Measurement of Proton Form Factors and Baryon Pairs ($p\overline{p}$, $\Lambda\overline{\Lambda}$, $\Lambda_c^+\overline{\Lambda}_c^-$) Production in e⁺e⁻ annihilation at BESIII

Xiaorong Zhou

The doctoral dissertation defense

Supervisor: Prof. Zhengguo Zhao, Prof. Guangshun Huang Particle Physics and Nuclear Physics

zxrong@mail.ustc.edu.cn

Something About Me First

Background

- Born in Dec. 1988, in Jiangsu Province
- ➢ Got a Bachelor's degree in July 2010, in USTC
- Being a graduate student since Sep. 2010, in USTC
- Join BESIII collaboration since 2011

Research on BESIII

- First observation of $J/\psi \rightarrow p\bar{p}a_0(980)$, $a_0(980) \rightarrow \pi^0\eta$, published in Phys. Rev. D
- → Measurement of the proton form factor by studying $e^+e^- \rightarrow p\overline{p}$, submitted to Phys. Rev. D
- Cross section measurement of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ near threshold, under internal review, draft preparing
- Cross section measurement of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c^-}$ near threshold, under internal review
- Cross section measurement of $e^+e^- \rightarrow \pi^+\pi^-\psi(3686)$, under internal review

Something About Me First

Academic activities

- 2011.10.07-10.21, Third France-Asia Particle Physics School (FAPPS11), in Les Houches, France
- > 2013.10.07-12.07, academic communication in INFN, Italy
- > 2014.06.22-06.27, gave two posters on OCPA8, in Singapore
- 2015.05.25-05.28, will give a talk "Proton pair production cross sections at BESIII" on NSTAR2015, in Japan

Award

- ▶ 中国科学技术大学研究生新生奖 (2010)
- ▶ 中国科学技术大学研究生会优秀干事奖 (2011)
- ▶ 中国科学技术大学求是研究生奖学金 (2014)
- ▶ 第一届"五校联盟"物理学研究生学术报告 一等奖 (2014)

Outline

Introduction

- Nucleon Electromagnetic Form Factors
- > The $N\overline{N}$ Production Threshold
- BEPCII and BESIII
- Measurement of Proton Form Factors
- Baryon Pair Production Near Threshold
 - → Measurement of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$
 - → Measurement of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$
- Other works on BESIII
- Summary and Prospect

Introduction

Evidence of the nucleons are not point-like particles

The anomalous magnetic moment (Stern, Nobel Prize 1943)

- > Point-like proton and neutron have magnetic moment of μ_N and 0
- > The measured magnetic moment of proton and neutron are $2.79\mu_N$ and $-1.91\mu_N$

Elastic scattering of electron and proton (Hofstadter, Nobel Prize 1961)

 Theoretically, differential cross section is: (^{dσ}/_{dΩ})_{ep(point)}=(^{dσ}/_{dΩ})_{Mott} (1 + 2τtan² θ/₂)
 In experiment, scattering of 188 MeV electron with hydrogen target, differential cross section shows inconsistence with (a), (b), (c)

The deviation represents the effect of a form factor (FF) for the proton.

Nucleon Electromagnetic FFs

- Nucleon Electromagnetic FFs (NEFFs) are among the most basic observables of the nucleon, and intimately related to its internal structure and dynamics.
- NEFFs are semi-empirical formula in effective quantum field theories which help describe the spatial distributions of electric charge and current.
- The FFs constitute a rigorous test for the phenomenological models which consist fundamental elements in QCD.
- Models that reproduce proton and neutron, electric and magnetic form factors in space-like and time-like regions

Successful models in recent years

Chiral field theory J. Haidenbauer, X.-W. Kang, U.-G. Meißner, Nucl. Phys. A 929, 102 (2014). Lattice gauge theory

B.~Jager, et al., Pos LATTICE 2013, 272 (2014).

Nucleon Electromagnetic FFs

The FFs are measured in space-like (SL) region or time-like (TL) region. The proton electromagnetic vertex Γ_{μ} describing the hadron current

 G_E and G_M can be interpreted as Fourier transforms of spatial distributions of charge and magnetization of nucleon in the Breit frame

i.e
$$\rho(\vec{r}) = \int \frac{d^3q}{2\pi^3} e^{-i\vec{q}\cdot\vec{r}} \frac{M}{E(\vec{q})} G_E(\vec{q}^2)$$

NEFFs in Space-like region

Nucleon Electromagnetic FFs (NEFF) in Space-like region

Unpolarized electron-proton elastic > In one-photon exchange approximation, $\frac{d\sigma}{d\Omega} = (\frac{d\sigma}{d\Omega})_{Mott} [G_E^2 + \frac{\tau}{\epsilon} G_M^2) \frac{1}{1+\tau}, \quad \epsilon = \frac{1}{1+2(1+\tau)\tan^2(\frac{\theta_e}{2})}$ is the longitudinal polarization of photon. > Rosenbluth Separation: $\sigma_R = \frac{\epsilon}{\tau} G_E^2 + G_M^2$

Polarized electron-proton elastic scattering

- Longitudinally polarized electron beam
- Recoil proton polarization:

$$rac{G_E}{G_M} = -rac{P_t}{P_l} rac{E_e + E_{beam}}{2M_p} tan rac{\theta}{2}$$

The two-photon exchange contribution

Solid circle: recoil polarization Open circle: Rosenbluth separation

NEFFs in Time-like region

NEFF in Time-like region

➢ In one-photon exchange approximation

Sommerfeld enhancement and resummation factors:

NEFFs in Time-like region

Previous experimental results from scan method and ISR method:

Process	Date	Experiment	$q^2 ({ m GeV}^2/c^4)$	q^2 point	Event	Precision
$e^+e^- o par p$	1972	FENICE/ADONE [17]	4.3	1	27	15%
	1979	DM1/ORSAY-DCI [18]	3.75-4.56	4	70	25.0%
	1983	DM2/ORSAY-DC1 [19]	4.0-5.0	6	100	19.6%
_	1998	FENICE/ADONE [20]	3.6-5.9	5	76	19.3%
	2005	BES/BEPC [21]	4.0-9.4	10	80	21.2%
_	2006	CLEO/[22]	13.48	1	16	33.3%
$p^+p^- ightarrow e^+e^-$	1976	PS135/CERN [24]	3.52	1	29	15.7%
	1994	PS170/CERN [25]	3.52-4.18	9	3667	6.1%
	1993	E760/Fermi [26]	8.9-13.0	3	29	33.8%
	1999	E835/Fermi [27]	8.84-18.4	6	144	10.3%
	2003	E835/Fermi [28]	11.63-18.22	4	66	21.1%
$e^+e^- o \gamma + p\bar{p}$	2006	BaBar/SLAC-PEPII [30]	3.57-19.1	38	3261	9.8%
	2013	BaBar/SLAC-PEPII [31]	3.57-19.1	38	6866	6.7%
	2013	BaBar/SLAC-PEPII [32]	9.61-36.0	8	140	18.4%

NEFFs in Time-like region

Still questions left on the proton FFs

- > Steep rise toward threshold
- \succ Two rapid decreases of the FF near 2.25 and 3.0 GeV
- The asymptotic values for SL and TL FFs should be identical at high energies, while
- G_{M} is larger than SL quantities (i.e. at $|q^2|=3.08^2 \text{ GeV}^2$, $|G_{TL}|=0.031$, and $|G_{SL}|=0.011$)

Electromagnetic FF ratio

- ► Poor precision (11%, 43%) and limited energy
- \rightarrow disagreement of $|G_{\rm E}/G_{\rm M}|$ ratio between PS170 and BaBar

$N\overline{N}$ Production Threshold

$N\overline{N}$ production threshold

- > At threshold, $|G_E| = |G_M| = |G_{eff}|$
- The total cross section becomes:
- $\sigma^{\text{th}} = \frac{\pi \alpha^2 C}{3m_p^2 \tau} \Big[1 + \frac{1}{2\tau} \Big] |G_{\text{eff}}^{\text{N}}(q^2)|^2 = \sigma_{\text{point}}^{\text{N}}(q^2) |G_{\text{eff}}^{\text{N}}(q^2)|^2$
- ➤ The point-like cross sections for proton at threshold:
 ➤ σ^p_{point}(4m²_p) = π²α³/(2m²_p) = 0.848 nb

The steep slope at $p\overline{p}$ has been explained by:

- ightarrow pp̄ final-state interaction acting near the threshold (i.e. J/ $\psi \rightarrow \gamma p \bar{p}$)
- ➤ a narrow meson resonance below the threshold (Phys. Lett. B 643, 29 (2006))

 $> |G_{4m_p^2}| \sim 1$ (Eur. Phys. J. A 39, 315 (2009))

Beijing Electron Positron Collider

Beijing Electron Positron Collider

Data taken in BEPCII till July 2014:

Taking data	Total Num. / Lum.	Taking time
<i>J/</i> ψ	225+1086 M	2009+2012
ψ(2 <i>S</i>)	106+350 M	2009+2012
ψ(3770)	2916 pb ⁻¹	2010~2011
τ scan	24 pb ⁻¹	2011
Y(4260)/Y(4230)/Y(4360)/scan	806/1054/523/488 pb ⁻¹	2012~2013
4600/4470/4530/4575/4420	506/100/100/42/993 pb ⁻¹	2014
J/ψ line-shape scan	100 pb ⁻¹	2012
R scan (2.23, 3.40) GeV	12 pb ⁻¹	2012
R scan (3.85, 4.59) GeV	795 pb ⁻¹	2013~2014

The red color marks the data sets used in my research topics.

BEijing Spectrometer (BESIII)

2015/5/11

BESIII

Reconstruction of $e^+e^- \rightarrow p\overline{p}$

Lum. (pb^{?1})

Event selection

Good charged tracks $|R_{xy}| < 1 \text{ cm}, |R_z| < 10 \text{ cm}$ $|\cos\theta| < 0.93$

Particle identification

- > dE/dx + Tof
- > Prob(p) > Prob(K/ π)

> For proton track, require E/p < 0.5, $\cos\theta < 0.8$

$$N_{char} = 2 \& N_p = N_{\overline{p}} = 1$$
$$|tof_p - tof_{\overline{p}}| < 4 ns$$

Two tracks angle $> 179^{\circ}$

Momentum window cut for proton and anti-proton

Measurement of Proton Form Factors

- $\sigma_{\text{Born}} = \frac{N_{\text{obs}} N_{\text{bkg}}}{L \cdot \epsilon \cdot (1 + \delta)}$
 - $> N_{obs}$: the observed number of signal in data
 - > N_{bkg}: the number of background evaluated from MC
 - ≻ L: the integral luminosity
 - \succ ϵ : detection efficiency by MC sample, with Conexc generator
 - $(1+\delta)$: radiative correction factor

Extraction of the effective FF

Effective FF

> Assuming $|G_E| = |G_M| = |G_{eff}|$, (which holds at $p\overline{p}$ mass threshold)

$$\sigma = \frac{\pi \alpha^2}{3m_p^2 \tau} \left[1 + \frac{1}{2\tau} \right] |G_{\text{eff}}|^2$$

> After taking natural units: $1m = 5.0677 \times 10^{15} \text{ GeV}^{-1}$

$$G_{eff} = \sqrt{\frac{\sigma_{Born}}{86.83 \cdot \frac{\beta}{s} (1 + \frac{2m_p^2}{s})}}$$

Extraction of electromagnetic |G_E/G_M| ratio

Angular analysis to extract the em FFs:

$$\frac{d\sigma}{d\Omega}(q^2) = \frac{\alpha^2 \beta}{4s} |G_M(s)|^2 \left[\left(1 + \cos^2 \theta_p \right) + \frac{R_{em}^2}{\tau} \frac{1}{\tau} \sin^2 \theta_p \right]$$

$$R_{em} = G_E(q^2)/G_M(q^2)$$

 \bullet θ : polar angle of proton of baryon at the c.m.system

Fit function:

$$\geq \frac{dN}{d\cos\theta_p} = N_{norm} \left[\left(1 + \cos^2\theta_p \right) + R_{em}^2 \frac{1}{\tau} \sin^2\theta_p \right]$$

$$\geq N_{norm} = \frac{2\pi\alpha^2\beta L}{4s} \left[1.94 + 5.04 \frac{m_p^2}{s} R^2 \right] G_M(s)^2 \text{ is the overall normalization}$$

Extraction of electromagnetic |G_E/G_M| ratio

Method of Moment

Solution $f(x|\theta)$ with unknown parameters θ , the r-th algebraic moment of the population is defined by:

$$\mu_{\rm r}(\theta) = \int_{\Omega} x^{\rm r} f(x|\theta) dx$$

An estimation of $\mu_r(\theta)$ is the arithmetic mean of the r-th power of the observation x_i

$$\mu_{\rm r}(\theta) = \frac{1}{n} \sum_{i=1}^{n} x_i^{\rm r}$$

> Second Moment of $\cos\theta_{p:}$ $\left(\cos^{2}\theta_{p}\right) = \frac{1}{\frac{N_{norm}}{N_{norm}}} \int \cos^{2}\theta_{p} \frac{d\sigma}{d\Omega} d\cos\theta_{p}$ > The estimator of $\left(\cos^{2}\theta_{p}\right)$: $\left(\cos^{2}\theta_{p}\right) = \frac{1}{\cos^{2}\theta_{p}} = \frac{1}{N} \sum_{i=1}^{N} \cos^{2}\theta_{p} / \varepsilon_{i}$

Extraction of electromagnetic $|G_E/G_M|$ ratio

χ^2/ndf $|G_M|$ (×10⁻²) \sqrt{s} (MeV) $|G_E/G_M|$ 1.8 BESIII BaBar Fit on $\cos \theta_p$ 1.6 PS170 $18.42 \pm 5.09 \pm 0.98$ 2232.4 $0.87 \pm 0.24 \pm 0.05$ 1.04 G_E/G_M| $11.30 \pm 4.73 \pm 1.53$ 2400.0 $0.91 \pm 0.38 \pm 0.12$ 0.74 $3.61 \pm 1.71 \pm 0.82$ 0.61(3050.0, 3080.0) $0.95 \pm 0.45 \pm 0.21$ method of moment 0.60.4 18.60 ± 5.38 2232.4 0.83 ± 0.24 0.2 2400.0 0.85 ± 0.37 11.52 ± 5.01 0.0 2.0 2.2 2.4 2.6 2.8 3.0 (3050.0, 3080.0) 0.88 ± 0.46 3.34 ± 1.72 $M_{p\overline{p}}$ (GeV/c²)

Results on $|G_E/G_M|$ ratio:

Conclusion:

- ➤ The Born cross sections and effective FFs are in good agreement with previous experiments, improving the overall uncertainty by ~30%.
- → The measured $|G_E/G_M|$ ratio are close to unity (indicates $|G_E| = |G_M|$)

Data set at $\sqrt{s} = 2232.4$ MeV, which is 1.0 MeV above $\Lambda\overline{\Lambda}$ threshold

Typical event display

 \succ Reconstruction of Λ → pπ⁻, $\overline{\Lambda}$ → $\overline{p}\pi^+$

two low momentum tracks are pions.

no proton information left, anti-proton annihilation will produce high momentum tracks

 \succ Reconstruction of $\overline{\Lambda}$ → $\overline{n}\pi^0$

at most two track in detector

angle between anti-neutron and pion0 is larger than 140°

Reconstruction of $\Lambda \to p\pi^-, \overline{\Lambda} \to \overline{p}\pi^+$

- Extraction of signal events
- Fit the distribution of the largest V_r
 - Signal described by the MC shape
 - > Background described by the sideband of π momentum.
 - > Yields: 43 ± 7 , detection efficiency: 20.1%

Reconstruction of $\overline{\Lambda} \to \overline{n}\pi^0$

BDT choices

- > To separate the signal from hige background
- ▶ 1/2 of MC and background for training
- \succ Minimum leaf size = 400 events
- \blacktriangleright Maximum tree depth = 3
- > AdaBoost parameter $\beta=0.5$
- > Signal leaf if purity > 0.5

BDT output

Measurement of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$

Cross section and effective FF

Reconstruction @ 2232.4 MeV	σ _{Born} (pb)	$ G (imes 10^{-2})$
$\Lambda ightarrow \mathrm{p} \pi^-$, $\overline{\Lambda} ightarrow \overline{\mathrm{p}} \pi^+$	$325\pm53\pm46$	
$\overline{\Lambda} ightarrow \overline{n} \pi^0$	$300\pm100\pm40$	
Combined	$\textbf{320} \pm \textbf{58}$	63.4 ± 5.7

$$\succ (e^+e^- \to \Lambda \overline{\Lambda}) = \frac{N_{sig} - N_{bkg}}{L \cdot \varepsilon \cdot (1 + \delta) \cdot B_r(\Lambda \to p\pi^-) \cdot B_r(\overline{\Lambda} \to \overline{p}\pi^-)}$$

> Assuming $|G_E| = |G_M| = |G|$ (as proton FF case)

$\sqrt{\mathbf{s}}$ (GeV)	σ _{Born} (pb)	$ G (imes 10^{-2})$
2.40	$133 \pm 20 \pm 19$	$12.93 \pm 0.97 \pm 0.92$
2.80	$15.3 \pm 5.4 \pm 2.0$	$4.16 \pm 0.73 \pm 0.27$
3.08	$3.9 \pm 1.1 \pm 0.5$	$2.21 \pm 0.31 \pm 0.14$

Measurement of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$

The cross section of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ shows a sudden rise near threshold

- The results are consistent with BaBar experiment at high c.m.energies
- The precision of the cross section is between 18.1% and 33.3%, while results from BaBar experiment is 32.2% and 100.0%
- The uncertainty is dominant by statistics. The dominant systematic source is the angular distribution of Λ

Measurement of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$

Discussions on the non-zero cross section 320 ± 58 pb at threshold:

Theory prediction for neutral baryons

$$\sigma_{\Lambda\overline{\Lambda}} = \frac{2\pi\alpha^2}{W^2} \, \beta G_{\rm eff}^2(W^2)$$

Cross section vanishes as the velocity

 $\beta = (1 - 4M_{\Lambda}^2/W^2)^{1/2}$

when: $W^2 \rightarrow 4M_A^2$.

Neutral baryon non-zero cross section at threshold? Coulomb interaction at quark level!

Tag Λ_c^+ with its multiple decay modes:

Decay modes	Br(modeN)/Br(mode1)	Branching fraction
$\Lambda_c^+ \to p^+ \pi^+ K^-$	1	(6.84±0.36) %
$\Lambda_c^+ ightarrow p^+ K_s^0$, $K_s^0 ightarrow \pi^+ \pi^-$	$(0.46 \pm 0.04) * 50\% * 69.2\%$	$(1.09\pm0.11)\%$
$\Lambda_c^+ o \Lambda \pi^+$, $\Lambda o p^+ \pi^-$	(0.21 ± 0.02) *63.9%	$(0.92 \pm 0.10)\%$
$\Lambda_c^+ ightarrow p^+ \pi^+ K^- \pi^0$, $\pi^0 ightarrow \gamma \gamma$	(0.66 ± 0.12)	$(4.51\pm0.85)\%$
$\Lambda_c^+ o p^+ K_s^0 \pi^0$, $K_s^0 o \pi^+ \pi^-$, $\pi^0 o \gamma \gamma$	(0.65 ± 0.08) *50%*69.2%	$(1.54 \pm 0.21)\%$
$\Lambda_c^+ o \Lambda \pi^+ \pi^0$, $\Lambda o p^+ \pi^-$, $\pi^0 o \gamma \gamma$	(0.72 ± 0.18) *63.9%	$(3.15 \pm 0.80)\%$
$\Lambda_c^+ ightarrow p^+ K_s^0 \pi^+ \pi^-$, $K_s^0 ightarrow \pi^+ \pi^-$	$(0.51 \pm 0.06) * 50\% * 69.2\%$	$(1.21\pm0.16)\%$
$\Lambda_c^+ o \Lambda \pi^+ \pi^+ \pi^-$, $\Lambda o p^+ \pi^-$	(0.53 ± 0.03) *63.9%	$(2.32\pm0.18)\%$
$\Lambda_c^+ o \Sigma^0 \pi^+$, $\Sigma^0 o \Lambda \gamma$, $\Lambda o p^+ \pi^-$	(0.20 ± 0.04) *63.9%	$(0.87 \pm 0.18\%)$
$\Lambda_c^+ o \Sigma^+ \pi^+ \pi^-$, $\Sigma^+ o p^+ \pi^0$	(0.72 ± 0.07) *51.6%	$(2.54 \pm 0.28)\%$
Sum		(24.99±1.32)%

• Fit results at $\sqrt{s} = 4600.0$ MeV for each mode:

2015/5/11

Measurement of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^+$

Cross section measurement:

\sqrt{s} (MeV)	Lumi. (pb ⁻¹)	$\beta=\sqrt{1-4m^2/s}$
4575.0	47.7	0.03
4580.0	8.5	0.05
4590.0	8.1	0.08
4600.0	567.6	0.10

Angular distribution

> Fitting M_{BC} in different $\cos\theta$ bin, with detection efficiency corrected.

> The angular distribution is parameterized by $1 + \alpha \cos^2 \theta$.

The differential cross section can be expressed as: $\frac{d\sigma_{Born}(s)}{d\Omega} = \frac{\alpha^2 \beta C}{4s} [|G_M(s)|^2 (1 + \cos^2 \theta) + \frac{4m_p^2}{s} |G_E(s)|^2 \sin^2 \theta] \propto (1 + \alpha \cos^2 \theta)$

$ G_{\rm E} $ ratio can be calculated as:	$\sqrt{\mathbf{s}}$ (MeV)	$ \mathbf{G}_{\mathbf{E}}/\mathbf{G}_{\mathbf{M}} $
$ \overline{G_M} $ ratio can be calculated as:	4575.0	1.47±0.22
	4600.0	123 ± 0.06

Fitting of the line-shape — test of a hypothesis on threshold

The function of non-resonant contribution can be parameterized as

NonR =
$$\frac{4\pi\alpha^2 C\beta}{3m^2} [|G_M|^2 + \frac{1}{2\tau} |G_E|^2] = A |G_M|^2 [1 + \frac{1}{2\tau} (\frac{G_E}{G_M})^2]$$

The Coulomb factor $C = \varepsilon \cdot R$

 $\succ \varepsilon = \frac{\pi \alpha}{\beta}$ is the enhancement factor

> R is the resummation factor

★ In the conventional prediction: $R = \frac{\sqrt{1-\beta^2}}{1-e^{-\pi\alpha/\beta}}$

★ From the prediction by R. Baldini Ferroli, S. Pacetti

$$R_s = \frac{\sqrt{1 - \beta^2}}{1 - e^{-\pi\alpha_s/\beta}}$$

The coupling constants: $\alpha = 1/137$ $\alpha_s = 0.5$

Fitting of the line-shape: NonR = $A|G_M|^2 [1 + \frac{1}{2\tau} (\frac{G_E}{G_M})^2]$

$\frac{ G_E }{ G_E }$ ratio has been extracted as:	\sqrt{s} (GeV)	$ G_E/G_M $
$ G_{\rm M} $ futto has been extracted us.	4.575	1.47±0.22
	4.6	1.23 ± 0.06

Assuming $|G_M|$ is a constant value from threshold to $\beta = 0.1$ GeV:

Using the traditional R to fit line-shape, the fit status is bad

Using the updated R_s to fit line-shape, the fit status is good, $|G_M|$ is 1.07 ± 0.02 .

Observation of $J/\psi \rightarrow p\overline{p}a_0(980)$

Chiral Perturbative Theory (ChPT):

- \succ It is an effective field theory which deals with mesons and baryons
- At low energy, the degrees of freedom are hadrons, due to the confinement of quarks
- The effective Lagrangian is therefore expanded in powers of the external momenta of hadrons
- A chiral unitary approach from ChPT is used to investigate Fourbody decays $J/\psi \rightarrow N\overline{N}MM$ with sufficient freedom in its meson-meson amplitude
- The process $J/\psi \rightarrow p\bar{p}a_0(980)$ is sensitive to fix the parameters in theoretical calculation

Observation of $J/\psi \rightarrow p\bar{p}a_0(980)$

Vields:

- $\succ \text{PDF: } F(m) = f_{sig}\sigma(m) \otimes \left[\varepsilon(m) \times \hat{T}(m)\right] + \left(1 f_{sig}\right) B(m)$
- Flatté formula $\hat{T}(m)$: parameterize the $a_0(980)$ amplitudes coupling to $\pi^0\eta$ and $K\overline{K}$

$$\hat{T}(m) \propto \frac{1}{(m_{a_0}^2 - m^2)^2 + (\rho_{\pi^0 \eta} g_{a_0 \pi^0 \eta}^2 + \rho_{K\bar{K}} g_{a_0 K\bar{K}}^2)^2}$$

> The two coupling constants

Experiments	g _{a0} π ⁰ η	${f g}_{a_0 K \overline{K}}$	
SND	$3.11^{+2.61}_{-0.40}$	$4.20^{+14.01}_{-1.35}$	
BNL	2.47 ± 0.76	1.67 ± 0.29	
KLOE	2.82 ± 0.05	2.15 ± 0.08	
CB	2.87 ± 0.11	2.09 ± 0.11	
Average	2.83 ± 0.05	2.11 ± 0.06	0.7 0.8 0.9 1.0 M-•- (GeV

 $\gg Br(J/\psi \to p\bar{p}a_0(980) \to p\bar{p}\pi^0\eta) = (6.8 \pm 1.2 \pm 1.3) \times 10^{-5}$

Summary

The proton effective FFs are measured at 12 c.m.energies. The overall uncertainty of cross sections is improved by about 30%. The | G_E/G_M| ratio are extracted at three energy points, with uncertainty in 25% and 50% (dominant by statistics). Submitted to P. R. D.

The cross section of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ is firstly measured near threshold, to be 320 ± 58 pb, which contradicts the standard theoretical prejudice. The result at other three energy points are measured with uncertainty in 18.1% and 33.3%, Under internal review.

The cross sections of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$ are measured near threshold. The $|G_E/G_M|$ at 4.575 GeV is measured to be 1.47±0.22, while at threshold, it is supposed to be unity if the S-wave dominants. Under internal review.

The process $J/\psi \rightarrow p\bar{p}a_0(980) \rightarrow p\bar{p}\pi^0\eta$ is observed with a significance of 6.5 σ . The results provides a quantitative comparison with the chiral unitary approach. Published in P. R. D.

Prospect-I

At BEPCII, a new scan with c.m. energy in 2.0 GeV and 3.1 GeV is ongoing, which suggest following topics:

Precision measurement of proton form factor

reveal two steps around 2.25 and 3.0 GeV, structures? fluctuation? improve the $|G_E/G_M|$ ratio uncertainty, Babar? PS170?

Neutron form factor

explain spatial distributions due to isospin difference between p and n a preliminary study at 2232.4 GeV yields 13 events with 2.0% efficiency the efficiency would be improved significantly if the TOF information can be used!

Baryonic pair production near threshold

if this threshold effect universal for different baryonic pair source: FSI effect ? corrections on FFs?

Prospect-II

- From a series Monte Carlo study, we can predict the expected luminosity for a determined $|G_{\rm E}/G_{\rm M}|$ precision
- To achieve a 1.0% precision of $|G_E/G_M|$ ratio, the expect luminosity is 1.6 fb⁻¹ (about 690 days of data taken at BEPCII !)
- A future high luminosity factory will be very helpful for the accurate measurement

	N _{sig}	$\delta_{R_{em}}/R_{em}(\%)$	$\delta_{\sigma}/\sigma(\%)$	N _{orig}	Expect Lum. (pb ⁻¹)
	614 ± 28 (data)	24	3.9	930	2.631
	769 ± 28	22	3.6	1165	3.295
	1534 ± 39	15	2.5	2324	6.573
	3881 ± 62	9.5	1.6	5880	16.630
	7856 <u>+</u> 89	6.6	1.1	11903	33.662
	23572 <u>+</u> 154	3.9	0.65	35715	101.004
	31286 ± 177	3.4	0.57	47403	134.058
	$\textbf{156253} \pm \textbf{395}$	1.5	0.25	236747	669.533
	389898 ± 624	0.96	0.16	590755	1670.69
201	5/5/11		Prospect		-

Prospect

Thank you all for attending my Ph.D defense !

Many thanks to

My supervisor:

Zhengguo Zhao (USTC), Guangshun Huang (USTC)

Thesis reviewer:

Haiping Peng (USTC), Ziping Zhang (USTC), Haibo Li (IHEP), Shenjian Chen (NJU), Yajun Mao (PKU)

Defense reviewer:

Xiaoyan Shen (IHEP), Haiping Peng (USTC), Qun Wang (USTC), Ziping Zhang (USTC), Jianbei Liu (USTC)

Backups

Measurement of Proton Form Factors

2015/5/11

Measurement of Proton FFs

1.30

Reconstruction of $e^+e^- \rightarrow p\overline{p}$

Back-to-back angle distribution:

gggg

Background analysis

- Beam associated background: interaction between beam and beam pipe, beam and residual gas and the Touschek effect.
- A special data sample, with separated beam condition, are used to study such background.
- The physical background from the processes with two-body in the final state, or with multi-body include pp in the final states.

	$\sqrt{s} = 2t$	232.4]	MeV (2.	$.63 \text{ pb}^{-1}$)	$\sqrt{s} = 308$	80.0 N	1 eV (30)).73 pb ⁻	$^{1})$
Bkg.	$N_{gen}^{MC}~(imes 10^6)$	N^{MC}_{sur}	σ (nb)	$N_{uplimit}^{MC}$	N_{nor}^{MC}	$N_{gen}^{MC}~(\times 10^6)$	N^{MC}_{sur}	σ (nb)	$N_{uplimit}^{MC}$	N_{nor}^{MC}
e^+e^-	9.6	0	1435.01	< 0.96	0	39.9	1	756.86	< 2.54	1
$\mu^+\mu^-$	0.7	0	17.41	< 0.16	0	1.5	0	8.45	< 0.42	0
$\gamma\gamma$	1.9	0	70.44	< 0.24	0	4.5	0	37.05	< 0.62	0
$\pi^+\pi^-$	0.1	0	0.17	< 0.01	0	0.1	0	< 0.11	< 0.02	0
K^+K^-	0.1	0	0.14	< 0.008	0	0.1	0	0.093	< 0.02	0
$p\bar{p}\pi^0$	0.1	0	< 0.1	< 0.006	0	0.1	0	< 0.1	< 0.07	0
$p\bar{p}\pi^{0}\pi^{0}$	0.1	0	< 0.1	< 0.006	0	0.1	0	< 0.1	< 0.07	0
$\Lambda\overline{\Lambda}$	0.1	0	< 0.4	< 0.02	0	0.1	0	0.002	< 0.001	0

Systematic Uncertainty on σ_{Born}

Tracking:

Study from control sample $J/\psi \rightarrow p\bar{p}\pi^{+}\pi^{-}$ and $\psi(3686) \rightarrow \pi^{+}\pi^{-}J/\psi \rightarrow \pi^{+}\pi^{-}p\bar{p}$

> Tracking efficiency: $N_{good=4}/N_{good\geq3}$

2015/5/11

Systematic Uncertainty on σ_{Born}

Particle identification

- Different information on the PID method:
 - ★ 1) combined information of dE/dx, BTOF, ETOF; 2) dE/dx and BTOF; 3) dE/dx;
 4)BTOF and ETOF; 5) BTOF.

2015/5/11

Systematic Uncertainty on σ_{Born}

Other sources of systematic uncertainties

- ≻ E/p requirement: select proton sample from control sample $J/ψ \rightarrow p\bar{p}\pi^+\pi^-$.
- Background estimation: use 2D sideband to estimate the background.
- ISR correction factor: use generator Phokhara to generate signal MC

Integral luminosity: analyze large-angle Bhabha scattering process

Reconstruction of $\Lambda \rightarrow p\pi^-, \overline{\Lambda} \rightarrow \overline{p}\pi^+$

Event selection

≻ Two good charged tracks with low momentum [0.08, 0.11] GeV

> PID:
$$N_{\pi^+} = N_{\pi^+} = 0$$

- The largest V_r among all the charged tracks shows an enhancement around 3 cm for signal MC
- ▶ No significant events lie around 3 cm in the background.

Reconstruction of $\Lambda \to p\pi^-$, $\overline{\Lambda} \to \overline{p}\pi^+$

Background process $e^+e^- \rightarrow \pi^+\pi^-p\overline{p}$

Requirement on the momentum of pion:

 $> 0.0 < p_{\pi} < 0.07$ GeV/c and $0.12 < p_{\pi} < 0.16$ GeV/c

- The enhancement around 3 cm could still be observed in background process
- ≻No enhancement is observed in data

The background of process $e^+e^- \rightarrow \pi^+\pi^-p\overline{p}$ is small and can be neglected.

Reconstruction of $\overline{\Lambda} \to \overline{n}\pi^0$

Event selection

>At most two good charged tracks

>At least three good showers:

★E>25 MeV in barrel and E>50 MeV in endcap

 \star Angle related the closest charged track larger than 10^o

> The most energetic shower is selected as \overline{n} candidate

Reconstruction of $\overline{\Lambda} \to \overline{n}\pi^0$

Boosted Decision Tree

Decision Tree

An individual classifier is defined as h(x), h(x)=+1 and -1 for signal and background.

Separation criteria: Gini Index, defined by $p \cdot (1-p)$

➢ Boost (AdaBoost)

Boost weight

The subsequent tree is trained using a modified event sample with a boost weights applied for misclassified events: $\alpha = \frac{1-err}{err}$

Output classifier

$$y_{\text{Boost}}(x) = \frac{1}{N_{\text{collection}}} \cdot \sum_{i}^{N_{\text{collection}}} \ln(\alpha_i) \cdot h_i(x)$$

Boosting increases the statistical stability of the classifier and improve the separation performance compared to a single decision tree.

> The limitation of tree depth can eliminate the overtraining

Systematic uncertainty

$\begin{array}{c} \textbf{Recon} \\ \Lambda \rightarrow p\pi^{-},\overline{\Lambda} \end{array}$	struct $\rightarrow \overline{p}\pi^+$ (%)	Reconstruct $\overline{\Lambda} \rightarrow \overline{n}\pi^0$ (%)		
Source	Uncertainty	Source	Uncertainty	
π tracking	12.3	$\overline{\mathbf{n}}$ selection	2.2	
π PID	1.0	π^0 selection	2.3	
V_r selection	0.3	BDT output	4.8	
Fit procedure	4.6	Fit procedure	8.8	
MC generator*	3.2	MC generator*	3.2	
Energy spread*	2.0	Energy spread*	2.0	
Energy scale*	3.9	Energy scale*	3.9	
Trigger efficiency	0.0	Trigger efficiency	1.0	
Luminosity*	1.0	Luminosity*	1.0	
Total	14	Total	12	

Combined result: weighted least squares method

$$\blacksquare \overline{\mathbf{x}} \pm \delta \overline{\mathbf{x}} = \frac{\sum_{j} \mathbf{x}_{j} \cdot \sum_{i} \omega_{ij}}{\sum_{i} \sum_{j} \omega_{ij}} \pm \sqrt{\frac{1}{\sum_{i} \sum_{j} \omega_{ij}}}$$

 $\square \omega_{ij}$ is the element of V⁻¹. In case of two measurement:

$$\mathbf{V} = \begin{pmatrix} \sigma_{T1}^2 & \operatorname{Cov}(\mathbf{x}_1, \mathbf{x}_2) \\ \operatorname{Cov}(\mathbf{x}_1, \mathbf{x}_2) & \sigma_{T2}^2 \end{pmatrix}, \ \sigma_{Ti}^2 = \sigma_i^2 + x_i^2 \cdot \epsilon_f^2$$

Convariance sysematic error: $Cov(x_1, x_2) = x_i \cdot \epsilon_{ij} \cdot x_j \cdot \epsilon_{ji}$

The weighted averaged measured values are:

$$\mathbf{x} = \frac{x_1 \sigma_2^2 + x_2 \sigma_1^2}{\sigma_1^2 + \sigma_2^2 + (x_1 - x_2)^2 \epsilon_f^2} , \sigma_i^2 = \frac{\sigma_1^2 \sigma_2^2 + (x_1 \sigma_2^2 + x_2 \sigma_1^2) \epsilon_f^2}{\sigma_1^2 + \sigma_2^2 + (x_1 - x_2)^2 \epsilon_f^2}$$

$$\frac{\text{Reconstruction}}{\Lambda \to p\pi^-, \overline{\Lambda} \to \overline{p}\pi^+} \qquad 325 \pm 53 \pm 46$$

$$\overline{\Lambda} \to \overline{n}\pi^0 \qquad 300 \pm 100 \pm 40$$

$$\text{Combined} \qquad 320 \pm 58$$

Measurement of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ at 2.40, 2.80 and 3.08 GeV

Event selection

- Charged track
 - > |Vr|<30 cm, |Vz|<10 cm, |cos θ |<0.93
 - > N_{good} ≥ 4
- Particle identification

 $\succ N_p = N_{\overline{p}} = N_{\pi^+} = N_{\pi^-} = 1$

- Second vertex fitting for $p\pi^-$ and $\bar{p}\pi^+$
- Mass window cut: $|M_{\Lambda}/M_{\overline{\Lambda}} 1.115| < 0.01 \text{ GeV}$
- Angle cut between Λ and $\overline{\Lambda}$ candidate
 - $\triangleright \theta_{\Lambda\bar{\Lambda}} > 170^{\circ} \text{ at } 2.40 \text{ GeV}$
 - $> \theta_{\Lambda\bar{\Lambda}} > 176^{\circ} \text{ at } 2.80 \text{ GeV}$
 - $\triangleright \theta_{\Lambda\bar{\Lambda}} > 178^{\circ} \text{ at } 3.08 \text{ GeV}$

54

Measurement of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ at 2.40, 2.80 and 3.08 GeV

Background analysis (non- M_{Λ} peaking background)

- Signal region:
 - $\gg |M_{\Lambda}/M_{\overline{\Lambda}} 1.115| < 0.01 \text{ GeV}$
- Sideband region:
 - ightarrow 1.084 < M_Λ < 1.104 GeV, |M_{Λ̄} − 1.115| < 0.01 GeV
 - ▶ $|M_{\Lambda} 1.115| < 0.01$ GeV, $1.084 < M_{\overline{\Lambda}} < 1.104$ GeV
 - $ightarrow 1.084 < M_{\Lambda}/M_{\overline{\Lambda}} < 1.104 \text{ GeV}$

\blacksquare M_{Λ} peaking background

Measurement of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ at 2.40, 2.80 and 3.08 GeV

Systematic uncertainty

Source	2.40 GeV	2.80 GeV	3.08 GeV
Reconstruction of Λ	3.8	3.8	3.8
Reconstruction of $\overline{\Lambda}$	3.4	3.4	3.4
M_{Λ} cut	2.5	2.5	2.5
$M_{\overline{\Lambda}}$ cut	3.0	3.0	3.0
Angular distribution	12.7	10.8	11.4
Input line-shape	2.2	4.0	2.9
Luminosity	1.0	1.0	1.0
Total	14	13	13

The uncertainty of angular distribution is the largest contribution to the total uncertainty.

Event selection

 \triangleright Charge track: $|\cos\theta| < 0.93$, |Vr| < 1 cm, |Vz| < 10 cm

Neutral track: 0<T<14, E_{barrel}>25 MeV, E_{endcaps}>50MeV

PID identification: proton, kaon, pion

- $\succ \pi^0$ candidates: $|M_{\gamma\gamma}-M_{\pi0}| < 0.06$ GeV, $\chi^2_{1c} < 50$
- > K_s⁰ candidates: L/L_{err}>2, |M_{ππ}-M_{Ks0}|<5σ
- $> \Lambda$ candidates: L/L_{err}>2, $|M_{p\pi}-M_{\Lambda}| < 5\sigma$
- > In each event, only the combination of Λ_c^+ candidate with least $|\Delta E| = |E_{\Lambda_c^+} - E_{beam}|$ is kept.

≻ Fit

$$M_{BC} = \sqrt{E_{beam}^2 - p_{\Lambda_c^+}^2}$$
 to get the yield

Observation of $J/\psi \rightarrow p\overline{p}a_0(980)$

The reducible background only accounts for 4.3% of the survived events, while most of them are intermediate states of N(1440), N(1535) and N(1650) are the dominant contributions to $J/\psi \rightarrow p\bar{p}\pi^0\eta$.

