹⁴ Bi (<1.764 MeV, γ) (external)	1.9 ± 0.3		
²⁰⁸ ΤΙ (2.614 MeV, γ) (external)	3.3 ± 0.1		
Background HER-I	Rate (counts per day per 227.8 t)		
μ , cosmogenics, 214 Bi (internal)	$[6.1^{+8.7}_{-3.1} imes 10^{-3}]$		
(α, n) (external)	0.224 ± 0.078		
²⁰⁸ TI(5.0 MeV, β^- , γ) (internal)	$[0.042 \pm 0.008]$		
²⁰⁸ TI(5.0 MeV, β^- , γ) (emanated)	0.469 ± 0.063		
²⁰⁸ TI(5.0 MeV, β^- , γ) (surface)	1.090 ± 0.046		
Background HER-II	Rate (counts per day per 266.0 t)		
μ , cosmogenics (internal)	$[3.8^{+14.6}_{-0.1} imes 10^{-3}]$		
(α, n) (external)	$\textbf{0.239} \pm \textbf{0.022}$		

the absence of the *pep* reaction in the Sun is rejected with $>5\sigma$ significance, enough to definitively claim discovery of solar *pep* neutrinos.

6

Result and discussion

Borexino translate these measurements into the corresponding solar-neutrino fluxes using the known electron and μ/τ neutrino cross-sections and the flavor composition calculated according to the MSW-LMA paradigm.

Solar neutrino	Rate (counts per day per 100 t)	Flux (cm ⁻² s ⁻¹)	Flux–SSM predictions (cm $^{-2}$ s $^{-1}$)		
рр	$134 \pm 10^{+6}_{-10}$	$(6.1\!\pm\!0.5^{+0.3}_{-0.5})\times10^{10}$		_	
⁷ Be	$48.3 \!\pm\! 1.1_{-0.7}^{+0.4}$	$(4.99\!\pm\!0.11\substack{+0.06\\-0.08})\times10^9$	$\begin{array}{rl} 4.93(1.0\pm0.06)\times10^9 & (\text{HZ}) \\ 4.50(1.0\pm0.06)\times10^9 & (\text{LZ}) \end{array}$	~8.20%	
pep (HZ)	$2.43 {\pm} 0.36 {}^{+0.15}_{-0.22}$	$(1.27{\pm}0.19{}^{+0.08}_{-0.12})\times10^8$	$\begin{array}{rl} 1.44(1.0\pm0.01)\times10^8 & (\text{HZ}) \\ 1.46(1.0\pm0.009)\times10^8 & (\text{LZ}) \end{array}$		Likelihood ratio test
pep (LZ)	$2.65 {\pm} 0.36 {}^{+0.15}_{-0.24}$	$(1.39\!\pm\!0.19^{+0.08}_{-0.13})\times10^8$	$\begin{array}{rl} 1.44(1.0\pm0.01)\times10^8 & (\text{HZ}) \\ 1.46(1.0\pm0.009)\times10^8 & (\text{LZ}) \end{array}$	_	Assume that HZ is true,
⁸ B _{HER-I}	$0.136\substack{+0.013+0.003\\-0.013-0.003}$	$(5.77^{+0.56+0.15}_{-0.56-0.15})\times10^6$	$\begin{array}{rl} 5.46(1.0\pm0.12)\times10^6 & (\text{HZ}) \\ 4.50(1.0\pm0.12)\times10^6 & (\text{LZ}) \end{array}$		Borexino data disfavor LZ at
⁸ B _{HER-II}	$0.087\substack{+0.080+0.005\\-0.010-0.005}$	$(5.56^{+0.52+0.33}_{-0.64-0.33})\times10^{6}$	$\begin{array}{lll} 5.46(1.0\pm0.12)\times10^6 & (\text{HZ}) \\ 4.50(1.0\pm0.12)\times10^6 & (\text{LZ}) \end{array}$	~17.58%	96.6%.
⁸ B _{HER}	$0.223\substack{+0.015+0.006\\-0.016-0.006}$	$(5.68^{+0.39+0.03}_{-0.41-0.03})\times10^{6}$	$\begin{array}{lll} 5.46(1.0\pm0.12)\times10^6 & (\text{HZ}) \\ 4.50(1.0\pm0.12)\times10^6 & (\text{LZ}) \end{array}$		
CNO	<8.1 (95% C.L.)	<7.9 × 10 ⁸ (95% C.L.)	$\begin{array}{rl} 4.88(1.0\pm0.11)\times10^8 & (\text{HZ}) \\ 3.51(1.0\pm0.10)\times10^8 & (\text{LZ}) \end{array}$	•	
hep	<0.002 (90% C.L.)	$<2.2 \times 10^{5}$ (90% C.L.)	$\begin{array}{ll} 7.98(1.0\pm0.30)\times10^3 & (\text{HZ}) \\ 8.25(1.0\pm0.12)\times10^3 & (\text{LZ}) \end{array}$		
	Calculate the power a	$P = (3.89^{+0.35}_{-0.42}) \times 10^{33} erg$	$\cdot s^{-1}$	irm the ene	erav origin
Wel	ll measured photon output	$P = (3.846 \pm 0.015) \times 10^3$			ngy ongin

What did Borexino do

- Measure the complete p-p chain.
- Discovery of solar *pep* neutrinos
- Confirmed the solar energy originated from nuclear fusion
- Borexino result is in favor of HZ-SSM prediction.

Outlook Borexino further plan

Catch CNO neutrinos to confirm that if the Sun is HZ or LZ

Thanks!