Measurement of Proton Form Factors and Baryon Pairs ($\mathrm{p} \overline{\mathrm{p}}, \Lambda \bar{\Lambda}, \Lambda_{\mathrm{c}}^{+} \bar{\Lambda}_{\mathrm{c}}^{-}$) Production in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation at BESIII

Xiaorong Zhou

The doctoral dissertation defense
Supervisor: Prof. Zhengguo Zhao, Prof. Guangshun Huang
Particle Physics and Nuclear Physics
zxrong@mail.ustc.edu.cn

Something About Me First

- Background
$>$ Born in Dec. 1988, in Jiangsu Province
$>$ Got a Bachelor's degree in July 2010, in USTC
$>$ Being a graduate student since Sep. 2010, in USTC
$>$ Join BESIII collaboration since 2011
- Research on BESIII
$>$ First observation of $\mathrm{J} / \psi \rightarrow \mathrm{p}_{\mathrm{p}} \mathrm{a}_{0}(980), \mathrm{a}_{0}(980) \rightarrow \pi^{0} \eta$, published in Phys. Rev. D
$>$ Measurement of the proton form factor by studying $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}}$, submitted to Phys. Rev. D
$>$ Cross section measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \bar{\Lambda}$ near threshold, under internal review, draft preparing
\Rightarrow Cross section measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-}$near threshold, under internal review
\Rightarrow Cross section measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi \psi(3686)$, under internal review

Something About Me First

－Academic activities
＞2011．10．07－10．21，Third France－Asia Particle Physics School （FAPPS11），in Les Houches，France
$>$ 2013．10．07－12．07，academic communication in INFN，Italy
$>$ 2014．06．22－06．27，gave two posters on OCPA8，in Singapore
$>$ 2015．05．25－05．28，will give a talk＂Proton pair production cross sections at BESIII＂on NSTAR2015，in Japan
－Award
$>$ 中国科学技术大学研究生新生奖（2010）
＞中国科学技术大学研究生会优秀干事奖（2011）
$>$ 中国科学技术大学求是研究生奖学金（2014）
＞第一届＂五校联盟＂物理学研究生学术报告 一等奖（2014）

Outline

■ Introduction
$>$ Nucleon Electromagnetic Form Factors
\Rightarrow The $N \bar{N}$ Production Threshold

- BEPCII and BESIII

■ Measurement of Proton Form Factors

- Baryon Pair Production Near Threshold
$>$ Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \bar{\Lambda}$
$>$ Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda_{\mathrm{c}}^{+} \bar{\Lambda}_{\mathrm{c}}^{-}$
■Other works on BESIII
■Summary and Prospect

Introduction

EEvidence of the nucleons are not point-like particles
■The anomalous magnetic moment (Sterm, Nobel Prize 1943)
$>$ Point-like proton and neutron have magnetic moment of μ_{N} and 0
\Rightarrow The measured magnetic moment of proton and neutron are $2.79 \mu_{\mathrm{N}}$ and $-1.91 \mu_{\mathrm{N}}$
■Elastic scattering of electron and proton (Hofstadler, Nobel

Prize 1961)

$>$ Theoretically, differential cross section is:

$$
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\mathrm{ep}(\text { point })}=\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\mathrm{Mott}}\left(1+2 \tau \tan ^{2} \frac{\theta}{2}\right)
$$

$>$ In experiment, scattering of 188 MeV electron with hydrogen target, differential cross section shows inconsistence with (a), (b), (c) $>$ The deviation represents the effect of a form factor (FF) for the proton.

Nucleon Electromagnetic FFs

■ Nucleon Electromagnetic FFs (NEFFs) are among the most basic observables of the nucleon, and intimately related to its internal structure and dynamics.

■ NEFFs are semi-empirical formula in effective quantum field theories which help describe the spatial distributions of electric charge and current.
\square The FFs constitute a rigorous test for the phenomenological models which consist fundamental elements in QCD.
■ Models that reproduce proton and neutron, electric and magnetic form factors in space-like and time-like regions

Vector Meson Dominance (VMD) based models
R. Bijker and F. Iachello, Phys. Rev. C 69, 068201 (2004).

Perturbative QCD prediction
ρ, ω, ϕ
S. J. Brodsky and G. R. Farrar, Phy. Rev. D 11, 1309 (1975).
\square Successful models in recent years

Chiral field theory

J. Haidenbauer, X.-W. Kang, U.-G, Meißner, Nucl. Phys. A 929, 102 (2014).

Lattice gauge theory
B.~Jager, et al., Pos LATTICE 2013, 272 (2014).

Nucleon Electromagnetic FFs

The FFs are measured in space-like (SL) region or time-like (TL) region. The proton electromagnetic vertex Γ_{μ} describing the hadron current

$$
\begin{array}{ll}
>\Gamma_{\mu}\left(p^{\prime}, p\right)=\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m_{p}} F_{2}\left(q^{2}\right)>\tau=\frac{\mathrm{q}^{2}}{4 \mathrm{~m}_{\mathrm{p}}^{2}}, \kappa_{\mathrm{p}}=\frac{\mathrm{g}_{\mathrm{p}}-2}{2}=\mu_{\mathrm{p}}-1 \\
>G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\tau \kappa_{p} F_{2}\left(q^{2}\right) & >\text { At } \mathrm{q}^{2}=0, \\
>G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\kappa_{p} F_{2}\left(q^{2}\right) & \text { proton: } \mathrm{F}_{1}=\mathrm{F}_{2}=1 \mathrm{G}_{\mathrm{E}}=1, \mathrm{G}_{\mathrm{M}}=\mu_{\mathrm{p}} \\
& \text { neutron: } \mathrm{F}_{1}=0, \mathrm{~F}_{2}=1, \mathrm{G}_{\mathrm{E}}=1, \mathrm{G}_{\mathrm{M}}=\mu_{\mathrm{n}}
\end{array}
$$

G_{E} and G_{M} can be interpreted as Fourier transforms of spatial distributions of charge and magnetization of nucleon in the Breit frame

$$
\text { i.e } \rho(\vec{r})=\int \frac{d^{3} q}{2 \pi^{3}}-e^{-i \vec{q} \cdot \vec{r}} \frac{M}{E(\vec{q})} G_{E}\left(\vec{q}^{2}\right)
$$

NEFFs in Space-like region

■ Nucleon Electromagnetic FFs (NEFF) in Space-like region
■ Unpolarized electron-proton elastic
$>$ In one-photon exchange approximation,
$\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}=\left(\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}\right)_{M o t t}\left[\mathrm{G}_{\mathrm{E}}^{2}+\frac{\tau}{\varepsilon} \mathrm{G}_{\mathrm{M}}^{2}\right) \frac{1}{1+\tau}, \quad \varepsilon=\frac{1}{1+2(1+\tau) \tan ^{2}\left(\frac{\theta_{e}}{2}\right)}$ is the longitudinal polarization of photon.
$>$ Rosenbluth Separation: $\sigma_{\mathrm{R}}=\frac{\varepsilon}{\tau} \mathrm{G}_{\mathrm{E}}^{2}+\mathrm{G}_{\mathrm{M}}^{2}$

Solid circle: recoil polarization Open circle: Rosenbluth separatior
$>$ Longitudinally polarized electron beam
$>$ Recoil proton polarization:

$$
>\frac{\mathrm{G}_{\mathrm{E}}}{\mathrm{G}_{\mathrm{M}}}=-\frac{\mathrm{P}_{\mathrm{t}}}{\mathrm{P}_{1}} \frac{E_{e}+\mathrm{E}_{\text {beam }}}{2 \mathrm{M}_{\mathrm{p}}} \tan \frac{\theta}{2}
$$

- The two-photon exchange contribution

NEFFs in Time-like region

- NEFF in Time-like region
$>$ In one-photon exchange approximation
$>\frac{\mathrm{d} \sigma}{\mathrm{d} \cos \theta_{\mathrm{p}}}=\frac{\pi \alpha^{2} \beta C}{2 \mathrm{~s}^{2}}\left[\left|\mathrm{G}_{\mathrm{M}}\right|^{2}\left(1+\cos ^{2} \theta_{\mathrm{p}}\right)+\frac{1}{\tau}\left|\mathrm{G}_{\mathrm{E}}\right|^{2} \sin ^{2} \theta_{\mathrm{p}}\right]$
$>$ velocity of proton in $\mathrm{e}^{+} \mathrm{e}^{-}$c.m. system, $\beta=\sqrt{1-\frac{4 m_{p}^{2}}{s}}$
■Sommerfeld enhancement and resummation factors:
$>$ Coulomb factor, C, for S-wave only
$>$ Step at threshold:

$$
\begin{aligned}
& \mathrm{C}=\frac{\alpha \pi}{\beta}, \\
& \frac{\mathrm{d} \sigma}{\mathrm{~d} \cos \theta_{\mathrm{p}}}=\frac{\pi^{2} \alpha^{3}}{2 s^{2}}\left[\left|\mathrm{G}_{\mathrm{M}}\right|^{2}\left(1+\cos ^{2} \theta_{\mathrm{p}}\right)+\frac{1}{\tau}\left|\mathrm{G}_{\mathrm{E}}\right|^{2} \sin ^{2} \theta_{\mathrm{p}}\right]
\end{aligned}
$$

NEFFs in Time-like region

■Previous experimental results from scan method and ISR method:

Process	Date	Experiment	$q^{2}\left(\mathrm{GeV}^{2} / c^{4}\right)$	q^{2} point	Event	Precision
$e^{+} e^{-} \rightarrow p \bar{p}$	1972	FENICE/ADONE [17]	4.3	1	27	15%
	1979	DM1//ORSAY-DCI [18]	$3.75-4.56$	4	70	25.0%
	1983	DM2/ORSAY-DC1 [19]	$4.0-5.0$	6	100	19.6%
	1998	FENICE/ADONE [20]	$3.6-5.9$	5	76	19.3%
	2005	BES/BEPC [21]	$4.0-9.4$	10	80	21.2%
	2006	CLEO/[22]	13.48	1	16	33.3%
$p^{+} p^{-} \rightarrow e^{+} e^{-}$	1976	PS135/CERN [24]	3.52	1	29	15.7%
	1994	PS170/CERN [25]	$3.52-4.18$	9	3667	6.1%
	1993	E760/Fermi [26]	$8.9-13.0$	3	29	33.8%
	1999	E835/Fermi [27]	$8.84-18.4$	6	144	10.3%
	2003	E835/Fermi [28]	$11.63-18.22$	4	66	21.1%
$e^{+} e^{-} \rightarrow \gamma+p \bar{p}$	2006	BaBar/SLAC-PEPII [30]	$3.57-19.1$	38	3261	9.8%
	2013	BaBar/SLAC-PEPII [31]	$3.57-19.1$	38	6866	6.7%
	2013	BaBar/SLAC-PEPII [32]	$9.61-36.0$	8	140	18.4%

NEFFs in Time-like region

■ Still questions left on the proton FFs
$>$ Steep rise toward threshold
$>$ Two rapid decreases of the FF near 2.25 and 3.0 GeV
$>$ The asymptotic values for SL and TL FFs should be identical at high energies, while
G_{M} is larger than SL quantities (i.e. at $\left|\mathrm{q}^{2}\right|=3.08^{2} \mathrm{GeV}^{2},\left|\mathrm{G}_{\mathrm{TL}}\right|=0.031$, and $\left|\mathrm{G}_{\mathrm{SL}}\right|=0.011$)

■ Electromagnetic FF ratio
$>$ Poor precision ($11 \%, 43 \%$) and limited energy range (1.92, 2.7) GeV
$>$ disagreement of $\left|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right|$ ratio between PS170 and BaBar

$N \bar{N}$ Production Threshold

$\mathrm{N} \overline{\mathrm{N}}$ production threshold
$>$ At threshold, $\left|\mathrm{G}_{\mathrm{E}}\right|=\left|\mathrm{G}_{\mathrm{M}}\right|=\left|\mathrm{G}_{\text {eff }}\right|$
$>$ The total cross section becomes:
$\sigma^{\text {th }}=\frac{\pi \alpha^{2} \mathrm{C}}{3 \mathrm{~m}_{\mathrm{p}}^{2} \tau}\left[1+\frac{1}{2 \tau}\right]\left|\mathrm{G}_{\text {eff }}^{\mathrm{N}}\left(\mathrm{q}^{2}\right)\right|^{2}=\sigma_{\text {point }}^{\mathrm{N}}\left(\mathrm{q}^{2}\right)\left|\mathrm{G}_{\text {eff }}^{\mathrm{N}}\left(\mathrm{q}^{2}\right)\right|^{2}$
$>$ The point-like cross sections for proton at threshold:
$>\sigma_{\text {point }}^{\mathrm{p}}\left(4 \mathrm{~m}_{\mathrm{p}}^{2}\right)=\frac{\pi^{2} \alpha^{3}}{2 \mathrm{~m}_{\mathrm{p}}^{2}}=0.848 \mathrm{nb}$
The steep slope at $\mathrm{p} \overline{\mathrm{p}}$ has been explained by:
$>p \overline{\mathrm{p}}$ final-state interaction acting near the threshold (i.e. J/ $\Psi \rightarrow \gamma \mathrm{p} \overline{\mathrm{p}}$)
$>$ a narrow meson resonance below the threshold (Phys. Lett. B 643, 29 (2006))
$>\left|\mathrm{G}_{4 \mathrm{~m}_{\mathrm{p}}^{2}}\right| \sim 1$ (Eur. Phys. J. A 39. 315 (2009))

Beijing Electron Positron Collider

$\mathrm{E}_{\text {beam }}:$	$1.0-2.3 \mathrm{GeV}$
$\sigma_{\mathrm{E}}:$	5.16×10^{-4}
$\mathrm{~L}:$	$0.85 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} @ 3770$

BES

Beijing Electron Positron Collider

■ Data taken in BEPCII till July 2014:

Taking data	Total Num. / Lum.	Taking time
J / ψ	$225+1086 \mathrm{M}$	$2009+2012$
$\psi(2 S)$	$106+350 \mathrm{M}$	$2009+2012$
$\psi(3770)$	$2916 \mathrm{pb}^{-1}$	$2010 \sim 2011$
τ scan	$24 \mathrm{pb}^{-1}$	2011
$\mathrm{Y}(4260) / \mathrm{Y}(4230) / \mathrm{Y}(4360) /$ scan	$806 / 1054 / 523 / 488 \mathrm{pb}^{-1}$	$2012 \sim 2013$
$4600 / 4470 / 4530 / 4575 / 4420$	$506 / 100 / 100 / 42 / 993 \mathrm{pb}^{-1}$	2014
J / ψ line-shape scan	$100 \mathrm{pb}^{-1}$	2012
R scan $(2.23,3.40) \mathrm{GeV}$	$12 \mathrm{pb}^{-1}$	2012
R scan $(3.85,4.59) \mathrm{GeV}$	$795 \mathrm{pb}^{-1}$	$2013 \sim 2014$

The red color marks the data sets used in my research topics.

BEijing Spectrometer（BESIII）

超导磁铁 1．0 Tesla
王漂栘至（MDC）

Small cell， 43 layer Gas $\mathrm{He} / \mathrm{C}_{3} \mathrm{H}_{8}=40 / 60$ $\sigma_{x y}=130 \mu \mathrm{~m}, \mathrm{dE} / \mathrm{dx} \sim 6 \%$ $\sigma_{p} / p=0.5 \%$ at 1 GeV

飞行时间计数器（TOF） Plastic scintillator σ_{T}（barrel）： 80 ps σ_{T}（endcap）： 110 ps

[^0]
Reconstruction of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}}$

Event selection

\square Good charged tracks
$>\left|\mathrm{R}_{\mathrm{xy}}\right|<1 \mathrm{~cm},\left|\mathrm{R}_{\mathrm{z}}\right|<10 \mathrm{~cm}$
$>|\cos \theta|<0.93$
\square Particle identification
$>\mathrm{dE} / \mathrm{dx}+$ Tof

$>\operatorname{Prob}(\mathrm{p})>\operatorname{Prob}(\mathrm{K} / \pi)$
$>$ For proton track, require $\mathrm{E} / \mathrm{p}<0.5, \cos \theta<0.8$

- $\mathrm{N}_{\text {char }}=2 \& \mathrm{~N}_{\mathrm{p}}=\mathrm{N}_{\overline{\mathrm{p}}}=1$
- $\mid \operatorname{tof}_{\mathrm{p}}$-tof $\mathrm{f}_{\overline{\mathrm{p}}} \mid<4 \mathrm{~ns}$
\square Two tracks angle $>179^{\circ}$
\square Momentum window cut for proton and anti-proton

Measurement of Proton Form Factors

$\square \sigma_{\text {Born }}=\frac{\mathrm{N}_{\mathrm{obs}}-\mathrm{N}_{\mathrm{bkg}}}{\mathrm{L} \cdot \varepsilon \cdot(1+\delta)}$
$>\mathrm{N}_{\mathrm{obs}}$: the observed number of signal in data
$>\mathrm{N}_{\mathrm{bkg}}$: the number of background evaluated from MC
$>$ L: the integral luminosity
$>\varepsilon$: detection efficiency by MC sample, with Conexc generator
$>(1+\delta)$: radiative correction factor

Extraction of the effective FF

EEffective FF

$>$ Assuming $\left|\mathrm{G}_{\mathrm{E}}\right|=\left|\mathrm{G}_{\mathrm{M}}\right|=\left|\mathrm{G}_{\text {eff }}\right|$, (which holds at $\mathrm{p} \overline{\mathrm{p}}$ mass threshold)

$$
\sigma=\frac{\pi \alpha^{2}}{3 \mathrm{~m}_{\mathrm{p}}^{2} \tau}\left[1+\frac{1}{2 \tau}\right]\left|\mathrm{G}_{\mathrm{eff}}\right|^{2}
$$

$>$ After taking natural units: $1 \mathrm{~m}=5.0677 \times 10^{15} \mathrm{GeV}^{-1}$

$$
\mathrm{G}_{\mathrm{eff}}=\sqrt{\frac{\sigma_{\text {Born }}}{86.83 \cdot \frac{\beta}{\mathrm{~s}}\left(1+\frac{2 \mathrm{~m}_{\mathrm{p}}^{2}}{\mathrm{~s}}\right)}}
$$

Extraction of electromagnetic $\left|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right|$ ratio

■ Angular analysis to extract the em FFs:
$>\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}\left(\mathrm{q}^{2}\right)=\frac{\alpha^{2} \beta}{4 \mathrm{~s}}\left|\mathrm{G}_{\mathrm{M}}(\mathrm{s})\right|^{2}\left[\left(1+\cos ^{2} \theta_{\mathrm{p}}\right)+\mathrm{R}_{\mathrm{em}}^{2} \frac{1}{\tau} \sin ^{2} \theta_{\mathrm{p}}\right]$
$\Rightarrow \mathrm{R}_{\mathrm{em}}=\mathrm{G}_{\mathrm{E}}\left(\mathrm{q}^{2}\right) / \mathrm{G}_{\mathrm{M}}\left(\mathrm{q}^{2}\right)$
$>\theta$: polar angle of proton of baryon at the c.m.system
■ Fit function:
$>\frac{\mathrm{dN}}{\mathrm{d} \cos \theta_{\mathrm{p}}}=\mathrm{N}_{\text {norm }}\left[\left(1+\cos ^{2} \theta_{\mathrm{p}}\right)+\mathrm{R}_{\mathrm{em}}^{2} \frac{1}{\tau} \sin ^{2} \theta_{\mathrm{p}}\right]$
$>\mathrm{N}_{\text {norm }}=\frac{2 \pi \alpha^{2} \beta \mathrm{~L}}{4 \mathrm{~s}}\left[1.94+5.04 \frac{\mathrm{~m}_{\mathrm{p}}^{2}}{\mathrm{~s}} \mathrm{R}^{2}\right] \mathrm{G}_{\mathrm{M}}(\mathrm{s})^{2}$ is the overall normalization

Extraction of electromagnetic $\left|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right|$ ratio

■Method of Moment

$>$ Given a probability density function $\mathrm{f}(\mathrm{x} \mid \theta)$ with unknown parameters θ, the r-th algebraic moment of the population is defined by:

$$
\mu_{r}(\theta)=\int_{\Omega} x^{r} f(x \mid \theta) d x
$$

$>$ An estimation of $\mu_{r}(\theta)$ is the arithmetic mean of the r-th power of the observation X_{i}

$$
\mu_{\mathrm{r}}(\theta)=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}^{\mathrm{r}}
$$

$>$ Second Moment of $\cos \theta_{\mathrm{p}:}\left\langle\cos ^{2} \theta_{\mathrm{p}}\right\rangle=\frac{1}{\mathrm{~N}_{\text {norm }}} \int \cos ^{2} \theta_{\mathrm{p}} \frac{\mathrm{d} \sigma}{\mathrm{d} \Omega} \mathrm{d} \cos \theta_{\mathrm{p}}$
\Rightarrow The estimator of $\left\langle\cos ^{2} \theta_{\mathrm{p}}\right\rangle:\left\langle\cos ^{2} \theta_{\mathrm{p}}\right\rangle=\overline{\cos ^{2} \theta_{\mathrm{p}}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \cos ^{2} \theta_{\mathrm{p}} / \varepsilon_{\mathrm{i}}$
$>$ Extract $\left|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right|$ ratio: $\mathrm{R}=\sqrt{\frac{\mathrm{s}}{4 \mathrm{~m}_{\mathrm{p}}^{2}} \frac{\left\langle\cos ^{2} \theta_{\mathrm{p}}\right\rangle-0.243}{0.108-0.648\left(\cos ^{2} \theta_{\mathrm{p}}\right\rangle}}$
$>$ Uncertainty of $\left\langle\cos ^{2} \theta_{\mathrm{p}}\right\rangle: \sigma_{\left\langle\cos ^{2} \theta_{p}\right\rangle}=\sqrt{\frac{1}{N-1}\left[\left\langle\cos ^{4} \theta_{p}\right\rangle-\left\langle\cos ^{2} \theta_{p}\right\rangle\right]}$

Extraction of electromagnetic $\left|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right|$ ratio

■Results on $\left|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right|$ ratio:

■ Conclusion:
$>$ The Born cross sections and effective FFs are in good agreement with previous experiments, improving the overall uncertainty by $\sim 30 \%$.
$>$ The measured $\left|G_{E} / G_{M}\right|$ ratio are close to unity (indicates $\left|G_{E}\right|=\left|G_{M}\right|$)

Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \bar{\Lambda}$ at threshold

■ Data set at $\sqrt{s}=2232.4 \mathrm{MeV}$, which is 1.0 MeV above $\Lambda \bar{\Lambda}$ threshold
■ Typical event display
$>$ Reconstruction of $\Lambda \rightarrow \mathrm{p} \pi^{-}, \bar{\Lambda} \rightarrow \overline{\mathrm{p}} \pi^{+}$
two low momentum tracks are pions.
no proton information left, anti-proton annihilation will produce high momentum tracks
$>$ Reconstruction of $\bar{\Lambda} \rightarrow \bar{n} \pi^{0}$
at most two track in detector
angle between anti-neutron and pion0 is larger than 140°

$\Lambda \rightarrow \mathbf{p} \boldsymbol{\pi}^{-}, \bar{\Lambda} \rightarrow \overline{\mathbf{n}} \boldsymbol{\pi}^{\mathbf{0}}$

XY View

Reconstruction of $\Lambda \rightarrow \mathrm{p} \pi^{-}, \bar{\Lambda} \rightarrow \overline{\mathrm{p}} \pi^{+}$

Extraction of signal events

- Fit the distribution of the largest V_{r}
$>$ Signal described by the MC shape
$>$ Background described by the sideband of π momentum.
$>$ Yields: 43 ± 7, detection efficiency: 20.1%

Reconstruction of $\bar{\Lambda} \rightarrow \overline{\mathrm{n}} \pi^{0}$

■ BDT choices
$>$ To separate the signal from hige background $>1 / 2$ of MC and background for training
$>$ Minimum leaf size $=400$ events
$>$ Maximum tree depth $=3$
\Rightarrow AdaBoost parameter $\beta=0.5$
$>$ Signal leaf if purity >0.5

BDT output

Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \bar{\Lambda}$

-Cross section and effective FF

Reconstruction @ 2232.4 MeV	$\sigma_{\text {Born }}(\mathrm{pb})$	$\|\mathrm{G}\|\left(\times 10^{-2}\right)$
$\Lambda \rightarrow \mathrm{p} \pi^{-}, \bar{\Lambda} \rightarrow \overline{\mathrm{p}} \pi^{+}$	$325 \pm 53 \pm 46$	
$\bar{\Lambda} \rightarrow \overline{\mathrm{n}} \pi^{0}$	$300 \pm 100 \pm 40$	
Combined	320 ± 58	63.4 ± 5.7

$$
\begin{aligned}
& >\left(e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}\right)=\frac{\mathrm{N}_{\mathrm{sig}}-\mathrm{N}_{\mathrm{bkg}}}{\mathrm{~L} \cdot \varepsilon \cdot(1+\delta) \cdot \mathrm{B}_{\mathrm{r}}\left(\Lambda \rightarrow \mathrm{p} \pi^{-}\right) \cdot \mathrm{B}_{\mathrm{r}}\left(\bar{\Lambda} \rightarrow \overline{\mathrm{p}} \pi^{-}\right)} \\
& >\text {Assuming }\left|\mathrm{G}_{\mathrm{E}}\right|=\left|\mathrm{G}_{\mathrm{M}}\right|=|\mathrm{G}| \text { (as proton FF case) }
\end{aligned}
$$

$\sqrt{\mathbf{s}}(\mathbf{G e V})$	$\sigma_{\text {Born }}(\mathrm{pb})$	$\|\mathrm{G}\|\left(\times 10^{-2}\right)$
2.40	$133 \pm 20 \pm 19$	$12.93 \pm 0.97 \pm 0.92$
2.80	$15.3 \pm 5.4 \pm 2.0$	$4.16 \pm 0.73 \pm 0.27$
3.08	$3.9 \pm 1.1 \pm 0.5$	$2.21 \pm 0.31 \pm 0.14$

Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \bar{\Lambda}$

- The cross section of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \bar{\Lambda}$ shows a sudden rise near threshold
- The results are consistent with BaBar experiment at high c.m.energies
- The precision of the cross section is between 18.1% and 33.3%, while results from BaBar experiment is 32.2% and 100.0%
- The uncertainty is dominant by statistics. The dominant systematic source is the angular distribution of Λ

Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \bar{\Lambda}$

- Discussions on the non-zero cross section $320 \pm 58 \mathrm{pb}$ at threshold:

Theory prediction for neutral baryons

$$
\sigma_{\Lambda \pi}=\frac{2 \pi \alpha^{2}}{W^{2}} \beta G_{\text {eff }}^{2}\left(W^{2}\right)
$$

Cross section vanishes as the velocity

$$
\beta=\left(1-4 M_{\wedge}^{2} / W^{2}\right)^{1 / 2}
$$

$$
\text { when: } \mathrm{W}^{2} \rightarrow 4 \mathrm{M}_{\Lambda}{ }^{2} \text {. }
$$

Neutral baryon non-zero cross section at threshold? Coulomb interaction at quark level!

Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda_{\mathrm{c}}^{+} \bar{\Lambda}_{\mathrm{c}}^{-}$near threshold

Tag Λ_{c}^{+}with its multiple decay modes:

Decay modes
$\Lambda_{\mathbf{c}}^{+} \rightarrow \mathbf{p}^{+} \boldsymbol{\pi}^{+} \mathbf{K}^{-}$
$\Lambda_{c}^{+} \rightarrow \mathbf{p}^{+} \mathbf{K}_{\mathbf{s}}^{\mathbf{0}}, \mathbf{K}_{\mathrm{s}}^{\mathbf{0}} \rightarrow \pi^{+} \pi^{-}$
$\Lambda_{c}^{+} \rightarrow \Lambda \pi^{+}, \Lambda \rightarrow \mathbf{p}^{+} \pi^{-}$
$\Lambda_{\mathbf{c}}^{+} \rightarrow \mathbf{p}^{+} \pi^{+} \mathbf{K}^{-} \boldsymbol{\pi}^{\mathbf{0}}, \pi^{\mathbf{0}} \rightarrow \gamma \boldsymbol{\gamma}$
$\Lambda_{c}^{+} \rightarrow \mathbf{p}^{+} K_{s}^{0} \pi^{0}, K_{s}^{0} \rightarrow \pi^{+} \pi^{-}, \pi^{0} \rightarrow \gamma \gamma$
$\Lambda_{c}^{+} \rightarrow \Lambda \pi^{+} \pi^{0}, \Lambda \rightarrow p^{+} \pi^{-}, \pi^{0} \rightarrow \gamma \gamma$ $\Lambda_{\mathbf{c}}^{+} \rightarrow \mathbf{p}^{+} \mathbf{K}_{\mathbf{s}}^{\mathbf{0}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}, \mathbf{K}_{\mathbf{s}}^{\mathbf{0}} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$
$\Lambda_{c}^{+} \rightarrow \Lambda \pi^{+} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}, \Lambda \rightarrow \mathbf{p}^{+} \boldsymbol{\pi}^{-}$
$\Lambda_{\mathbf{c}}^{+} \rightarrow \Sigma^{0} \pi^{+}, \Sigma^{0} \rightarrow \boldsymbol{\Lambda} \boldsymbol{\gamma}, \Lambda \rightarrow \mathbf{p}^{+} \boldsymbol{\pi}^{-}$
$\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^{+} \pi^{-}, \Sigma^{+} \rightarrow p^{+} \pi^{0}$ Sum

Branching fraction
$(6.84 \pm 0.36) \%$
$(1.09 \pm 0.11) \%$
$(0.92 \pm 0.10) \%$
$(4.51 \pm 0.85) \%$
$(1.54 \pm 0.21) \%$
$(3.15 \pm 0.80) \%$
$(1.21 \pm 0.16) \%$
$(0.51 \pm 0.06) * 50 \% * 69.2 \%$
$(2.32 \pm 0.18) \%$
($0.87 \pm 0.18 \%$
$(2.54 \pm 0.28) \%$
$(24.99 \pm 1.32) \%$

Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda_{\mathrm{c}}^{+} \bar{\Lambda}_{\mathrm{c}}^{-}$near threshold

Fit results at $\sqrt{s}=4600.0 \mathrm{MeV}$ for each mode:

A Rooplot of "x"

A RooPlot of " x "

Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda_{\mathrm{c}}^{+} \bar{\Lambda}_{\mathrm{c}}^{-}$near threshold

■Cross section measurement:

Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda_{\mathrm{c}}^{+} \bar{\Lambda}_{\mathrm{c}}^{-}$near threshold

■Angular distribution

$>$ Fitting M_{BC} in different $\cos \theta$ bin, with detection efficiency corrected.
$>$ The angular distribution is parameterized by $1+\alpha \cos ^{2} \theta$.

$>$ The differential cross section can be expressed as:
$\frac{\mathrm{d} \sigma_{\text {Born }}(\mathrm{s})}{\mathrm{d} \Omega}=\frac{\alpha^{2} \beta \mathrm{C}}{4 \mathrm{~s}}\left[\left|\mathrm{G}_{\mathrm{M}}(\mathrm{s})\right|^{2}\left(1+\cos ^{2} \theta\right)+\frac{4 \mathrm{~m}_{\mathrm{p}}^{2}}{\mathrm{~s}}\left|\mathrm{G}_{\mathrm{E}}(\mathrm{s})\right|^{2} \sin ^{2} \theta\right] \propto\left(1+\alpha \cos ^{2} \theta\right)$
$>\left|\frac{\mathrm{G}_{\mathrm{E}}}{\mathrm{G}_{\mathrm{M}}}\right|$ ratio can be calculated as:

$$
\sqrt{\mathrm{s}}(\mathrm{MeV})
$$

$$
\left|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right|
$$

$$
4575.0
$$

$$
1.47 \pm 0.22
$$

4600.0
1.23 ± 0.06

Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda_{\mathrm{c}}^{+} \bar{\Lambda}_{\mathrm{c}}^{-}$near threshold

■ Discussion of the $\left|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right|$ results:
\square Always postulated that in $\mathrm{e}^{+} \mathrm{e}^{-}->$Baryon Antibaryon at threshold: angular distribution is isotropic, due to FF analiticity
\square Outgoing Baryon spins antiparallel: G_{E}

$\square J^{P}=1^{-} \rightarrow \mathrm{L}=0,2$

- S and D wave form factors
(differences about $\sqrt{ } \tau$ in the literature, not affecting angular distr.):
- $\quad V_{\tau} G_{E}=G_{S}-2 G_{D}$
- $\mathrm{G}_{\mathrm{M}}=\mathrm{G}_{\mathrm{S}}+\mathrm{G}_{\mathrm{D}}$

Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda_{\mathrm{c}}^{+} \bar{\Lambda}_{\mathrm{c}}^{-}$near threshold

■Fitting of the line-shape - test of a hypothesis on threshold
\square The function of non-resonant contribution can be parameterized as

$$
\text { NonR }=\frac{4 \pi \alpha^{2} \mathrm{C} \beta}{3 \mathrm{~m}^{2}}\left[\left|\mathrm{G}_{\mathrm{M}}\right|^{2}+\frac{1}{2 \tau}\left|\mathrm{G}_{\mathrm{E}}\right|^{2}\right]=A\left|G_{M}\right|^{2}\left[1+\frac{1}{2 \tau}\left(\frac{G_{E}}{G_{M}}\right)^{2}\right]
$$

■The Coulomb factor $C=\varepsilon \cdot R$
$>\varepsilon=\frac{\pi \alpha}{\beta}$ is the enhancement factor
$>R$ is the resummation factor
\star In the conventional prediction: $R=\frac{\sqrt{1-\beta^{2}}}{1-e^{-\pi \alpha / \beta}}$
\star From the prediction by R. Baldini Ferroli, S. Pacetti

$$
R_{S}=\frac{\sqrt{1-\beta^{2}}}{1-e^{-\pi \alpha_{s} / \beta}}
$$

The coupling constants:
$\alpha=1 / 137$
$\alpha_{\mathrm{s}}=0.5$

Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda_{\mathrm{c}}^{+} \bar{\Lambda}_{\mathrm{c}}^{-}$near threshold

\square Fitting of the line-shape: NonR $=A\left|G_{M}\right|^{2}\left[1+\frac{1}{2 \tau}\left(\frac{G_{E}}{G_{M}}\right)^{2}\right]$
$\square\left|\frac{\mathrm{G}_{\mathrm{E}}}{\mathrm{G}_{\mathrm{M}}}\right|$ ratio has been extracted as:

$\sqrt{\mathrm{S}}(\mathrm{GeV})$	$\left\|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right\|$
4.575	1.47 ± 0.22
4.6	1.23 ± 0.06

\square Assuming $\left|\mathrm{G}_{\mathrm{M}}\right|$ is a constant value from threshold to $\beta=0.1 \mathrm{GeV}$:

■ Using the traditional R to fit line-shape, the fit status is bad
■ Using the updated R_{s} to fit line-shape, the fit status is good, $\left|\mathrm{G}_{\mathrm{M}}\right|$ is 1.07 ± 0.02.

Observation of $\mathrm{J} / \Psi \rightarrow \mathrm{p} \overline{\mathrm{p}} \mathrm{a}_{0}(980)$

■ Chiral Perturbative Theory (ChPT):
$>$ It is an effective field theory which deals with mesons and baryons
$>$ At low energy, the degrees of freedom are hadrons, due to the confinement of quarks
$>$ The effective Lagrangian is therefore expanded in powers of the external momenta of hadrons
\square A chiral unitary approach from ChPT is used to investigate Fourbody decays $\mathrm{J} / \Psi \rightarrow \mathrm{N} \overline{\mathrm{N}} \mathrm{MM}$ with sufficient freedom in its meson-meson amplitude
■The process $\mathrm{J} / \Psi \rightarrow \mathrm{p} \overline{\mathrm{p}} \mathrm{a}_{0}(980)$ is sensitive to fix the parameters in theoretical calculation

Observation of $\mathrm{J} / \Psi \rightarrow \mathrm{p} \overline{\mathrm{p}} \mathrm{a}_{0}(980)$

\square Yields:
$>$ PDF: $F(m)=f_{s i g} \sigma(m) \otimes[\varepsilon(m) \times \hat{T}(m)]+\left(1-f_{\text {sig }}\right) B(m)$
$>$ Flatté formula $\widehat{T}(m)$: parameterize the $\mathrm{a}_{0}(980)$ amplitudes coupling to $\pi^{0} \eta$ and $K \bar{K}$

$$
\hat{T}(m) \propto \frac{1}{\left(m_{a_{0}}^{2}-m^{2}\right)^{2}+\left(\rho_{\pi^{0} \eta} g_{a_{0} \pi^{0} \eta}^{2}+\rho_{K \bar{K}} g_{a_{0} K \bar{K}}^{2}\right)^{2}}
$$

$>$ The two coupling constants

Experiments	$\mathrm{g}_{\mathrm{a}_{0} \pi^{0} \eta}$	$\mathrm{~g}_{\mathrm{a}_{0} \mathrm{KK}}$
SND	$3.11_{-0.40}^{+2.61}$	$4.20_{-1.35}^{+14.01}$
BNL	2.47 ± 0.76	1.67 ± 0.29
KLOE	2.82 ± 0.05	2.15 ± 0.08
CB	2.87 ± 0.11	2.09 ± 0.11
Average	2.83 ± 0.05	2.11 ± 0.06

$>\operatorname{Br}\left(J / \psi \rightarrow p \bar{p} a_{0}(980) \rightarrow p \bar{p} \pi^{0} \eta\right)=(6.8 \pm 1.2 \pm 1.3) \times 10^{-5}$

Summary

■ The proton effective FFs are measured at 12 c.m.energies. The overall uncertainty of cross sections is improved by about 30%. The $\left|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right|$ ratio are extracted at three energy points, with uncertainty in 25% and 50% (dominant by statistics). Submitted to P. R. D.

- The cross section of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \bar{\Lambda}$ is firstly measured near threshold, to be $320 \pm 58 \mathrm{pb}$, which contradicts the standard theoretical prejudice. The result at other three energy points are measured with uncertainty in 18.1% and 33.3%, Under internal review.
\square The cross sections of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda_{\mathrm{c}}^{+} \bar{\Lambda}_{\mathrm{c}}^{-}$are measured near threshold. The $\left|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right|$ at 4.575 GeV is measured to be 1.47 ± 0.22, while at threshold, it is supposed to be unity if the S -wave dominants. Under internal review.
\square The process $J / \psi \rightarrow p \bar{p} a_{0}(980) \rightarrow p \bar{p} \pi^{0} \eta$ is observed with a significance of 6.5σ. The results provides a quantitative comparison with the chiral unitary approach. Published in P. R. D.

Prospect-I

- At BEPCII, a new scan with c.m. energy in 2.0 GeV and 3.1 GeV is ongoing, which suggest following topics:
$>$ Precision measurement of proton form factor reveal two steps around 2.25 and 3.0 GeV , structures? fluctuation? improve the $\left|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right|$ ratio uncertainty, Babar? PS170?
> Neutron form factor
explain spatial distributions due to isospin difference between p and n a preliminary study at 2232.4 GeV yields 13 events with 2.0% efficiency the efficiency would be improved significantly if the TOF information can be used!
$>$ Baryonic pair production near threshold if this threshold effect universal for different baryonic pair source: FSI effect ? corrections on FFs?

Prospect-II

■ From a series Monte Carlo study, we can predict the expected luminosity for a determined $\left|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right|$ precision
\square To achieve a $\mathbf{1 . 0 \%}$ precision of $\left|G_{E} / G_{M}\right|$ ratio, the expect luminosity is $\mathbf{1 . 6} \mathrm{fb}^{\mathbf{- 1}}$ (about 690 days of data taken at BEPCII!)
■ A future high luminosity factory will be very helpful for the accurate measurement

$\mathrm{N}_{\text {sig }}$	$\delta_{\mathrm{Rem} / R_{\mathrm{em}}(\%)}$	$\delta_{\sigma} / \sigma(\%)$	$N_{\text {orig }}$	Expect Lum. $\left(\mathrm{pb}{ }^{-1}\right)$
614 ± 28 (data)	24	3.9	930	2.631
769 ± 28	22	3.6	1165	3.295
1534 ± 39	15	2.5	2324	6.573
3881 ± 62	$\mathbf{9 . 5}$	$\mathbf{1 . 6}$	5880	$\mathbf{1 6 . 6 3 0}$
7856 ± 89	6.6	1.1	11903	33.662
23572 ± 154	3.9	0.65	35715	101.004
31286 ± 177	3.4	0.57	47403	134.058
$\mathbf{1 5 6 2 5 3} \pm 395$	$\mathbf{1 . 5}$	$\mathbf{0 . 2 5}$	236747	$\mathbf{6 6 9 . 5 3 3}$
$\mathbf{3 8 9 8 9 8} \pm \mathbf{6 2 4}$	$\mathbf{0 . 9 6}$	$\mathbf{0 . 1 6}$	$\mathbf{5 9 0 7 5 5}$	$\mathbf{1 6 7 0 . 6 9}$

Thank you all for attending my Ph. D defense !

Many thanks to

```
My supervisor:
    Zhengguo Zhao (USTC),
    Guangshun Huang (USTC)
```

Thesis reviewer:
Haiping Peng (USTC),
Ziping Zhang (USTC),
Haibo Li (IHEP),
Shenjian Chen (NJU),
Yajun Mao (PKU)

Defense reviewer:
Xiaoyan Shen (IHEP),
Haiping Peng (USTC), Qun Wang (USTC), Ziping Zhang (USTC), Jianbei Liu (USTC)

Backups

Measurement of Proton Form Factors

- 12 center-of-mass energies:

■ Back-to-back angle distribution:

\square Dependence of resolution of momentum with c.m. energy:

Reconstruction of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}}$

- Back-to-back angle distribution:

- Dependence of resolution of momentum with c.m. energy:

Background analysis

■ Beam associated background: interaction between beam and beam pipe, beam and residual gas and the Touschek effect.
\square A special data sample, with separated beam condition, are used to study such background.

- The physical background from the processes with two-body in the final state, or with multi-body include pp in the final states.

	$\sqrt{s}=2232.4 \mathrm{MeV}\left(2.63 \mathrm{pb}^{-1}\right)$			$\sqrt{s}=3080.0 \mathrm{MeV}\left(30.73 \mathrm{pb}^{-1}\right)$						
Bkg.	$N_{\text {gen }}^{M C}\left(\times 10^{6}\right)$	$N_{\text {sur }}^{M C}$	$\sigma(\mathrm{nb})$	$N_{\text {uplimit }}^{M C}$	$N_{\text {nor }}^{M C}$	$N_{\text {gen }}^{M C}\left(\times 10^{6}\right)$	$N_{\text {sur }}^{M C}$	$\sigma(\mathrm{nb})$	$N_{\text {uplimit }}^{M C}$	$N_{\text {nor }}^{M C}$
$e^{+} e^{-}$	9.6	0	1435.01	<0.96	0	39.9	1	756.86	<2.54	1
$\mu^{+} \mu^{-}$	0.7	0	17.41	<0.16	0	1.5	0	8.45	<0.42	0
$\gamma \gamma$	1.9	0	70.44	<0.24	0	4.5	0	37.05	<0.62	0
$\pi^{+} \pi^{-}$	0.1	0	0.17	<0.01	0	0.1	0	<0.11	<0.02	0
$K^{+} K^{-}$	0.1	0	0.14	<0.008	0	0.1	0	0.093	<0.02	0
$p \bar{p} \pi^{0}$	0.1	0	<0.1	<0.006	0	0.1	0	<0.1	<0.07	0
$p \bar{p} \pi^{0} \pi^{0}$	0.1	0	<0.1	<0.006	0	0.1	0	<0.1	<0.07	0
$\Lambda \bar{\Lambda}$	0.1	0	<0.4	<0.02	0	0.1	0	0.002	<0.001	0

Systematic Uncertainty on $\sigma_{\text {Born }}$

■Tracking:
$>$ Study from control sample $\mathrm{J} / \psi \rightarrow \mathrm{p} \overline{\mathrm{p}} \pi^{+} \pi^{-}$and $\psi(3686) \rightarrow$ $\pi^{+} \pi^{-} \mathrm{J} / \psi \rightarrow \pi^{+} \pi^{-} \mathrm{p} \overline{\mathrm{p}}$
$>$ Tracking efficiency: $\mathrm{N}_{\text {good }=4} / \mathrm{N}_{\text {good } \geq 3}$

Systematic Uncertainty on $\sigma_{\text {Born }}$

■Particle identification
$>$ Different information on the PID method:

* 1) combined information of dE/dx, BTOF, ETOF; 2) dE/dx and BTOF; 3) dE/dx;
4)BTOF and ETOF; 5) BTOF.

Systematic Uncertainty on $\sigma_{\text {Born }}$

■Other sources of systematic uncertainties
$>\mathrm{E} / \mathrm{p}$ requirement: select proton sample from control sample $\mathrm{J} / \psi \rightarrow \mathrm{p} \overline{\mathrm{p}} \pi^{+} \pi^{-}$.

$>$ Background estimation: use 2D sideband to estimate the background.
$>$ ISR correction factor: use generator Phokhara to generate signal MC

$>$ Model dependence: vary $\left|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right|$ ratio to obtain the detection efficiency
$>$ Integral luminosity: analyze large-angle Bhabha scattering process

Reconstruction of $\Lambda \rightarrow \mathrm{p} \pi^{-}, \bar{\Lambda} \rightarrow \overline{\mathrm{p}} \pi^{+}$

■Event selection
$>$ Two good charged tracks with low momentum $[0.08,0.11] \mathrm{GeV}$
\Rightarrow PID: $\mathrm{N}_{\pi^{+}}=\mathrm{N}_{\pi^{+}}=0$
$>$ The largest V_{r} among all the charged tracks shows an enhancement around 3 cm for signal MC
$>$ No significant events lie around 3 cm in the background.

Reconstruction of $\Lambda \rightarrow \mathrm{p} \pi^{-}, \bar{\Lambda} \rightarrow \overline{\mathrm{p}} \pi^{+}$

Background process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{p} \overline{\mathrm{p}}$

- Requirement on the momentum of pion:
$>0.0<\mathrm{p}_{\pi}<0.07 \mathrm{GeV} / \mathrm{c}$ and $0.12<\mathrm{p}_{\pi}<0.16 \mathrm{GeV} / \mathrm{c}$
$>$ The enhancement around 3 cm could still be observed in background process
$>$ No enhancement is observed in data
■The background of process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{p} \overline{\mathrm{p}}$ is small and can be neglected.

Reconstruction of $\bar{\Lambda} \rightarrow \bar{n} \pi^{0}$

■Event selection
$>$ At most two good charged tracks
$>$ At least three good showers:
$\star \mathrm{E}>25 \mathrm{MeV}$ in barrel and $\mathrm{E}>50 \mathrm{MeV}$ in endcap
\star Angle related the closest charged track larger than 10°
$>$ The most energetic shower is selected as $\overline{\mathrm{n}}$ candidate
$>$ One π^{0} candidate is selected:
EMC timing requirement ($0 \leq \mathrm{T} \leq 14$ in unit of 50 ns)
Energy asymmetry requirement: $\left|\mathrm{E}_{\gamma_{1}}-\mathrm{E}_{\gamma_{1}}\right| / \mathrm{p}_{\pi^{0}}<0.95^{10}$
The angle between photon pair and $\overline{\mathrm{n}}$ is larger than 140°
 The minimum $\chi_{1 C}^{2}$ of mas constrained kinematic fit is selected and $\chi_{1 C}^{2}<20$

Reconstruction of $\bar{\Lambda} \rightarrow \bar{n} \pi^{0}$

■Boosted Decision Tree

- Decision Tree

An individual classifier is defined as $h(x), h(x)=+1$ and -1 for signal and background.
Separation criteria: Gini Index, defined by $p \cdot(1-p)$

$>$ Boost (AdaBoost)
$>$ Boost weight
The subsequent tree is trained using a modified event sample with a boost weights applied for misclassified events: $\alpha=\frac{1-e r r}{e r r}$
$>$ Output classifier

$$
\mathrm{y}_{\text {Boost }}(\mathrm{x})=\frac{1}{\mathrm{~N}_{\text {collection }}} \cdot \sum_{\mathrm{i}}^{\mathrm{N}_{\text {collection }}} \ln \left(\alpha_{\mathrm{i}}\right) \cdot \mathrm{h}_{\mathrm{i}}(\mathrm{x})
$$

$>$ Boosting increases the statistical stability of the classifier and improve the separation performance compared to a single decision tree.
$>$ The limitation of tree depth can eliminate the overtraining

Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \bar{\Lambda}$ at threshold

\square Systematic uncertainty

Reconstruct		Reconstruct $\Lambda \rightarrow \pi^{-}, \bar{\Lambda} \rightarrow \overline{\mathrm{p}} \pi^{+}$ Source	
Uncertainty		Source	Uncertainty
π tracking	12.3	$\overline{\mathrm{n}} \pi^{0}$ selection	2.2
π PID	1.0	π^{0} selection	2.3
V_{r} selection	0.3	BDT output	4.8
Fit procedure	4.6	Fit procedure	8.8
MC generator*	3.2	MC generator*	3.2
Energy spread*	2.0	Energy spread*	2.0
Energy scale*	3.9	Energy scale*	3.9
Trigger efficiency	0.0	Trigger efficiency	1.0
Luminosity*	1.0	Luminosity*	1.0
Total	14	Total	12

Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \bar{\Lambda}$ at threshold

■ Combined result: weighted least squares method
$\square_{\overline{\mathrm{x}}} \pm \delta \overline{\mathrm{x}}=\frac{\sum_{\mathrm{j}} \mathrm{x}_{\mathrm{j}} \cdot \sum_{\mathrm{i}} \omega_{\mathrm{ij}}}{\sum_{\mathrm{i}} \Sigma_{\mathrm{j}} \omega_{\mathrm{ij}}} \pm \sqrt{\frac{1}{\sum_{\mathrm{i}} \Sigma_{\mathrm{j}} \omega_{\mathrm{ij}}}}$

- ω_{ij} is the element of V^{-1}. In case of two measurement:
$\square \mathbf{V}=\left(\begin{array}{cc}\boldsymbol{\sigma}_{\mathbf{T 1}}^{2} & \operatorname{Cov}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \\ \operatorname{Cov}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & \boldsymbol{\sigma}_{\mathbf{T} 2}^{2}\end{array}\right), \sigma_{T i}^{2}=\sigma_{i}^{2}+x_{i}^{2} \cdot \epsilon_{f}^{2}$
■ Convariance sysematic error: $\operatorname{Cov}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{\mathrm{i}} \cdot \epsilon_{\mathrm{ij}} \cdot \mathrm{x}_{\mathrm{j}} \cdot \epsilon_{\mathrm{ji}}$
- The weighted averaged measured values are:
$\nabla_{\mathrm{X}}=\frac{\mathrm{x}_{1} \sigma_{2}^{2}+\mathrm{x}_{2} \sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}+\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2} \epsilon_{\mathrm{f}}^{2}}, \sigma_{i}^{2}=\frac{\sigma_{1}^{2} \sigma_{2}^{2}+\left(x_{1} \sigma_{2}^{2}+x_{2} \sigma_{1}^{2}\right) \epsilon_{f}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}+\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2} \epsilon_{\mathrm{f}}^{2}}$

Reconstruction

$$
\begin{gathered}
\Lambda \rightarrow \mathrm{p} \pi^{-}, \bar{\Lambda} \rightarrow \overline{\mathrm{p}} \pi^{+} \\
\bar{\Lambda} \rightarrow \overline{\mathrm{n}} \pi^{0}
\end{gathered}
$$

Combined
$\sigma_{\text {Born }}(\mathrm{pb})$

$$
\begin{gathered}
325 \pm 53 \pm 46 \\
300 \pm 100 \pm 40
\end{gathered}
$$

$$
320 \pm 58
$$

Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \bar{\Lambda}$ at 2.40, 2.80 and 3.08 GeV

■Event selection

■ Charged track
$>|\mathrm{Vr}|<30 \mathrm{~cm},|\mathrm{Vz}|<10 \mathrm{~cm},|\cos \theta|<0.93$
$>\mathrm{N}_{\text {good }} \geq 4$
\square Particle identification

$$
>\mathrm{N}_{\mathrm{p}}=\mathrm{N}_{\overline{\mathrm{p}}}=\mathrm{N}_{\pi^{+}}=\mathrm{N}_{\pi^{-}}=1
$$

\square Second vertex fitting for $\mathrm{p} \pi^{-}$and $\overline{\mathrm{p}} \mathrm{\pi}^{+}$

\square Mass window cut: $\left|\mathrm{M}_{\Lambda} / \mathrm{M}_{\bar{\Lambda}}-1.115\right|<0.01 \mathrm{GeV}$
\square Angle cut between Λ and $\bar{\Lambda}$ candidate

$$
\begin{aligned}
& >\theta_{\Lambda \bar{\Lambda}}>170^{\circ} \text { at } 2.40 \mathrm{GeV} \\
& >\theta_{\Lambda \bar{\Lambda}}>176^{\circ} \text { at } 2.80 \mathrm{GeV} \\
& >\theta_{\Lambda \bar{\Lambda}}>178^{\circ} \text { at } 3.08 \mathrm{GeV}
\end{aligned}
$$

Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \bar{\Lambda}$ at $2.40,2.80$ and 3.08 GeV

\square Background analysis (non- M_{Λ} peaking background)
■ Signal region:

$$
>\left|\mathrm{M}_{\Lambda} / \mathrm{M}_{\bar{\Lambda}}-1.115\right|<0.01 \mathrm{GeV}
$$

\square Sideband region:

$$
\begin{aligned}
& >1.084<\mathrm{M}_{\Lambda}<1.104 \mathrm{GeV},\left|\mathrm{M}_{\bar{\Lambda}}-1.115\right|<0.01 \mathrm{GeV} \\
& >\left|\mathrm{M}_{\Lambda}-1.115\right|<0.01 \mathrm{GeV}, 1.084<\mathrm{M}_{\bar{\Lambda}}<1.104 \mathrm{GeV} \\
& >1.084<\mathrm{M}_{\Lambda} / \mathrm{M}_{\bar{\Lambda}}<1.104 \mathrm{GeV}
\end{aligned}
$$

$\square \mathrm{M}_{\Lambda}$ peaking background

| $E_{\text {em }}$ | 2.40 GeV | | | 2.80 GeV | | | 3.08 GeV | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Source | $\varepsilon_{\text {sel }}^{\mathrm{MC}}$ | $\sigma(\mathrm{pb})$ | $\mathrm{N}_{\text {nor }}^{\mathrm{MC}}$ | $\varepsilon_{\text {sel }}^{\mathrm{MC}}$ | $\sigma(\mathrm{pb})$ | $\mathrm{N}_{\text {nor }}^{\mathrm{MC}}$ | $\varepsilon_{\text {sel }}^{\mathrm{MC}}$ | $\sigma(\mathrm{pb})$ | $\mathrm{N}_{\text {nor }}^{\mathrm{MC}}$ |
| $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \Lambda \bar{\Lambda}$ | 1.6% | <1.3 | 0.1 | 0.5% | <0.16 | 0 | 0.2% | <0.04 | 0 |
| $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Sigma^{0} \bar{\Sigma}^{0}$ | 0 | 30 | 0 | 0.2% | 17 | 0.1 | 0.2% | 3.4 | 0.2 |
| $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \bar{\Sigma}^{0}$ | | 32 | | | 2.9 | | | <8.7 | |
| $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Xi^{0} \bar{\Xi}^{0}$ | - | - | - | 0 | - | 0 | 0 | - | 0 |
| Sum | | | 0.1 | | | 0.1 | | | 0.2 |

Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \bar{\Lambda}$ at 2.40, 2.80 and 3.08 GeV

■Systematic uncertainty

Source	2.40 GeV	2.80 GeV	3.08 GeV
Reconstruction of Λ	3.8	3.8	3.8
Reconstruction of $\bar{\Lambda}$	3.4	3.4	3.4
M_{Λ} cut	2.5	2.5	2.5
$\mathrm{M}_{\bar{\Lambda}}$ cut	3.0	3.0	3.0
Angular distribution	12.7	10.8	11.4
Input line-shape	2.2	4.0	2.9
Luminosity	1.0	1.0	1.0
Total	14	13	13

- The uncertainty of angular distribution is the largest contribution to the total uncertainty.

Measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda_{\mathrm{c}}^{+} \bar{\Lambda}_{\mathrm{c}}^{+}$near threshold

■Event selection
$>$ Charge track: $|\cos \theta|<0.93,|\mathrm{Vr}|<1 \mathrm{~cm},|\mathrm{Vz}|<10 \mathrm{~cm}$
$>$ Neutral track: $0<\mathrm{T}<14, \mathrm{E}_{\text {barrel }}>25 \mathrm{MeV}, \mathrm{E}_{\text {endcaps }}>50 \mathrm{MeV}$
$>$ PID identification: proton, kaon, pion
$>\pi^{0}$ candidates: $\left|\mathrm{M}_{y \gamma}-\mathrm{M}_{\pi 0}\right|<0.06 \mathrm{GeV}, \chi^{2}{ }_{1 \mathrm{c}}<50$
$>\mathrm{K}_{\mathrm{s}}{ }^{0}$ candidates: $\mathrm{L} / \mathrm{L}_{\text {err }}>2,\left|\mathrm{M}_{\pi \pi}-\mathrm{M}_{\mathrm{Ks} 0}\right|<5 \sigma$
$>\Lambda$ candidates: $\mathrm{L} / \mathrm{L}_{\mathrm{err}}>2,\left|\mathrm{M}_{\mathrm{p} \mathrm{\pi}-}-\mathrm{M}_{\Lambda}\right|<5 \sigma$
$>$ In each event, only the combination of $\Lambda_{c}{ }^{+}$candidate with least

$$
|\Delta \mathrm{E}|=\left|\mathrm{E}_{\Lambda_{c}^{+}}-\mathrm{E}_{\text {beam }}\right| \text { is kept. }
$$

$>$ Fit

$$
\mathrm{M}_{\mathrm{BC}}=\sqrt{\mathrm{E}_{\text {beam }}^{2}-\mathrm{p}_{\Lambda_{\mathrm{c}}^{+}}^{2}} \text { to get the yield }
$$

Observation of $\mathrm{J} / \Psi \rightarrow \mathrm{p} \overline{\mathrm{p}} \mathrm{a}_{0}(980)$

\square Reconstruction of $\mathrm{a}_{0}(980) \rightarrow \pi^{0} \eta$, by choosing the minimum χ^{2}-like variable

$$
\chi_{\pi^{0} \eta}^{2}=\frac{\left(M_{\gamma_{1} \gamma_{2}}-M_{\pi^{0}}\right)^{2}}{\sigma_{-0}^{2}}+\frac{\left(M_{\gamma_{3} \gamma_{4}-M_{\eta}}\right)^{2}}{\sigma_{n}^{2}}
$$

- The reducible background only accounts for 4.3% of the survived events, while most of them are intermediate states of $\mathrm{N}(1440), \mathrm{N}(1535)$ and $\mathrm{N}(1650)$ are the dominant contributions to $\mathrm{J} / \Psi \rightarrow \mathrm{p} \overline{\mathrm{p}} \pi^{0} \eta$.

[^0]: 电磁量能器（EMC）
 CsI（TI）：L＝28cm（15X $)$
 Energy range： $0.02-2 \mathrm{GeV}$
 Barrel $\mathrm{s}_{\mathrm{E}} 2.5 \%, \mathrm{~s}_{\mathrm{I}} 6 \mathrm{~mm}$
 Endcap $\mathrm{s}_{\mathrm{E}} 5.0 \%, \mathrm{~s}_{\boldsymbol{l}} 9 \mathrm{~mm}$

