

Study of Λ semileptonic decay $\Lambda \rightarrow pe^- \overline{\nu}_e$

Shun Wang 2021.10.26

Double Tag

Event selection

Selection criteria

Good Charged Tracks

- \checkmark No vertex requirement is made due to existence of Λ
- $\checkmark |cos\theta| < 0.93$

 $\checkmark N_{good}^{Tracks} = 4$

 $\checkmark \sum_i^4 Q_i = 0$

> Particle Identification (only for electron)

Use Dedx, Tof1, Tof2 and EMC

✓ $\frac{\text{Prob}(e)}{\text{Prob}(e) + \text{Prob}(\pi) + \text{Prob}(k)} > 0.8$ ✓ Prob(e) > 0.001

The other track is assumed to be a proton.

Dominant background $J/\psi \to \Lambda \overline{\Lambda}, \Lambda \to p\pi^-, \overline{\Lambda} \to \overline{p}\pi^+$

\succ Reconstruction of Λ

- ✓ Vertex and Second Vertex Fit for Λ based on $p\pi^{-}$ hypothesis
- ✓ Vertex/second vertex fit: $\chi^2 < 100$
- \checkmark (*L*/ σ_L) > 2

➤ 4C kinematic fit

✓ A 4C kinematic fit is performed to the two virtual particles (Λ and Λ̄) hypothesis
✓ χ²_{4C} > 30

≻ Mass of *pe* after 4C kinematic fit

✓ For this background, a Λ can be reconstructed based on $p\pi^{-}$ hypothesis

✓ Veto
$$3\sigma$$
: $\left| M_{pe(4C)}^{sig} - m_{\Lambda}^{PDG} \right| > 0.005 \ (GeV/c^2)$

> Recoiling mass of $\overline{\Lambda}$ p

 ✓ For this background, recoiling mass of Ap is expected to be the invariant mass of π

✓ Veto
$$3\sigma$$
: $\left| M_{\overline{\Lambda}p}^{recoil} - m_{\pi}^{PDG} \right| > 0.030 \; (GeV/c^2)$

Event selection

Fitting results

Cut flow

Selection Criteria			Relative Efficiency(%)			
	Different signal MC	No.1	No.2	No.3	No.4	
Double tag	Reconstruction of Λ	80.89	81.18	80.81	81.01	
	$\chi^2_{4C} > 30$	98.89	98.88	99.36	98.86	
	$\left M^{recoil}_{\overline{\Lambda}p} - m^{PDG}_{\pi} \right > 0.030 \; (GeV/c^2)$	59.78	59.78	51.71	59.81	
	$\left M_{pe(4C)}^{sig} - m_{\Lambda}^{PDG} \right > 0.005 \; (GeV/c^2)$	80.29	80.13	78.37	80.10	
	8.16	8.23	7.45	8.35		

No.1 Varvara's formalism with "_corr2" No.2 Varvara's formalism with "_corr3" No.3 Ru-Min Wang's formalism <u>PRD 100, 076008</u> No.4 Hybrid formalism with "_RMW2"

No.1 Varvara's formalism with "_corr2" No.2 Varvara's formalism with "_corr3" No.3 Ru-Min Wang's formalism <u>PRD 100, 076008</u> No.4 Hybrid formalism with "_RMW2"

No.1 Varvara's formalism with "_corr2" No.2 Varvara's formalism with "_corr3" No.3 Ru-Min Wang's formalism <u>PRD 100, 076008</u> No.4 Hybrid formalism with "_RMW2"

No.1 Varvara's formalism with "_corr2" No.2 Varvara's formalism with "_corr3" No.3 Ru-Min Wang's formalism <u>PRD 100, 076008</u> No.4 Hybrid formalism with "_RMW2"

Barlow test

No.1 Varvara's formalism with "_corr2" No.2 Varvara's formalism with "_corr3" No.3 Ru-Min Wang's formalism <u>PRD 100, 076008</u> No.4 Hybrid formalism with "_RMW2"

Barlow test

No.1 Varvara's formalism with "_corr2" No.2 Varvara's formalism with "_corr3" No.3 Ru-Min Wang's formalism <u>PRD 100, 076008</u> No.4 Hybrid formalism with "_RMW2"

Barlow test

BESII

BESII

Back Up

BESIII

Different form factor parametrization

$F_i^{V,A}(q^2) = F_i^{V,A}(0) \prod_{n=0}^{n_i} \frac{1}{1 - \frac{q^2}{m_{V,A}^2 + n\alpha'^{-1}}} \approx F_i^{V,A}(0) \left(1 + q^2 \sum_{n=0}^{n_i} \frac{1}{m_{V,A}^2 + n\alpha'^{-1}}\right) \equiv F_i^{V,A}(0) c_i^{V,A}(q^2)$										
	$F_i^{V,A}(0)(\Lambda \to p)$	$m_{V,A}$	$\alpha' [\text{GeV}^{-2}]$	n_i						
$F_1^V(q^2)$	$-\sqrt{\frac{3}{2}}^1$	$m_{K^*(892)^0}$		$n_1 = 1$	• ¹ [PR135(1964)B1483], [PRL13(1964)264] • ² $\mu_p = 1.793$ [Lect.NotesPhys.222(1985)1], [Ann.Rev.Nucl.Part.Sci.53(2003)39],					
$F_2^V(q^2)$	$rac{M_\Lambda \mu_p}{2M_p}F_1^V(0)^2$	J = J = J		$n_2 = 2$	[JHEP0807(2008)132]					
$F_3^V(q^2)$	04	-	0.9	$n_3 = 2$	• [PRD41(1990)780] • • 4 Vanish in the $SU(3)$ symmetry limit; Goldberger-Treiman relation [PR110(1958)1178].					
$F_1^A(q^2)$	$0.719F_1^V(0)^3$	$ \begin{array}{c} m_{K^{*}(1270)^{0}} \\ (J^{P}=1^{+}) \end{array} $		$n_1 = 1$	[PR111(1958)354]					
$F_2^A(q^2)$	04	_		$n_2 = 2$						
$F_3^A(q^2)$	$\frac{M_{\Lambda}(M_{\Lambda}+M_{p})}{(m_{K^{-}})^{2}}F_{1}^{A}(0)^{4}$	$\begin{vmatrix} m_K \\ (J^P = 0^-) \end{vmatrix}$		$n_3 = 2$	the q^2 dependence of FFs, which is used in the Varvara's formalism					

$$F_i(q^2) = \frac{F_i(0)}{(1 - q^2/M^2)^2},$$
 (12)

where M = 0.97(1.25) GeV for the vector (axial vector) form factors $f_i(g_i)$ in the $s \to u\ell^- \bar{\nu}_\ell$ decays, and

the q^2 dependence of FFs, which is used in the Ru-Min Wang's formalism <u>PRD 100, 076008</u>