报告介绍: |
摘要:
Gauge theories implement fundamental laws of physics by local symmetry constraints. For example, quantum electrodynamics and quantum chromodynamics are both based on gauge theories. However, the equations of gauge theories are usually hard to solve, forming exceptional challenges to supercomputer based numerical procedures. We developed unique techniques of spin-dependent superlattices, microscopic absorption imaging, and number resolved detection. We implemented the Schwinger model with a Hubbard model in deep lattice regime of a 71-site quantum simulator. We observed the interaction and conversion between matter fields and gauge fields and verified Gauss’s law. The quantum simulator may be also used to study non-equilibrium lattice gauge systems, false vacuum decay, dynamical transitions related to the topological θ-angle, and thermal signatures of gauge theories under extreme conditions.
报告人简介:
苑震生,中国科学技术大学教授、博士生导师。2003年获中国科学技术大学博士学位并留校任教,2006年起先后以博士后、洪堡学者、高级研究员和项目共同负责人在德国海德堡大学物理研究所工作,2011年回到中国科学技术大学任教授。
从事超冷原子物理和量子信息物理学研究,在超冷原子的精密量子调控、强关联量子多体问题的量子模拟和显微学研究等方面取得了重要进展,代表性成果包括:首次在实验上产生了600对原子比特的纠缠(Nature Physics 2006)并研究了超冷原子光晶格体系中四体交换相互作用及其任意子激发特性(Nature Physics 2017);提出并实现晶格中超流-绝缘态交错浸润的深度冷却机制并制备1000多对保真度99.3%的原子纠缠态(Science 2020);实现当时最大的71格点超冷原子量子模拟器并对一维格点规范场问题进行了研究(Nature 2020);揭示格点规范理论的热化动力学性质(Science 2022)。
曾主持基金委重点项目、杰出青年科学基金项目、科技部973计划课题等。 |