QUESTION Mail:

Dear Prof.Olsen,
I'm Xiaodong from USTC, China, a young graduated student. This summer I was really lucky to have your class at UCAS.

I just have a question about $\mathrm{D}+$ decay to piO/Ks e+ \nu_e. This is a work at BESIII. And this work has been published: https://journals.aps.org/prd/pdf/10.1103/PhysRevD.96.012002 In this work, they found this three body decay is not in PHSP way, as TABLE IV shown in that paper.
I'm confused, I think neither of two particles in final states can come from a resonance, so why the decay is not PHSP decay?
(When I discussed with my workmates, one of them think it may caused by W in feynman diagram. But the W particle is virtual, so l'm still confused.)

Thanks in advanced!

Best Wishes,
Xiaodong Shi
University of Science and Technology of China
ANSWER Mail:
Dear Xiaodong
Interesting question.
The D+ meson is a c dbar quark combination. The decay diagram for D+-->K e nu (pi e nu) proceeds via c -->s W+ (c -->d W+) followed by W+-->e nu. At lowest order, the dbar quark is not involved in the diagram (and is called a "spectator.').

The $W+$ propagator goes like $1 /\left(q^{\wedge} 2+M(W)^{\wedge} 2\right)$, where $q^{\wedge} 2$ is the e nu invariant mass and, since $q^{\wedge} 2 \ll M(W)^{\wedge} 2$, the W propagator goes like $1 / M(W)^{\wedge} 2$ = constant, as you correctly point out.

But the final state s (or d) quark has to combine with the spectator dbar quark to for the final state Ks (or pi) meson. The probability for this depends upon the the momentum of the s (d) quark, and that in turn depends on $q^{\wedge} 2$. The probability for this is expresses as a "form factor" $\left.\operatorname{lf}\left(q^{\wedge} 2\right)\right|^{\wedge} 2$, which is not constant.

Also, since the initial state $D+$ and the final state K (pi) are spin=0, while the e nu come from a $W+$ and, thus, have spin $=1$, the K (pi) and the e nu system must be in a relative P wave. This introduces a factor $p(K)^{\wedge}(2 L+1)=p(K)^{\wedge} 3$.

Thus, the $\mathrm{K}(\mathrm{pi})$ e nu Dalitz plot deviates from a pure S-wave phase space distribution by a factor of $p(K)^{\wedge} 3 \times \operatorname{lf}\left(q^{\wedge} 2\right) I^{\wedge} 2$.

Parameterizations for, and measurements of $\left.\operatorname{If}\left(q^{\wedge} 2\right)\right|^{\wedge} 2$ are given in PRD 80, 032005 (2009).

I hope this helps,
S. Olsen

